2016级高等数学第二学期期末试卷(B类)
- 格式:pdf
- 大小:201.85 KB
- 文档页数:2
第二学期期末高数(下)考试试卷及答案1一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰ÑD LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C. ()-+1edx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3xae ; B.()+3x ax b e ;C. ()+3x xax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430QA B(),,∴=-142u u u rAB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922rn∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590x y z四.(8分)设(),=yz fxy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y. 解:令=u xy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200xy R x y2L :()=≤≤00x y R3L :()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:Q xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613Q f x xx x x , 而 ()∞=⋅=-+∑01111212n nn x x , (),-11 ()∞=-⋅=+∑01116313nn n n x x , (),-33 ()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263Q P Qxy y y x,∴原方程为:通解为:++-=532231332x y x y y x C九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12x x x xx Sx e C e e dx Ce e 由()=01S ,得:=12C ;故:()()-=+12xx S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。
2016年下半年《高等数学(下)》期末考试试卷及答案(河南工程学院)1. ( 单选题) 若函数 f(x) 在点 x0 处可导且,则曲线 y=f(x) 在点( x0, f(x0) )处的法线的斜率等于()(本题3.0分)A、B、C、D、2. ( 单选题) 无穷小量是(本题3.0分)A、比0稍大一点的一个数B、一个很小很小的数C、以0为极限的一个变量D、数03. ( 单选题)设函数,则其间断点的个数是()。
(本题3.0分)A、0B、 1C、 2D、 34. ( 单选题) 设则(本题3.0分)A、B、C、D、5. ( 单选题)极限(本题3.0分)A、-2B、0C、 2D、 16. ( 单选题) 设则(本题3.0分)A、B、C、D、7. ( 单选题) 设函数f(x)=(x+1)Cosx,则f(0)=( ).(本题3.0分)A、-1B、0C、 1D、无定义8. ( 单选题) 若,则f(x)=()。
(本题3.0分)A、B、C、D、9. ( 单选题)微分方程是一阶线性齐次方程。
(本题3.0分)A、正确B、错误10. ( 单选题) 曲线在点处的切线方程为(本题3.0分)A、B、C、D、11. ( 单选题) 极限(本题3.0分)A、 1B、-1C、0D、不存在12. ( 单选题) 极限(本题3.0分)A、-2B、0C、 2D、 113. ( 单选题)设,则( )。
(本题3.0分)A、B、6xC、 6D、014. ( 单选题)极限(本题3.0分)A、-1B、0C、 1D、不存在15. ( 单选题) 设则(本题3.0分)A、B、C、D、16. ( 单选题)极限(本题3.0分)A、1/eB、 eC、+∞D、 117. ( 单选题) 下列不定积分计算中,结果不正确的是 ( ) 。
(本题3.0分)A、B、C、D、18. ( 单选题) 设可导 ,且 , 则 ( ) 。
(本题3.0分)A、B、C、D、19. ( 单选题) 函数与是两个不相同的函数。
