结构设计参数
- 格式:doc
- 大小:45.50 KB
- 文档页数:11
建筑结构设计七个重要参数建筑结构设计是建筑工程中至关重要的环节,它关乎到建筑的稳固性、经济性和安全性。
在进行建筑结构设计时,需要考虑七个重要参数,这些参数对于建筑结构的设计和建设起着至关重要的作用。
下面将详细介绍这七个重要参数。
参数一:荷载荷载是指对建筑结构施加的外力和外载荷。
外力包括自重、活载(人员、设备等)、风载、地震载、温度变化引起的荷载等。
荷载是建筑结构设计的基础,合理估计和分析荷载有助于确保结构的稳定性和安全性。
参数二:强度强度是指结构材料所能承受的最大外力或应力。
在建筑结构设计中,需要考虑材料的强度和抗力,以确保结构的安全性。
强度设计要充分考虑结构的各种不利因素,如荷载类型、弯曲、剪切、压缩等,并根据设计规范进行相应的计算和分析。
参数三:刚度刚度是指结构抵抗外力变形的能力。
在建筑结构设计中,需要考虑结构的刚度,以确保结构在受力后能够保持稳定。
刚度设计要充分考虑结构的几何形状、材料的性质,以及结构的连接方式,采用合适的刚度设计有助于提高结构的稳定性和整体性。
参数四:稳定性稳定性是指建筑结构在受到外力作用后仍能保持平衡和稳定的能力。
在建筑结构设计中,需要考虑结构的整体稳定性,以确保结构不会发生失稳和倒塌。
稳定性设计要充分考虑结构的几何形状、重心位置、支座条件等因素,采用合适的稳定性设计有助于提高结构的抗风、抗震能力。
参数五:耐久性耐久性是指建筑结构能够在长期使用条件下保持强度、刚度和稳定性的能力。
在建筑结构设计中,需要考虑结构的耐久性,以确保结构能够长期使用而不会出现损坏和退化。
耐久性设计要充分考虑结构材料的性质、外界环境的影响,采用合适的防护措施有助于延长结构的使用寿命。
参数六:经济性经济性是指在保证结构安全、稳定和耐久的前提下,以最少的材料和成本达到设计要求。
在建筑结构设计中,需要考虑结构的经济性,以确保在有限的资源条件下实现设计目标。
经济性设计要充分考虑结构的材料选择、结构形式和施工工艺,采用合适的经济性设计有助于减少成本和资源消耗。
一、钢筋的计算截面面积及理论重量101151201注:表中直径d=8.2mm 的计算截面面积及理论重量仅适用于有纵肋的热处理钢筋二、每米板宽内的钢筋截面面积表三、单肢箍Asv1/s(mm2/mm)四、梁内单层钢筋最多根数14 16九、混凝土保护层《混凝土结构设计规范》第9.2.1条纵向受力的普通钢筋及预应力钢筋,其混凝土保护层厚度(钢筋外边缘至混凝土表面的距离)不应小于钢筋的公称直径,且应符合表9.2.1的规定。
表9.2.1 纵向受力钢筋的混凝土保护层最小厚度(mm)梁注:基础中纵向受力钢筋的混凝土保护层厚度不应小于40mm;当无垫层时不应小于70mm。
第9.2.3条板、墙、壳中分布钢筋的保护层厚度不应小于本规范表9.2.1中相应数值减10mm,且不应小于10mm;梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。
第9.2.4条当梁、柱中纵向受力钢筋的混凝土保护层厚度大于40mm时,应对保护层采取有效的防裂构造措施。
通常在砼保护离构件表面10-15mm处增配φ4@150钢筋网片。
处于二、三类环境中的悬臂板,其上表面应采取有效的保护措施。
第9.2.5条对有防火要求的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。
处于四、五类环境中的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。
注意事项:混凝土最低强度等级和保护层厚度问题1、±0.00以下(基础、底层柱)和屋面、露台梁板环境类别为二(a)类,应采用C25或以上混凝土。
2、基础混凝土保护层厚度为40mm,特别注意基础梁纵向钢筋净距是否满足规范要求。
3、应根据混凝土构件所处的环境类别和强度等级修改结构分析程序的保护层厚度。
十、纵向受力钢筋的配筋率10.1、考虑到满足最小配筋率要求,常见板纵向受力钢筋的最小配筋率应符合《混凝土结构设计规范》第9.5.1条的规定:《混凝土规范》第9.5.1条钢筋混凝土结构构件中纵向受力钢筋的配筋百分率不应小于表9.5.1规定的数值。
结构系统设计的参数分析与优化在结构系统的设计中,不同的参数设置会对其性能产生不同的影响,因此参数分析和优化是设计过程中非常重要的一部分。
本文将从材料、结构形式、尺寸、构造方法等多个角度出发,探讨结构系统设计中的参数分析和优化方法。
