MODIS指数介绍
- 格式:docx
- 大小:92.47 KB
- 文档页数:8
MODIS卫星数据介绍(转)2009-03-2518:20modis介绍-1引用地址:/viewdiary.38308087.htmlMODIS目前主要存在于两颗卫星上:TERRA和AQUA.TERRA卫星每日地方时上午10:30时过境,因此也把它称作地球观测第一颗上午星(EOS-AM1)。
AQUA每日地方时下午过境,因此称作地球观测第一颗下午星(EOS-PM1)MODIS扫描周期为1.477秒,每条扫描线沿扫描方向有1354点(Pixels),沿轨道方向有10个1KMD的IFOV(瞬时视场)。
在每个IFOV中,1KM分辨率波段有1个采样,500M分辨率波段有4个采样,250M波段有16个采样。
白天扫描每个点在两个MODIS包中传输,第一个包传输IFOV1~5,第二个包传输IFOV6~10modis介绍-2全部44种产品MODIS的下行数据(RawData)利用CCSDS进行了封装,使用RS(255,223)进行纠错。
整个CCSDS包(包括同步码4个字节)长度为1024字节。
其中Reed -SolomonCoding用来对整个CodedVCDU进行纠错。
MODISCCSDS包的Reed-SolomonCoding部分共有32×4=128字节,采用RS(255,223)。
每个包可纠16×4=64个字节错误。
MODIS扫描周期为1.477秒。
每条扫描线沿扫描方向有1354点(Pixels),沿轨道方向有10个IFOV(瞬时视场)。
在每个IFOV中,1KM分辨率波段有1个采样,500M分辨率波段有4个采样,250M波段有16个采样。
白天扫描每个点在两个MODIS包中传输,第一个包传输IFOV1~5,第二个包传输IFOV6~10。
裸数据是最原始的地面接收数据,它含有满足CCSDS标准(CCSDS102.0-B-4)的数据包(CADU)。
它经过格式化同步、去扰、RS纠错、格式转变等相应的步骤和程序,处理成为MODIS0级数据产品0级产品:指由进机板进入计算机的数据包,也称原始数据(RawData);1级产品:指1A数据,己经被赋予定标参数;2级产品:指1B级数据,经过定标定位后数据,本系统产品是国际标准的EOS-HDF 格式。
MODIS指数介绍MODIS指数简介1.MODIS数据介绍1.1简介MODIS(MODerate-resolution Imaging Spectroradiometer,中等分辨率成像光谱仪)分别搭载在TERRA和AQUA两颗卫星上,数据可分别从TERRA和AQUA两颗卫星获取。
TERRA和AQUA 卫星都是太阳同步极轨卫星,TERRA在地方时上午过境,AQUA将在地方时下午过境。
TERRA 与AQUA上的MODIS数据在时间更新频率上相配合,加上晚间过境数据,对于接收MODIS数据来说,可以得到每天最少2次白天和2次黑夜更新数据。
这样的数据更新频率,对实时地球观测、应急处理(例如森林和草原火灾监测和救灾)和日内频率的地球系统的研究有非常重要的实用价值。
关于TERRA和AQUA卫星介绍,可参看1.3 Terra卫星和Aqua卫星。
MODIS扫描周期为1.477秒,每条扫描线沿扫描方向有1354个Pixels,沿卫星轨道方向有10个1KMD的IFOV。
MODIS共36个波段,其中250m分辨率有2个波段,500m分辨率有5个波段,1000m分辨率有29个波段。
36个波段中波段值分辐射值和反射值两种。
MODIS各波段的信息如表1所示。
表1 MODIS波段信息1.2MODIS结构与数据级别MODIS数据产品分级系统:MODIS标准数据产品分级系统由5级数据构成,它们分别是:0级、1级、2级、3级和4级。
表2 MODIS数据产品分级MODIS标准数据产品根据内容的不同分为0级、1级数据产品,在1B级数据产品之后,划分2-4级数据产品,包括:陆地标准数据产品、大气标准数据产品和海洋标准数据产品等三种主要标准数据产品类型,总计分解为44种标准数据产品类型。
MOD01:即MODIS1A数据产品。
MOD02:即MODIS1B数据产品。
MOD03:即MODIS数据地理定位文件。
其余类型产品略。
MODIS 1B采用分等级的数据格式(层次结构,树结构)HDF和HDF-EOS。