第二学期高等数学期末考试试卷答案一.填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中.1.过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,,垂直的平面方程为_____________________________. 2.设()22ln y x z +=,则=∂∂==11y x xz , ________________________.3.交换累次积分的顺序()=⎰⎰12xxdyy x f dx, ______________________.4.设222lnz y x u ++=,则()=u grad div ___________________.5.设幂级数∑∞=0n nn x a 的收敛半径为1R ,幂级数∑∞=0n n n x b 的收敛半径为2R ,且+∞<<<210R R ,则幂级数()∑∞=+0n nn n x b a 的收敛半径为_____________.答案:⒈ 043=+--z y x ; ⒉ 1;⒊ ()⎰⎰1yydx y x f dy ,;⒋2221zy x ++;⒌ 1R .二.选择填空题(本题满分15分,共有5道小题,每道小题3分)。
以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效. 1.函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的【 】. (A ).充分条件; (B ).必要条件; (C ).充分必要条件; (D ).既不是必要,也不是充分条件.2.设D 是xOy 平面上以()11,、()11,-、()11--,为顶点的三角形区域,1D 是D 在第一象限的部分,则积分()⎰⎰+Ddxdyy x xy sin cos等于【 】.(A ).⎰⎰1sin cos 2D ydxdy x ; (B ).⎰⎰12D xydxdy ;(C ).()⎰⎰+1sin cos 4D dxdy y x xy ; (D ).0.3.下列级数中,属于条件收敛的是【 】.(A ).()()∑∞=+-111n nnn ; (B ).()∑∞=-1si n 1n nn nn π ;(C ).()∑∞=-121n nn; (D ).()∑∞=+-1131n nn .4.设函数()x f 是以π2为周期的周期函数,它在[)ππ,-上的表达式为()⎩⎨⎧<≤<≤-=ππx x xx f 000 ,再设()x f 的Fourier (傅立叶)级数的和函数为()x s ,则()=πs 【 】. (A ).2π-; (B ).π- ; (C ).0 ; (D ).π .5.设向量a 、b 、c 满足:0c b a =++,则=⨯+⨯+⨯a c c b b a【 】.(A ).0 ; (B ).c b a⨯⨯;(C ).c b ⨯; (D ).()b a⨯3. 答案: ⒈ (A ); ⒉ (C ); ⒊ (B ); ⒋ (A ); ⒌ (D ). 三.(本题满分7分)设()xy y x f z ,22-=,其中函数f 具有二阶连续的偏导数,试求xz ∂∂,yx z ∂∂∂2.解:212f y f x xz '+'=∂∂ ,()2221222112224f xyffyx xyf yx z ++-+-=∂∂∂ .四.(本题满分7分) 计算三重积分()⎰⎰⎰Ω+=dxdydzz x I ,其中Ω是由曲面22y x z +=及221y x z --=所围成的空间区域.解:作球坐标变换θϕρcos sin =x ,θϕρsin sin =y ,ϕρcos =z , 则空间区域Ω变为,104020≤≤≤≤≤≤Ω'ρπθπθ,,:,因此,()⎰⎰⎰Ω+=dxdydzz x I()⎰⎰⎰Ω+=ρϕθϕρϕρθϕρd d d s i n c o s c o s s i n 2()⎰⎰⎰+=12420s i n c o s c o s s i n ρϕρϕρθϕρϕθππd d d8π=五.(本题满分8分) 计算曲面积分()()⎰⎰∑-+++=dxdy z dzdx z y dydz xz I 322912其中∑为曲面122++=y x z ()21≤≤z ,取下侧.解:取平面21=∑z :,取上侧.则∑与1∑构成封闭曲面,取外侧.令∑与1∑所围空间区域为Ω,由Gauss 公式,得 ⎰⎰⎰⎰∑∑+∑-=11I()⎰⎰⎰⎰⎰≤+Ω--=132229y x dxdydxdydz⎰⎰⎰⎰⎰≤+--=121120222y x rdxdydz rdr d πθ2π-=六.(本题满分8分) 判别级数()()()()()∑∞=++++12222!2!!3!2!1n n n的敛散性.解: ()()()()()!2!!3!2!102222n n u n ++++=≤()()()()()!2!!!!2222n n n n n ++++≤, ()()n v n n n =⋅=!2!2而()()()()()()()!2!!12!11limlim221n n n n n n v v n nn n ⋅++⋅+=→∞+→∞()()()14122121lim3<=+++=→∞n n n n n所以,由比值判别法,知级数()()∑∑∞=∞=⋅=121!2!n n n n n n v 收敛.再由比较判别法知级数()()()()()∑∑∞=∞=++++=122221!2!!3!2!1n n nn n u 收敛.七.