一、材料参数的分析与优化材料参数是结构系统设计中最基本的参数之一。
不同的材料性质决定了结构系统受力、变形和破坏的特性,因此选取合适的材料参数对结构系统的性能是至关重要的。
在材料参数的选择过程中,应考虑到材料的强度、刚度、韧性等性质,同时也要充分考虑到其可靠性、耐久性、成本等因素。
基于这些考虑,我们可以对不同的材料参数进行分析和优化。
例如,在钢结构的设计过程中,应选择刚度和强度后的钢板材料,以保证结构的稳定性和正常工作的寿命;而在混凝土的设计中,应考虑混凝土的特性、结构的规模和线路,选择适合的配料比例,以确保混凝土的质量、强度和耐久性。
二、结构形式参数的分析与优化结构形式是结构系统的骨架,不同的结构形式对系统性能有着非常重要的影响。
分析和优化结构形式参数,有助于确定最佳的结构形式和其构造形式。
不同的结构形式具有不同的受力和变形特性,例如,在框架结构中,结构斗柱是良好的受力构架,因此在设计中应合理设置其尺寸和数量;而钢结构中常使用的悬索结构,其受拉杆和悬挂钢缆也需要针对不同的方向和强度进行分析和优化,在此基础上确定合理的结构设计方案。
三、尺寸参数的分析与优化尺寸是结构系统设计中非常重要的参数之一。
不同的尺寸设置会直接影响结构系统的受力、变形和破坏特性。
在尺寸参数分析和优化中,一方面要考虑到结构的整体设计效果,合理的尺寸组合可以提高结构的稳定性和效率;另一方面,也要考虑到结构的可制造性、可维护性和成本等因素,避免尺寸设置过大或造成不必要的浪费。
四、构造方法参数的分析与优化构造方法也是结构系统设计中非常重要的因素。
不同的构造方法会直接影响结构系统的整体效果和耐久性。
在构造方法参数的分析和优化中,应充分考虑到结构承载力和稳定性的需求,让结构系统能够具备更高的稳定性,并确保其在使用过程中能够长期保持性能和功能。
1、轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。
轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面面积。
轴压比不满足时的调整方法:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
02周期比周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。
一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规4.3.5。
刚度越大,周期越小。
抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。
结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
当第一振型为扭转时:说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。
当第二振型为扭转时:说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
周期比不满足时的调整方法:通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。
03、位移比/位移角位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。
PKPM结构设计参数介绍PKPM(Peking University Performance Management)是由北京大学结构工程与结构减振研究所开发的一套钢结构分析与设计软件,广泛应用于国内外的工程项目中。
PKPM结构设计参数是指在使用PKPM软件进行结构设计时所需要输入和设定的一些关键参数,下面将对一些常见的PKPM结构设计参数进行详细介绍。
1.结构模型参数:结构模型参数主要包括结构的几何形状和尺寸等信息,如墙板、梁、柱的截面尺寸,结构的高度、跨度、楼层平面布局等。
这些参数是根据设计要求和实际情况确定的,对结构的分析和设计起着基础性的作用。
2.几何刚度参数:几何刚度参数是指由结构的几何形状决定的刚度参数,包括梁、柱的刚度、节点的刚度等。
在PKPM软件中,可以通过输入各个构件的截面尺寸和材料特性来定义几何刚度参数,从而对结构的刚度进行准确的计算。
3.材料参数:材料参数是指结构构件所使用的材料的力学特性参数,包括钢材的弹性模量、屈服强度、抗拉强度、屈服应变等,混凝土的弹性模量、抗压强度、抗拉强度等。