MODIS数据介绍及植被指数算法MODIS(Moderate Resolution Imaging Spectroradiometer)是一种搭载在Terra和Aqua卫星上的遥感仪器,由美国宇航局(NASA)和美国地球观测系统(EOS)使用。
它于1999年发射,用于全球地表的监测和观测。
MODIS数据提供了涵盖地球表面全部区域的高质量、中等空间分辨率的图像,提供了多种环境参数的监测和观测,包括云雾、海洋、气溶胶、火灾、水文过程和陆地表面特征等。
常用的植被指数包括归一化差异植被指数(Normalized Difference Vegetation Index,NDVI),以及改进的归一化植被指数(Enhanced Vegetation Index,EVI)。
NDVI是使用可见光(VIS)波段和近红外(NIR)波段的差异来估计植被覆盖程度的指标。
其计算公式为:NDVI=(NIR-VIS)/(NIR+VIS)。
NDVI 的取值范围为-1到1,数值越高表示植被覆盖越好。
EVI是在NDVI的基础上进行改进的指数,它修正了可见光波段对大气散射的影响,并且引入了一个土壤校正因子。
EVI的计算公式为:EVI=G*(NIR-VIS)/(NIR+C1*VIS-C2*BLUE+L)。
其中,G、C1、C2和L是一组常数,需要根据具体情况进行调整。
除了NDVI和EVI,还有其他一些植被指数的方法,如基于土壤调整的植被指数(Soil Adjusted Vegetation Index,SAVI),以及基于差分植被指数(Differential Vegetation Index,DVI)等。
植被指数算法的原理基于植被在可见光和近红外波段上的吸收和反射特性。
植被具有较高的反射率和较低的吸收率,在近红外波段具有较高的反射率,在可见光波段具有较低的反射率。
这种差异性可以通过遥感数据来测量和评估,从而得出植被指数,以揭示植被的生长情况和植被覆盖度。
MODIS数据说明分类:Modis 2014-11-25 02:05 2273人阅读评论(1) 收藏举报MODIS目前主要存在于两颗卫星上:TERRA和AQUA。
TERRA卫星每日地方时上午10:30时过境,因此也把它称作地球观测第一颗上午星(EOS-AM1)。
AQUA每日地方时下午过境,因此称作地球观测第一颗下午星(EOS-PM1)。
两颗星相互配合,每1-2天可重复观测整个地球表面,得到36个波段(表1)的观测得到,这些数据广泛用于全球陆地、海洋和低层大气内的动态变化过程研究。
MODIS获取数据的原始分辨率包括三类:波段1–2 – 250m、波段3–7 – 500m、波段8–36 –1000m。
其产品的分辨率包括四类: 250m, 500m, 1000m, 以及5600m (0.05度)。
大多数标准MODIS 产品使用的时正弦投影,在赤道处是10° 10°的格网,行代号由左上角(0, 0)起始,到右下角(35, 17) (图一).MODIS标准数据产品根据内容的不同分为0级、1级数据产品,在1B级数据产品之后,划分2-4级数据产品,包括:陆地标准数据产品、大气标准数据产品和海洋标准数据产品等三种主要标准数据产品类型,总计分解为44种标准数据产品类型。
它们分别是:图一MODIS产品分幅1) MODIS L0数据是对卫星下传的数据报解除CADU外壳后,所生成的CCSDS格式的未经任何处理的原始数据集合,其中包含按照顺序存放的扫描数据帧、时间码、方位信息和遥测数据等。
2) L1 A数据是对L0数据中的CCSDS包进行解包所还原出来的扫描数据及其他相关数据的集合。
3) L1 B数据是对L1 A数据进行定位和定标处理之后所生成,其中包含以SI (Scaled Integer)形式存放的反射率和辐射率的数据集。
L1 B代码读取L1 A代码解包产生的DN数据集(EV SD SRCA BB SV)以及定标查找表LUT(Look Up Table)作为输入,分别对太阳反射波段RSB 和热辐射波段TEB进行定标处理。
