带有恒流源的差动放大电路
- 格式:pdf
- 大小:42.18 KB
- 文档页数:12
恒流源差动放大电路
长尾式差动放大电路,由于接入R e ,提高了
共模信号的抑制能力,且R e 愈大,抑制能力愈强。
若R e 增大,则R e 上的直流压降增大,为了保证管
子的正常工作,必须提高电源电压,这是不合算
的。
为此希望有这样一种器件,它的交流电阻r
大,而直流电阻R 小。
恒流源就有此特性。
∞→∆∆=I U r I U R =
将长尾式中的R e 用恒流源代替,即得恒流源差动放大电路,如下图所示。
恒流源电路的等效电阻,与放大电路的输出电阻相同,其等效电路也如下图所示,按输入短路,输出加电源U o ,求出I o ,则恒流源的等效电阻为
o o o I U r =3
30)()(33R I I r I I U b ce b o o ++-=β
)()//(302133=+++R I I R R r I b be b 02133//3I R R R r R I be b ++-=
ce be be ce be r R R R r R R R r R r R R R r R I U r )//1()////()//1(2133
2132
1330003+++≈+++++==β
80=β KΩ=100ce r KΩ=1be r KΩ==621R R KΩ=53R
MΩ≈5.43o r
113323s B E CE BE EE R I R I U U U +++=
32121E E E I I I ≈=。
§5、1差动放大电路(第三页)这一页我们来学习另一种差动放大电路和差动放大电路的四种接法一:恒流源差动放大电路我们知道长尾式差动电路,由于接入Re,提高了共模信号的抑制能力,且Re越大,抑制能力越强,但Re增大,使得Re上的直流压降增大,要使管子能正常工作,必须提高UEE的值,这样做是很不划算的。
因此我们用恒流源代替Re,它的电路图如右图所示:恒流源差动放大电路的指标运算,与长尾式完全一样,只需用ro3代替Re即可二:差动放大电路的四种接法差动放大电路有两个输入端和两个输出端,因此信号的输入、输出方式有四种情况。
(1)双端输入、双端输出它的电路的接法如图(1)所示:差模电压的放大倍数为:共模电压的放大倍数为:共模抑制比为:CMRR→∞(2)双端输入、单端输出它的电路接法如图(2)所示:差模电压的放大倍数为:共模电压的放大倍数为:共模抑制比为:(3)单端输入、双端输出它的电路接法如图(3)所示:这种放大电路忽略共模信号的放大作用时,它就等效为双端输入的情况。
双端输入的结论均适用单端输入、双端输出。
(4)单端输入、双端输出它的电路的接法如图(4)所示:它等效于双端输入、单端输出。
这种接法的特点是:它比单管基本放大电路的抑制零漂的能力强,还可根据不同的输出端,得到同相或反相关系。
三:总结由以上我们可以看出:差动放大电路电压放大倍数仅与输出形式有关,只要是双端输出,它的差模电压放大倍数与单管基本的放大电路相同;如为单端输出,它的差模电压放大倍数是单管基本电压放大倍数的一半,输入电阻都相同。
下一节返回§5、2集成运算放大器集成运放是一种高放大倍数、高输入电阻、低输出电阻的直接耦合放大电路一:集成运放的组成它有四部分组成:1、偏置电路;2、输入级:为了抑制零漂,采用差动放大电路3、中间级:为了提高放大倍数,一般采用有源负载的共射放大电路。
4、输出级:为了提高电路驱动负载的能力,一般采用互补对称输出级电路二:集成运放的性能指标(扼要介绍)1、开环差模电压放大倍数 Aod它是指集成运放在无外加反馈回路的情况下的差模电压的放大倍数。
实验3 差动放大电路实验一、实验目的(1)进一步熟悉差动放大器的工作原理;(2)掌握测量差动放大器的方法。
二、实验仪器双踪示波器、信号发生器、数字多用表、交流毫伏表。
三、实验原理实验电路如图1。
它是一个具有恒流源的差动放大电路。
在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。
差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。
若电路完全对称,对于差模信号,若Q1集电极电流增加,则Q2集电极电流一定减少,增加与减少之和为零,Q3和R e3等效于短路,Q1,Q2的发射极几乎等效于接地,差模信号被放大。
对于共模信号,若Q1集电极电流增加,则Q2集电极电流一定增加,两者增加的量相等,Q1,Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模干扰被衰减。
从而使差动放大器有较强的抑制共模干扰的能力。