(本题满分8分) 选取a 与b ,使得dy yx b y x dx yx y ax 2222++--++成为某一函数()y x u ,的全微分,并求()y x u ,. 解:()22y x y ax y x P ++=,,()22y x by x y x Q ++-=, 由()()()dy y x Q dx y x P y x du ,,,+=,得xQ yP ∂∂=∂∂即有()()()()222222222222yxxb y x y x yxyy ax y x +⋅+--+=+⋅+-+解得,1=a ,0=b .所以,()()()()()⎰+--+=y x yx dyy x dx y x y x u ,,,0122⎰⎰+--=yxdy yxyx xdx 0221()⎰⎰+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=yyyx y x d x y x y d x 0222202211ln()x yx xy x ln ln 21arctan ln 22-++-=()xyyx a r c t a n ln 2122-+=八.(本题满分8分) 过直线⎩⎨⎧=-+=-+0272210z y x z y x 作曲面273222=-+z y x 的切平面,求此切平面的方程. 解:过已知直线作平面束方程()0272210=-++--+z y x z y x λ,即()()()0272210=-+-+++z y x λλλ,其法向量为{}λλλ--++=2210,,n.设所求切平面的切点坐标为()000z y x ,,,则有()()()⎪⎪⎩⎪⎪⎨⎧=-+-+++=-+---=+=+02722102732222610000202020000z y x z y x z y x λλλλλλ , 解得1113000-====λ,,,z y x .或1917173000-=-=-=-=λ,,,z y x .因此,所求切平面方程为027339=--+z y x ,或02717179=-+--z y x .九.(本题满分8分)求极限:()422221lim xx tu t x x eduedt ---→-⎰⎰+.解:交换积分()⎰⎰--222x tu t x du edt 中的顺序,有()()⎰⎰⎰⎰----=uu t x x tu t x dt edu du edt 022222,u t v -=,则有()⎰⎰-----=uvuu t dv edt e22所以()()4242222221lim 1lim xuu t xx xx tu t x x edt edueduedt---→---→-=-⎰⎰⎰⎰++4242002222221l i m 1l i mxx vx xxuvx ex d veed ud v e---→---→⎰⎰⎰-=-⎪⎪⎭⎫ ⎝⎛-=++212lim lim 1lim424222==-⋅=-→--→-→+++⎰xx x vx xx ex dvee十.(本题满分8分)利用⎪⎭⎫ ⎝⎛-x x dx d 1cos 的幂级数展开式,求级数()()∑∞=⎪⎭⎫⎝⎛--122!2121n nn n n π的和.解: 设()⎪⎭⎫⎝⎛-=x x dx d x s 1cos ,由于()()()()∑∑∞=-∞=-=--=-11202!211!211c o s n n nn nnn xxn xxx ()-∞<<∞-x因此,()()()⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=∑∞=-112!211c o s n n n n xdx d x x dx d x s()()∑∞=---=122!2121n n nxn n另一方面, ()21c o s s i n 1c o s x x x x x x dxd x s +--=⎪⎭⎫ ⎝⎛-=所以,()()∑∞=---=+--1222!21211c o s s i n n n nxn n xx x x ()-∞<<∞-x当2π=x 时,()()∑∞=-⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛1222!21212n n nn n s ππ,所以,()()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--∑∞=222!2121212πππs n n n nn2221c o s s i n 2ππ=+--⋅⎪⎭⎫ ⎝⎛=x x x x x22212c o s 2s i n24⎪⎭⎫ ⎝⎛+--⋅=πππππ21π-=十一.(本题满分8分)已知x 、y 、z 为实数,而且32=++z y e x证明:32≤z y e x.(提示:考虑函数()()223ye y e y xf xx--=,.) 解: 设()()223ye y e y xf xx--=,,由题设32=++z y e x , 得 32≤+y e x, 即 32=+y e x为其边界.下面只需证明:()()223ye y e y xf xx--=,在区域32≤+y ex上的最大值为1.令:()()()()⎪⎩⎪⎨⎧=--='=--='0232023222y e y e y x f y e y e y x f x x y x x x ,,, 解方程组得驻点()10,,()10-,和()0,x .对于驻点()10,和()10-,,有 ()110=,f ,()110=-,f对于驻点()0,x ,()00=,x f ;在边界32=+y e x 上,()002=⋅=y e y x f x,,所以,函数()()223y e y e y x f x x --=,的最大值为1,即()()1322≤--=ye y e y xf xx,即32≤z ye x.。