MCD45A1 Combined Tile500m MonthlyBurned AreaMOD09GATerraTile 500/1000mDailySurface Reflectance Bands 1–7表面反射MYD09GA MOD09GQ MYD09GQ MOD09CMG MYD09CMG MOD09A1 MYD09A1 MOD09Q1 MYD09Q1 MOD13A1Aqua Terra Aqua Terra Aqua Terra Aqua Terra Aqua TerraTile 500/1000mDailySurface Reflectance Bands 1–7Surface ReflectanceTile250mDailyBands 1–2Surface ReflectanceTile250mDailyBands 1–2CMG 5600m CMG 5600mDaily DailySurface Reflectance 陆地 2 级标准数据产品,内容为表面反射;空间分辨率 250mBands 1–7日数据。
Surface Reflectance Bands 1–7Surface ReflectanceTile500m8 DayBands 1–7Surface ReflectanceTile500m8 DayBands 1–7Surface ReflectanceTile250m8 DayBands 1–2Surface ReflectanceTile250m8 DayBands 1–2Vegetation IndicesTile500m 16 Day 植被指数MYD13A1 MOD13A2 MYD13A2 MOD13Q1 MYD13Q1 MOD13A3 MYD13A3 MOD13C1 MYD13C1 MOD13C2 MYD13C2MOD44WAqua Terra Aqua Terra Aqua Terra Aqua Terra Aqua Terra AquaTerraTile Tile Tile Tile Tile Tile Tile CMG Tile CMG CMGTile500m 16 Day Vegetation Indices1000m 16 Day Vegetation Indices1000m 16 Day Vegetation Indices250m 250m 1000m16 Day 16 DayVegetation Indices陆地 3 级标准数据产品,内容为栅格的归一化植被指数和增强Vegetation Indices数( NDVI/EVI ),空间分辨率 250m 。
MODIS数据介绍(2014-02-24 17:22:02)转载▼一、Modis数据资源总体介绍1999年2月18日,美国成功地发射了地球观测系统(EOS)的第一颗先进的极地轨道环境遥感卫星Terra。
它的主要目标是实现从单系列极轨空间平台上对太阳辐射、大气、海洋和陆地进行综合观测,获取有关海洋、陆地、冰雪圈和太阳动力系统等信息,进行土地利用和土地覆盖研究、气候季节和年际变化研究、自然灾害监测和分析研究、长期气候变率的变化以及大气臭氧变化研究等,进而实现对大气和地球环境变化的长期观测和研究的总体(战略)目标。
2002年5月4日成功发射Aqua星后,每天可以接收两颗星的资料。
搭载在Terra和Aqua两颗卫星上的中分辨率成像光谱仪(MODIS)是美国地球观测系统(EOS)计划中用于观测全球生物和物理过程的重要仪器。
它具有36个中等分辨率水平(0.25um~1um)的光谱波段,每1-2天对地球表面观测一次。
获取陆地和海洋温度、初级生产率、陆地表面覆盖、云、汽溶胶、水汽和火情等目标的图像。
本网站提供的MODIS陆地标准产品来自NASA的陆地过程分布式数据档案中心(The Land Processes Distributed Active Archive Center,LP DAAC/NASA)。
包括:基于Terra星和Aqua星数据的地表反射率(250m,daily;500m,daily;250m,8days;500m,8day)、地表温度(1000m,daily;1000m,8days;5600m,daily)、地表覆盖(500m,96days;1000m,yearly)、植被指数NDVI&EVI(250m,16daily;500m,16days;1000m,16days;1000m,monthly;、温度异常/火产品(1000m,daily;1000m,8days)、叶面积指数LAI/光合有效辐射分量FPAR(1000m,8days)、总初级生产力GPP(1000m,8days)。