调零电位器R p用来调节Q1,Q2管的静态工作点,希望输入V I1=0, V I2=0时,使双端图1 差动放大电路图输出电压V o=0。
差动放大器常被用做前置放大器。
前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。
有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。
若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。
于是人们希望有一种只放大差模信号、不放大共模信号的放大器,这就是差动放大器。
运算放大器的输入级大都为差动放大器,输入电阻都很大,例如LF353的输入电阻约为1012Ω量级,OP07的输入电阻约为107Ω量级。
四、实验内容本实验电路在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于510Ω,这是很小的输入电阻。
其原因是,本实验电路用分立元件组成,电路中对称元件的数值并不完全相等;其集电极为电阻负载,而不是恒流源负载;其发射极为恒流源负载,而不是镜像电流源负载,所以本实验电路的共模抑制比并不高。
第4章 差动放大电路在工业控制过程中,如温度、压力这样的物理量,被传感器检测到并转化为微弱的。
变化缓慢的非周期电信号。
而这些信号还需要经过直流放大器放大以后,才能进行进一步的处理或推动二次仪表进行显示。
那么,这里的放大器一般采用直接耦合多级放大器。
直接耦合多级放大器存在零点漂移的问题,克服零点漂移的有效办法,就是在多级放大器的输入级采用差动放大电路。
4.1 典型差动放大电路4.1.1 零点漂移问题1、零点漂移(1)零点漂移:指输入信号电压为零时,输出电压发生缓慢地、无规则地变化的现象,简称零漂。
(2)零漂产生的原因:晶体管参数()CEO BE I U β、、随温度变化、电源电压波动、电路元件参数的变化等。
(其中主要因素是温度对晶体管参数的影响,称为温漂。
)(3)温漂:环境温度每变化1℃,将放大电路输出端出现的漂移电压oU '∆ 折算到输入端,用这个折算到输入端的漂移电压数值表示零漂的大小,用i U '∆表示。
(常常认为,零漂就是温漂。
)放大电路的级数越多,放大倍数越大,则零漂电压逐级放大,就使零漂越严重,有时会将输入信号淹没。
那么,第一级零漂对输出端的总零漂来说,占主要地位。
2、抑制温度漂移的措施:① 在电路中引入直流负反馈。
(如第2章介绍的分压式偏置电路中的E R 就是一个直流负反馈。
)② 采用特性相同的管子,使它们的温漂相互抵消,构成差动放大电路,至于直接耦合多级放大电路的输入端。
(在直接耦合放大电路中抑制零点漂移最有效的电路结构是差动放大电路。
)4.1.2 典型差动放大电路1、电路结构与静态工作情况 (图4-1为典型的差动放大电路)将两个电路结构、参数均相同的单管放大电路组合在一起,就成为差动放大电路的基本形式。
两管射极均通过电阻E R 与负电源串联之后接地。
(1)差动放大电路的结构特点:① 由两个结构、参数左右对称的共射放大器组成;② 它有两个输入端a 和b ,存在两个输入信号1i u 、2i u ;③ 它有两个输出端,有单端输出(从任意一个集电极输出)、双端输出(从两个集电极之间输出)两种方式; ④ EE U 为负电源,确保1V 、2V 工作在放大状态。
模拟电路课程设计报告题目:差分放大器设计专业年级:2012级通信工程组员:20121342104 王开鹏20121342105 王娜20121342107 王象指导教师:方振国2014年11月27日差分放大器设计一、实验内容设计一具有恒流源的单端输入一双端输出差动放大器。
VCC =12V,VEE=-12V,R L =20kΩ,Uid=20Mv。
性能指标要求R id>25kΩ,A vd≥25,K CMR>60Db。
二、实验原理图3.3.31、恒流源差分放大器在生产实践中,常需要对一些变化缓慢的信号进行放大,此时就不能用阻容耦合放大电路了。
为此,若要传送直流信号,就必须采用直接耦合。
差分式直流放大电路是一种特殊的直接耦合放大电路,要求电路两边的元器件完全对称,即两管型号相同、特性相同、各对应电阻值相等。
为了改善差分式直流放大电路的零点漂移,利用了负反馈能稳定工作点的原理,在两管公共发时极回路接入了稳流电阻R E和负电源V EE,R E愈大,稳定性愈好。
但由于负电源不可能用得很低,因而限制了R E阻值的增大。
为了解决这一矛盾,实际应用中常用晶体管恒流源来代替R E,形成了具有恒流源的差分放大器,电路如图3.3.3所示。
具有恒流源的差分放大器,应用十分广泛。
特别是在模拟集成电路中,常被用作输入级或中间放大级。