2015-2016年第二学期《高等数学AII 》期末考试试卷一、单项选择题(从4个备选答案中选择最适合的一项,每小题2分共20分) 1、三重积分⎰⎰⎰Ω=dV z y x f I ),,(,其中Ω由平面1=++z y x ,1=+y x ,0=x ,0=y ,1=z 所围,化为三次积分是( B ) A 、 ⎰⎰⎰---=211010),,(y x x dz z y x f dy dx I ; B 、 ⎰⎰⎰---=111010),,(y x x dz z y x f dy dx I ;C 、 ⎰⎰⎰--=11110),,(yx dz z y x f dy dx I ; D 、 ⎰⎰⎰--=11010),,(yx x dz z y x f dy dx I .2、设y e x u 2=,则=du ( A )A. dy e x dx xe y y 22+;B. dy e xdx y +2;C. dy xe dx e x y y 22+;D. dy e x dx e x y y 22+. 3、微分方程y dxdyx= 的通解为( C ). A. C x y +-=; B. C x y +=; C. Cx y =; D. x y =.4、设1∑是222y x R z --=上侧,2∑是222y x R z ---=下侧,3∑是xoy 平面上圆222R y x ≤+的上侧,R Q P ,,在3R 空间上有一阶连续偏导数,且0=∂∂+∂∂+∂∂zR y Q x P ,则与曲面积分⎰⎰∑++1Rdxdy Qdzdx Pdydz 相等的积分是( B )(A) ⎰⎰∑++2Rdxdy Qdzdx Pdydz ;(B) ⎰⎰∑++3Rdxdy Qdzdx Pdydz ;(C)Rdxdy Qdzdx pdydz ++⎰⎰∑∑21 ;(D)Rdxdy Qdzdx pdydz ++⎰⎰∑∑31 .5、微分方程x xe y y y 396-=+'-''的特解形式为( B )A 、x axe 3-;B 、x e b ax 3)(-+;C 、x e b ax x 3)(-+;D 、x e b ax x 32)(-+ 解:特征方程0)3(9622=-=+-r r r ,321==r r ,特解形式为x e b ax y 3)(-*+=.选(B ). 6、当)0,0(),(→y x 时, 22yx xyu +=的极限为( A ) A 、不存在; B 、1; C 、2; D 、0. 7、下列级数收敛的是( B ) A 、∑+∞=+121n n ; B 、∑+∞=131sin n n ; C 、∑+∞=+1441n n n ; D 、∑+∞=-121)1(n n n . 8、微分方程02=-'+''y y y 的通解为( C )A. x x e C e C y --=21;B. 221x xe C e C y --=; C. 221x xe C eC y -=-; D. x x e C e C y 221+=-.解:特征方程0)1)(12(122=+-=-+r r r r ,11-=r ,212=r ,通解为221xx e C e C y -=-.选(C ).9、设⎰⎰+=Ddxdy y x I 21)(,⎰⎰+=Ddxdy y x I 32)(,D 由直线1=x ,1=y 与1=+y x 围成,则1I 与2I 的大小关系是( A )A 、21I I <;B 、21I I =;C 、21I I >;D 、21I I ≥. 10、积分 0 0adx ⎰⎰的极坐标形式的二次积分为( B )A 、⎰⎰40csc 02πθθa dr r d ;B 、⎰⎰40sec 02πθθa dr r d ;C 、⎰⎰20tan 02πθθa dr r d ;D 、⎰⎰40sec 0πθθa rdr d .二、填空题(每空3分,共30分)1、微分方程0))(,,(4='''y x y y x F 的通解含有(独立的)任意常数的个数是 2 个.2、设)(x f 是周期为π2的周期函数,且⎩⎨⎧<≤<≤--=ππx x x x f 000)(,它的傅立叶级数的和函数为)(x S ,则=)5(πS 2π. 3、已知函数)ln(22y x z +=,则=∂∂-∂∂xzy y z x0 . 4、设平面曲线L 为1||||=+y x ,则曲线积分=⎰+ds e Ly x ||||e 24.5、若曲线积分⎰---=Ldy y ax xy dx y xy I )(3)6(2232与路径无关,则=a 2 。