第三节 MODIS植被指数数据产品参考规范(草)(讨论和试用稿第一稿2004年9月15日)(中国科学院地理科学与资源研究所全球变化信息研究中心)1主题内容与适用范围1.1主题内容本标准规定了国家对地观测系统MODIS共享平台植被指数数据产品术语、类型、制作、和验证过程,用以规范我国MODIS植被指数数据产品在产生、保藏、交换和应用中的一致性。
1.2适用范围本规范适用于国家科技基础条件平台对地观测系统MODIS共享平台植被指数数据产品及与之相关的数据产品在数据源、数据合成、数据质量检验和数据交换过程中的活动规范。
2植被指数类型MODIS植被指数分为归一化植被指数(NDVI)和增强型植被指数(Enhanced Vegetation Index, EVI)二种类型。
3术语3.1植被指数:通过地表覆盖物在可见光波谱段的吸收和在近红外波谱段的反射特性,建立的用于描述植被数量和质量的参数。
植被指数没有量纲。
3.2地表反射数据:指经过大气校正的MODIS 1-7 波段数据,即MOD09 产品。
3.3植被指数合成:在多日植被指数中,按照一定标准和规则,选择其中一个植被指数的过程。
3.4植被指数合成期:用于实施合成的时间段。
以天、旬、月度计算。
3.5BRDF合成:双向反射分布函数。
指把传感器视角的观测值,统一为星下点观测值;同时把不同太阳高度角统一为有代表性的一个角度。
4植被指数数据产品的生产标准4.1单日植被指数计算:4.1.1输入数据:输入去云并且经过大气校正的地面反射数据。
MODIS1-7 波段。
其中:1-2波段空间分辨率250m,3-7波段空间分辨率500m。
4.1.2植被指数定义及计算公式:NDVI =(B2-B1)/(B2+B1)EVI =2.5*(B2-B1)/(B2+6*B1–7.5*B3 + 1)其中:NDVI:归一化植被指数EVI:增强型植被指数B1:MODIS第1波段B2:MODIS第2波段B3:MODIS第3波段4.1.3输出数据:NDVI和EVI,日数据,空间分辨率250米。
MODIS数据介绍MODIS(Moderate Resolution Imaging Spectroradiometer)是一种装载在NASA的 Terra(地球)卫星和 Aqua(水)卫星上的遥感传感器。
该传感器由美国宇航局(NASA)和美国国家航空航天局(NOAA)合作开发,于1999年发射并投入使用。
MODIS传感器可以提供高分辨率、全球覆盖的观测数据,主要用于监测地球表面的气候变化、自然灾害、陆地和海洋生态系统的变化等。
MODIS传感器能够测量可见光、红外线和热红外辐射等波段的反射率和辐射率。
它的观测分辨率为250米至1000米,覆盖范围达到每天全球地表的99%。
传感器每天可以收集约2TB的数据,包括植被指数、云量、海洋表面温度、悬浮物浓度、地表温度等多个地球要素。
MODIS数据在许多领域中得到广泛应用。
在气候研究方面,MODIS数据可以用于监测全球气候变化趋势,分析气候模型的准确性,并预测未来的气候趋势。
MODIS数据还可用于监测和预警地表干旱、降雨分布、雪被和冰盖变化等气候异常,为农业、水资源管理和灾害预防提供科学依据。
在生态学研究中,MODIS数据可以评估陆地和水域的植被状况、植被生长和物种分布等。
这些数据对于监测森林覆盖的退化、评估陆地利用变化的影响以及推动生态保护和恢复具有重要意义。
MODIS传感器还可以测量海洋表面温度和悬浮物浓度,用于海洋生态系统的监测和资源管理。
除了气候和生态研究,MODIS数据在应对自然灾害和环境管理方面也起到了重要作用。
传感器可以检测火灾烟雾、火山喷发、沙尘暴等自然灾害,提供灾害监测和风险预警。
此外,MODIS数据还能够监测大气污染物和空气质量,并为环境管理提供支持。
为了方便用户使用和处理MODIS数据,NASA和其他机构提供了一系列的开放数据和工具。
例如,MODIS数据可以通过NASA的Land Processes Distributed Active Archive Center(LP DAAC)和NASA的Worldview等在线平台免费获取和浏览。