图3.3.3中,V1、V2称为差分对管,常采用双三极管,如5G921、BG319或FHIB等,它与信号源内阻R b1、R b2、集电极电阻R Cl、R C2及电位器RP共同组成差动放大器的基本电路。
V3、V4和电阻R e3、R e4、R共同组成恒流源电路,为差分对管的射极提供恒定电流I o。
电路中R1、R2是取值一致而且比较小的电阻,其作用是使在连接不同输入方式时加到电路两边的信号能达到大小相等、极性相反,或大小相等、极性相同,以满足差模信号输入或共模信号输入时的需要。
晶体管V1与V2、V3与V4是分别做在同一块衬底上的两个管子,电路参数应完全对称,调节RP 可调整电路的对称性。
差动放大电路的改进
由式GS0512可知,要想提高差动放大电路的共模抑制比,就要增大共模负馈电阻Re,但增大Re会使其直流压降增大,要保持合适的静态工作点,EE就要增大很多,这显然是不经济的。
恒流源电路具有输出电阻很高而直流压降较小的特点,若用恒流源电路代替图Z0502电路中的Re,就可在EE不高的情况下,获得很高的共模抑制比。
图Z0506(a)就是一个带有恒流源的差动放大电路,图(b)是它的简化表示。
图中,T3是恒流管,R1、R2、D是它的偏置元件,Re是负反馈电阻,用以提高恒流源电路的输出电阻。
由于偏置电路一定,IB3就随之确定,
IC3=βIB3,也就确定(T3管工作在放大区)当UCE3变化时,由于IC3几乎不变,则等效交流电阻将很高而保证T3工作在放大区所需的UCE3 并不高,一般只要UCE3 ≥1V即可。
对恒流源差动放大电路进行静态分析时,应从恒流源电路着手,先确定出IC3,进而可确定出IC1=IC2=IC3/2及UC1=UC2=EC - IC1RC(对地)等。
关于差模放大倍数、共模放大倍数及共模抑制比的计算方法同前面介绍的方。
恒流源和典型差动放大电路是电子领域中常见的两种电路,它们具有各自独特的特点和作用。
在本文中,我将对恒流源和典型差动放大电路的特点进行详细介绍,并分析它们在实际应用中的优势与局限。
一、恒流源的特点恒流源是一种能够提供恒定电流输出的电路,其主要特点如下:1. 稳定性高:恒流源能够在一定范围内保持输出电流的稳定性,不受负载变化的影响。
2. 独立性强:恒流源的输出电流与负载电阻基本无关,能够保持较高的输出稳定性。
3. 用途广泛:恒流源常用于电路中的偏置电流源、电压源、对流线型放大器等,具有广泛的应用领域。
4. 外部干扰抑制能力强:恒流源能够对外部干扰信号具有一定的抑制能力,能够提高电路的抗干扰性能。
二、典型差动放大电路的特点典型差动放大电路是一种常见的放大电路结构,其主要特点如下:1. 差动增益高:典型差动放大电路能够实现较高的差动增益,对输入信号的差分部分进行有效放大。
2. 共模抑制能力强:典型差动放大电路能够有效抑制输入信号的共模部分,提高了信号的抗干扰能力。
3. 线性度好:典型差动放大电路的输出信号与输入信号之间具有较好的线性关系,适用于各种线性信号放大应用。
4. 适用范围广:典型差动放大电路常用于模拟信号处理、传感器信号放大、仪器仪表等领域,适用范围广泛。
三、恒流源与典型差动放大电路的结合恒流源与典型差动放大电路常常结合在一起,共同构成了一种完整的放大电路系统。
它们的结合具有以下特点:1. 抑制共模干扰:由于恒流源的独立性强,能够有效地提供稳定的工作电流,从而可以帮助差动放大电路抑制共模干扰信号。
2. 提高线性度:恒流源能够提供稳定的工作电流,有利于提高差动放大电路的线性度,使得输出信号与输入信号的线性关系更加稳定。
3. 增强抗干扰性:恒流源的外部干扰抑制能力强,能够有效地帮助差动放大电路提高抗干扰性能,使其在复杂环境下仍能正常工作。
恒流源和典型差动放大电路都具有各自独特的特点,它们在实际应用中的结合能够充分发挥各自的优势,提高放大系统的性能和稳定性。
差动输入级(恒流源、Ube倍增电路)音频功率放大器葛中海采用自举电路设计的功率放大器虽然电路相对较为简单,但却存在下限工作频率截止点。
引入自举电路是为了避免对信号正半波进行放大时,没有足够电流提供给互补管使用。
不缺三极管使用的情况下,采用恒流源可以保证对正半波进行放大时,也有足够的电流提供给上位管。
与此同时,将差动放大器也设计成由恒流源提供工作电流,可以大大提高对共模噪声的抑制比和放宽对电源电压的准确要求。
如图1所示,这是笔者为中山技师学院电子专业三年级同学,在讲授《实用音响电路》一书时,为大家设计的第五个中功率音频功放电路。
通过实验制作、电路调试、交直流参数测试、计算,理解、分析与体验功放电路的工作原理、调试方法以及故障排查。
图1 差动输入级(恒流源、Ube倍增电路)音频功率放大器R1是输入电阻,与C1组成低通滤波电路,滤除信号源或电路板引入的杂散高频干扰。