modis叶面积指数Modis叶面积指数是一种用于研究植被生长状态和植被覆盖度的指标。
它可以通过遥感技术获取,提供了对植被生长和植被覆盖度的全球范围的监测和分析。
叶面积指数(Leaf Area Index, LAI)是描述植物叶面积的一个重要指标,它反映了植物叶片的覆盖程度和密度。
植物的光合作用主要发生在叶片上,因此叶面积对植物的生长和光合作用具有重要影响。
叶面积指数可以通过测量植物叶片的覆盖面积来得到,也可以通过遥感技术获取。
Modis叶面积指数(Modis Leaf Area Index, Modis LAI)是利用Modis卫星数据计算得出的叶面积指数。
Modis卫星是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合研制的一颗地球观测卫星,它搭载了多个传感器,可以获取高分辨率的地球观测数据。
Modis叶面积指数可以通过对Modis卫星数据进行处理和分析得到。
Modis卫星的传感器可以测量地表的反射和辐射,从而提供了植被的信息。
通过对这些信息进行处理和分析,可以计算出叶面积指数。
Modis叶面积指数可以提供全球范围内的植被生长状态和植被覆盖度的信息,对于研究气候变化、生态环境监测等具有重要意义。
Modis叶面积指数在农业、林业和生态学等领域有广泛的应用。
在农业方面,Modis叶面积指数可以用来监测作物的生长状态和叶面积,评估作物的生长状况和生产潜力。
在林业方面,Modis叶面积指数可以用来监测森林的生长和林分结构,评估森林的健康状况和生态系统服务功能。
在生态学方面,Modis叶面积指数可以用来研究植被生长对气候变化的响应,评估生态系统的稳定性和可持续性。
Modis叶面积指数的研究还可以帮助我们了解植被对全球气候变化的响应。
植被是地球上最重要的碳汇之一,它能够吸收大量的二氧化碳,并通过光合作用将其转化为有机物质。
通过监测和分析植被的叶面积指数,可以研究植被生长对气候变化的响应,评估植被的碳吸收能力和碳储存潜力。
第三节 MODIS植被指数数据产品参考规范(草)(讨论和试用稿第一稿2004年9月15日)(中国科学院地理科学与资源研究所全球变化信息研究中心)1主题内容与适用范围1.1主题内容本标准规定了国家对地观测系统MODIS共享平台植被指数数据产品术语、类型、制作、和验证过程,用以规范我国MODIS植被指数数据产品在产生、保藏、交换和应用中的一致性。
1.2适用范围本规范适用于国家科技基础条件平台对地观测系统MODIS共享平台植被指数数据产品及与之相关的数据产品在数据源、数据合成、数据质量检验和数据交换过程中的活动规范。
2植被指数类型MODIS植被指数分为归一化植被指数(NDVI)和增强型植被指数(Enhanced Vegetation Index, EVI)二种类型。
3术语3.1植被指数:通过地表覆盖物在可见光波谱段的吸收和在近红外波谱段的反射特性,建立的用于描述植被数量和质量的参数。
植被指数没有量纲。
3.2地表反射数据:指经过大气校正的MODIS 1-7 波段数据,即MOD09 产品。
3.3植被指数合成:在多日植被指数中,按照一定标准和规则,选择其中一个植被指数的过程。
3.4植被指数合成期:用于实施合成的时间段。
以天、旬、月度计算。
3.5BRDF合成:双向反射分布函数。
指把传感器视角的观测值,统一为星下点观测值;同时把不同太阳高度角统一为有代表性的一个角度。
4植被指数数据产品的生产标准4.1单日植被指数计算:4.1.1输入数据:输入去云并且经过大气校正的地面反射数据。
MODIS1-7 波段。
其中:1-2波段空间分辨率250m,3-7波段空间分辨率500m。
4.1.2植被指数定义及计算公式:NDVI =(B2-B1)/(B2+B1)EVI =2.5*(B2-B1)/(B2+6*B1–7.5*B3 + 1)其中:NDVI:归一化植被指数EVI:增强型植被指数B1:MODIS第1波段B2:MODIS第2波段B3:MODIS第3波段4.1.3输出数据:NDVI和EVI,日数据,空间分辨率250米。
MODIS指数简介
1.MODIS数据介绍
1.1简介
MODIS(MODerate-resolution Imaging Spectroradiometer,中等分辨率成像光谱仪)分别搭载在TERRA和AQUA两颗卫星上,数据可分别从TERRA和AQUA两颗卫星获取。