R2为C2提供放电通路,在系统断电后放掉C2残存的电荷。
R5与C3 、C4组成去耦电路,消除输出级电流波动引起的电压纹波对输入级的影响。
C3(瓷片电容)滤除高频,C4(电解电容)滤除低频(R7阻值较小,正常工作时压降忽略不计)。
R6、R8、VS1与VT3组成恒流源,给差动管提供恒定的静态电流——既是电源电压有较大范围的变动,该电流也基本保持不变。
VS1击穿导通,压降约3.6V,R8控制稳压二极管击穿电流(大约7.5mA),使其工作于反向特性曲线陡降区,同时又能满足其安全工作要求。
由于VT3发射结压降为0.6V,则R6的压降约3V,因此流过R6的电流约1mA。
该电流也是VT3的发射极电流I E3,又I E3≈I C3,I C3又被VT1、VT2分流为I C1、I C2,则I C3≈I C1+I C2。
VT4、VT5构成镜像恒流源,且VT4的b-c极连接,通过限流电阻R9到地。
忽略二者的基极电流,若它们的U BE、β也相同,则它们的e-c极电流相等,即I R9≈I C4≈I C5VT4、VT5电路结构对称,I C4≈I C5,犹如镜子内外的物像完全一样,这就是镜像恒流源名称的由来!VR1、R0与VT0构成U BE倍增电路,调节VR1可使静态时U AB= 3*U BE,抵消VT7、VT8与VT9发射结死去压降,其电流调节能力、温度补偿性均优于两只开关二极管(1N4148)与可调电阻的组合运用。
实验一 常用电子仪器的使用一、 实验目的1.熟悉示波器,低频信号发生器和晶体管毫伏表等常用电子仪器面板,控制旋钮的名称,功能及使用方法。
2.学习使用低频信号发生器和频率计。
3.初步掌握用示波器观察波形和测量波形参数的方法。
二、实验原理在电子电路实验中,经常使用的电子仪器有示波器、低频信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用电表一起,可以完成对电子电路的静态和动态工作情况的测试。
实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1—1所示。
接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
图1—1 模拟电子电路中常用电子仪器布局图1. 低频信号发生器低频信号发生器按需要输出正弦波、方波、三角波三种信号波形。
输出电压最大可达20V (峰-峰值)。
通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。
低频信号发生器的输出信号频率可以通过频率分档开关进行调节。
低频信号发生器作为信号源,它的输出端不允许短路。
2.交流毫伏表交流毫伏表只能在其工作频率范围之内,用来测量正弦交流电压的有效值。
为了防止过载而损坏,测量前一般先把量程开关置于量程较大位置上,然后在测量中逐档减小量程。
3.示波器示波器是一种用途极为广泛的电子测量仪器,它能把电信号转换成可在荧光屏幕上直接观察的图象。
示波器的种类很多,通常可分通用、多踪多线、记忆存贮、逻辑专用等类。
双踪示波器可同时观测两个电信号,需要对两个信号的波形同时进行观察或比较时,选用双踪示波器比较合适。
本实验要测量正弦波和方波脉冲电压的波形参数,正弦信号的波形参数是幅值U m 、周期T (或频率f )和初相;脉冲信号的波形参数是幅值U m 、周期T 和脉宽T P 。
差动放大电路一、概述差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。
特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。
基本差动放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。
设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。
二、基本电路图差动放大电路的基本电路图上图为差动放大电路的基本电路图[1]三、差动放大电路的工作原理1、差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。
它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1-UC2=0。
温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。
它的放大作用(输入信号有两种类型)(1)共模信号及共模电压的放大倍数 Auc共模信号---在差动放大管T1和T2的基极接入幅度相等、极性相同的信号。