TERRA和AQUA 卫星都是太阳同步极轨卫星,TERRA在地方时上午过境,AQUA将在地方时下午过境。
TERRA 与AQUA上的MODIS数据在时间更新频率上相配合,加上晚间过境数据,对于接收MODIS数据来说,可以得到每天最少2次白天和2次黑夜更新数据。
这样的数据更新频率,对实时地球观测、应急处理(例如森林和草原火灾监测和救灾)和日内频率的地球系统的研究有非常重要的实用价值。
关于TERRA和AQUA卫星介绍,可参看1.3 Terra卫星和Aqua卫星。
MODIS扫描周期为1.477秒,每条扫描线沿扫描方向有1354个Pixels,沿卫星轨道方向有10个1KMD的IFOV。
MODIS共36个波段,其中250m分辨率有2个波段,500m分辨率有5个波段,1000m分辨率有29个波段。
36个波段中波段值分辐射值和反射值两种。
MODIS各波段的信息如表1所示。
表1 MODIS波段信息
1.2MODIS结构与数据级别
MODIS数据产品分级系统:MODIS标准数据产品分级系统由5级数据构成,它们分别是:0级、1级、2级、3级和4级。
表2 MODIS数据产品分级
MODIS标准数据产品根据内容的不同分为0级、1级数据产品,在1B级数据产品之后,划分2-4级数据产品,包括:陆地标准数据产品、大气标准数据产品和海洋标准数据产品等三种主要标准数据产品类型,总计分解为44种标准数据产品类型。
MOD01:即MODIS1A数据产品。
MOD02:即MODIS1B数据产品。
MOD03:即MODIS数据地理定位文件。
其余类型产品略。
MODIS 1B采用分等级的数据格式(层次结构,树结构)HDF和HDF-EOS。
其中HDF-EOS 是对地观测系统(EOS)对HDF的扩展。
MODIS 1B 产品命名如下:
表3 MODIS 1B产品概要
1.3Terra卫星与Aqua卫星
TERRA卫星每日地方时上午10:30时过境,因此也把它称作地球观测第一颗上午星(EOS-AM1)。
AQUA卫星保留了TERRA卫星上已经有了的CERES和MODIS传感器,并在数据采集时间上与TERRA形成补充。
它也是太阳同步极轨卫星,每日地方时下午过境,因此称作地球观测第一颗下午星(EOS-PM1)
表4 Terra 与Aqua 卫星参数
2. MODIS 指数
2.1 NDVI 与EVI
NDVI (归一化植被指数)公式为nir red nir red
NDVI ρρρρ-=
+。
nir ρ对应MODIS 第1波段CH 1,red ρ对应MODIS 第2波段CH 2。
由于叶绿素吸收在蓝色(470nm )和红色(670nm )波段最敏感,可见光波段的反射能量很低。
而几乎所有的近红外(NIR )辐射都被散射掉了(反射和传输),很少吸收,而且散射程度因叶冠的光学和结构特性而异。
因此红色和近红外波段的反差(对比)是对植物量很敏感的度量(图1)。
无植被或少植被区反差最小,中等植被区反差是红色和近红外波段的变化结果,而高植被区则只有近红外波段对反差有贡献,红色波段趋于饱和,不再变化。
NDVI 可以很好地突出正常植被的特征。
但NDVI 在0.8附近时易达到饱和,表现为无论植被密度多高,NDVI 的值不再升高。
相对于NDVI ,EVI (增强型植被指数)能更好地解决饱和问题,同时减弱了大气和土壤对NDVI 的影响。
图1 NDVI 示意图
EVI 计算公式为12nir red
nir nir blue EVI G C C L
ρρρρρ-=⨯
+⋅-⋅+,其中C 1、C 2、L 和G 是常量,默认值
分别是6.0、7.5、1.0和2.5;blue ρ对应MODIS 第4波段CH 4。
MODIS 增强植被指数(EVI )的主要缺点是蓝色通道的分辨率为500m ,这将使最终的植被指数分辨率由250m 降到500m ;或者要求“重采样”,将蓝色波段与红色及近红外的配准。
2.2 NDWI (归一化水指数)
MODIS 的归一化水指数计算公式为CH4CH2
CH4CH2
NDWI -=
+。
水体在550μm 处有较高的反射
率,而在近红外波段反射率较低,采用NDWI 指数可以较好地突出影像上的水体特征。
一般来说,水体的NDWI>0。