如图(2)所示共模信号的作用,对两管的作用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此两管集电极输出共模电压Uoc为零。
因此:。
于是差动电路对称时,对共模信号的抑制能力强字串3(2)差模信号及差模电压放大倍数 Aud差模信号---在差动放大管T1和T2的基极分别加入幅度相等而极性相反的信号。
如图(3)所示差模信号的作用,由于信号的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者的变化量的绝对值相等,因此:此时的两管基极的信号为:所以:,由此我们可以看出差动电路的差模电压放大倍数等于单管电压的放大倍数。
差动输入级(恒流源、Ube倍增电路)音频功率放大器葛中海采用自举电路设计的功率放大器虽然电路相对较为简单,但却存在下限工作频率截止点。
引入自举电路是为了避免对信号正半波进行放大时,没有足够电流提供给互补管使用。
不缺三极管使用的情况下,采用恒流源可以保证对正半波进行放大时,也有足够的电流提供给上位管。
与此同时,将差动放大器也设计成由恒流源提供工作电流,可以大大提高对共模噪声的抑制比和放宽对电源电压的准确要求。
如图1所示,这是笔者为中山技师学院电子专业三年级同学,在讲授《实用音响电路》一书时,为大家设计的第五个中功率音频功放电路。
通过实验制作、电路调试、交直流参数测试、计算,理解、分析与体验功放电路的工作原理、调试方法以及故障排查。
图1 差动输入级(恒流源、Ube倍增电路)音频功率放大器R1是输入电阻,与C1组成低通滤波电路,滤除信号源或电路板引入的杂散高频干扰。
R2为C2提供放电通路,在系统断电后放掉C2残存的电荷。
R5与C3 、C4组成去耦电路,消除输出级电流波动引起的电压纹波对输入级的影响。
C3(瓷片电容)滤除高频,C4(电解电容)滤除低频(R7阻值较小,正常工作时压降忽略不计)。
R6、R8、VS1与VT3组成恒流源,给差动管提供恒定的静态电流——既是电源电压有较大范围的变动,该电流也基本保持不变。
VS1击穿导通,压降约3.6V,R8控制稳压二极管击穿电流(大约7.5mA),使其工作于反向特性曲线陡降区,同时又能满足其安全工作要求。
由于VT3发射结压降为0.6V,则R6的压降约3V,因此流过R6的电流约1mA。
该电流也是VT3的发射极电流I E3,又I E3≈I C3,I C3又被VT1、VT2分流为I C1、I C2,则I C3≈I C1+I C2。
VT4、VT5构成镜像恒流源,且VT4的b-c极连接,通过限流电阻R9到地。
忽略二者的基极电流,若它们的U BE、β也相同,则它们的e-c极电流相等,即I R9≈I C4≈I C5VT4、VT5电路结构对称,I C4≈I C5,犹如镜子内外的物像完全一样,这就是镜像恒流源名称的由来!VR1、R0与VT0构成U BE倍增电路,调节VR1可使静态时U AB= 3*U BE,抵消VT7、VT8与VT9发射结死去压降,其电流调节能力、温度补偿性均优于两只开关二极管(1N4148)与可调电阻的组合运用。
带有恒流源的差动放大电路
由式GS0512可知,要想提高差动放大电路的共模抑制比,就要增大共模负馈电阻Re,但增大Re会使其直流压降增大,要保持合适的静态工作点,EE就要增大很多,这显然是不经济的。
恒流源电路具有输出电阻很高而直流压降较小的特点,若用恒流源电路代替图Z0502电路中的Re,就可在EE不高的情况下,获得很高的共模抑制比。
图Z0506(a)就是一个带有恒流源的差动放大电路,图(b)是它的简化表示。
图中,T3是恒流管,R1、R2、D是它的偏置元件,Re是负反馈电阻,用以提高恒流源电路的输出电阻。
由于偏置电路一定,IB3就随之确定,IC3=IB3,也就确定(T3管工作在放大区)当UCE3变化时,由于IC3几乎不变,则等效交流电阻将很高而保证T3工作在放大区所需的UCE3 并不高,一般只要UCE3 1V即可。
对恒流源差动放大电路进行静态分析时,应从恒流源电路着手,先确定出IC3,进而可确定出IC1=IC2=IC3/2及UC1=UC2=EC - IC1RC(对地)等。
关于差模放大倍数、共模放大倍数及共模抑制比的计算方法同前面介绍的方法一样,仅是用恒流源的输出电阻替代了Re。
例题0502 图Z0507是某集成电路的输入级原理电路。
已知三极管的均为100,三极管的UBE和二极管的压降UD均为0.7V,Rc= 7.75k,RL =11.2k,Rb1 = 1.5k,Rb2 = 3.2k,Re = 2.2k,EC = EE = 6V
(1)估算静态工作点Q;(2)估算差模放大倍数;(3)估算差模输入电阻rid和差模输出电阻ro 。
解:(1)若忽略T3管的基极电流,则流过Rb1 的电流为:
流过T3管发射极的电流为。