2.3 NDSI (归一化积雪指数)
MODIS 的归一化积雪指数计算公式为CH4CH6
CH4CH6
NDVI -=
+。
积雪有很强的可见光反射和很
强的短波红外吸收特性。
积雪在0.5μm 附近有高反射率,在1.6μm 和2.1μm 附近反射率较低(图2)
图2 积雪指数示意图
2.4 VSWI (植被供水指数)
干旱时或作物供水不足,一方面作物的生长受到影响,植被指数降低;另一方面由于缺水,没有足够的水分供给植株蒸腾蒸发,迫使叶片关闭一部分气孔,导致作物的冠层温度升高。
因此可以定义植被供水指数。
植被供水指数计算公式为3132NDVI
VSWI a T b T c
=
⋅+⋅+。
其中T 31和T 32
分别为MODIS 第31和第32波段的亮温。
a = 3.6125,b = -2.5779, c = -10.05。
2.5 LST (地表温度)
LST :Land Surface Temperature 。
大部分地表物质在第31和第32波段的比辐射率稳定,因此地表温度一般由MODIS 的第31和第32波段的亮温反演实现。
一般采用劈窗算法实现LST 反演。
2.6 LAI (叶面积指数)
为了在大尺度模型中运用叶面积指数,须有较长时间和覆盖地球表面不同地区的历史叶面积指数数据。
该数据可由多波段的遥感图像获得。
从遥感图像估计叶面积指数有两种方法。
一种方法是建立地面实测的叶面积指数和由卫星获得的植被指数间的经验关系,另外一种是通过植被反射率模型反演叶面积指数。
两种方法各有优劣:基于第一种方法已建立了较多的经验关系,但是叶面积指数和植被指数的关系不稳定,植被类型,土壤背景都会影响两者间的关系,所以该方法不适合用于大范围尺度上。
所以基于辐射传输模型的反演方法是唯一在大范围上获
得叶面积指数的有效方法。
2.7 VCI (植被状态指数)
植被状态指数的定义为min
max min
i NDVI NDVI VCI NDVI NDVI -=
+。
其中NDVI i 为某一特定年第i 个时段某一
像素的NDVI 值,NDVI max 和NDVI min 分别代表所研究年限内第i 个时段该像素NDVI 的最大值和最小值,NDVI max - NDVI min 在一定意义上代表了NDVI 的最大变化范围,反映了当地植被的生态环境;分子部分在一定意义上表示了某一特定的年的第i 个时期的当地气象信息,VCI 越小表示该时段的NDVI 越接近NDVI min ,作物长势越差。
2.8 RVI (比值植被指数)
比值植被指数即红光波段与近红外波段的比值。
公式为red
nir
RVI ρρ=。
2.9 TCI (温度状态指数)
温度状态指数定义为max max min
i
T T TCI T T -=
+。
其中,T i 为某一像素在某一特定年第i 个时段的
地表温度,T max 和T min 分别表示在所研究年限内第i 个时段内该像素地表温度的最大值和最小值,TCI 值越小,表示该时段作物长势越差。
TCI 的缺点是未考虑白天的气象条件,如净辐射、风速、湿度等对热红外遥感的影响及土地表面温度的季节性变化。
2.10
PTI (热惯量)
热惯量是对物质温度变化的一种量度,是表示物质热惰性(阻止物质温度变化)大小的物理量。
高热惯量的物体对温度的变化阻力大,反之亦然。
因此热惯量的大小决定了地表温度变化的快慢。
直接测量热惯量不可能实现,可以通过遥感等手段测量。
MODIS 数据计算热惯量同时需要该地区白天的影像和夜间影像,计算公示如下:
W=a*P ATI +b P ATI =(1-ABE)/ΔT
ABE=0.155*CH 1 + 0.062*CH 2 + 0.161*CH 3 + 0.146*CH 4 + 0.112*CH 8 + 0.092*CH 9 + 0.093*CH 10 + 0.091*CH 11 + 0.049*CH 14 + 0.035CH 15
ΔT=T d -T n
T d = 3.6125*CH 31 - 2.5779*CH 32 - 10.05
T n = 3.6125*CH31 - 2.5779*CH32 - 10.05
其中:P ATI为表观热惯量,ABE为地表全波段反照率,ΔT为一天最高温度、最低温度差,T d为白天的地面温度,T n为夜晚的地面温度。