这些参数是PKPM软件进行结构分析和设计时必须要输入的重要参数,用于计算结构的应力、应变和刚度等。
4.荷载参数:荷载参数是指作用于结构上的外部荷载参数,包括静载荷、动载荷和温度荷载等。
静载荷包括自重、活载和附加荷载等,动载荷则是指风荷载、地震荷载等。
温度荷载是由温度变化引起的结构变形和应力。
在PKPM软件中,可以根据各个构件的位置和功能要求,输入相应的荷载参数,并进行合理分析和计算。
5.设计规范参数:设计规范参数是指根据国家和地区的相关设计规范要求所确定的参数,如钢结构设计规范、混凝土结构设计规范等。
这些规范参数包括构件的安全系数、限制值等,对于结构的安全性和合规性具有重要的影响。
在PKPM软件中,可以根据设计规范的不同要求,设定相应的参数,以满足结构设计的要求。
6.连接参数:连接参数是指结构中各个构件之间的连接方式和参数,包括梁柱连接、柱基连接等。
设计院结构设计数据结构专业技术统一口径1、采用规范及选用图集(1)建筑结构荷载规范GB50009-2001;(2)建筑抗震设计规范GB50011-2001;(3)混凝土结构设计规范GB50010-2002;(4)高层建筑混凝土结构技术规程JGJ3-2002;(5)建筑地基基础设计规范GB50007-2002;(6)建筑桩基技术规范JGJ94-94;(7)《混凝土结构施工图平面整体表示方法制图规则和构造详图》(现浇砼框架、剪力墙、框剪、框支剪力墙结构03G101-1;现浇砼板式楼梯03G101-2)。
(8)框架轻质填充墙构造图集(西南G701(一)(二)(三));(9)钢筋砼过梁(西南G301(一)(二))。
2、荷载(1)恒载a、楼面板:80厚板(用于卫生间)(3.5KN/m2);100厚板(4.0KN/m2);120(4.5KN/m2);转换层板厚180(6KN/m2)(不包括回填层)。
屋面板:120厚板(7.0KN/m2),130厚板(8.0KN/m2);地下室顶板:板厚150(6.0KN/m2)。
b、卫生间板:8.0KN/m2(包括回填层)。
(2)活载a、住宅客厅、卧室、书房、餐厅、过道等:2.0KN/m2b、公共楼梯、消防疏散楼梯、住宅楼梯:3.5KN/m2c、厨房、卫生间:2.5KN/m2d、阳台:2.5KN/m2e、露台:3.5KN/m2f、上人屋面:2.0KN/m2,不上人屋面:0.5KN/m2g、花园:5.0KN/m2h、消防控制室:7.0KN/m2i、电梯机房:7.0KN/m2j、发电机房:10.0KN/m2k、车库:4.0KN/m2l、消防车道:20.0KN/m2(当有1.2~1.5米覆土时,消防荷载取8KN/M2)m、商场:3.5KN/m2n、公共卫生间:2.5KN/m2(3)基本风压:高度小于60米,为0.4KN/m2;高度大于60米,0.45KN/m2 ;地面粗糙度类别:C 类(市区内)(4)填充墙体:200厚墙7.3KN/m2,100厚墙5.5KN/m2,阳台3KN/m23、抗震设防类别及抗震等级丙类建筑,6度设防。
受弯构件——梁受横向荷载所以梁是受弯构件。
用三维模型方法建立门式刚架的整体模型:
定义轴网,梁、柱构件,荷载数据,建立整体结构模型
进行屋面系统、墙面系统布置
直接点取檩条、墙梁、隅撑、屋面支撑、柱间支撑等构件进行计算和绘施工图。
绘制屋面、墙面布置图。
统计整个结构梁、柱、檩条、墙梁、屋面支撑、柱间支撑、隅撑、拉条等构件的钢材用量,作用钢量统计和报价。
生成结构恒活荷载传到基础的数据。
利用三维模型数据生成单榀刚架的二维模型
用二维模型方法直接建立门式刚架模型:
二维模型输入与修改,建立门式刚架二维模型。
PK结构计算,进行内力分析和构件验算。
可处理单跨、多跨、对称和非对称门式刚架。
构件可采用等截面或楔形截面梁、柱和加腋截面梁。
门式刚架计算提供三种规范:《钢结构设计规范》(GBJ17-88),《门式刚架轻型房屋钢结构技术规程》(CECS102:98)及《轻型钢结构设计规程》(上海市标准DBJ08-68-97)。
按后两种规程计算时,对构件腹板,允许局部屈曲,利用其屈曲后强度;对刚架柱、斜梁,均按压弯构件计算其平面内,平面外稳定性;截面特性按有效宽度计算。
可以进行截面优化。
节点设计和施工图绘制。
自动进行梁、柱连接节点,斜梁拼接节点、屋脊节点,及柱脚节点设计。
当有吊车荷载时,自动进行柱牛腿的设计。
可以进行节点修改。
自动布置檩托。
施工图包括刚架整体立面图,构件腹板放样图,构件详图、节点施工图等。
混凝土结构设计基本参数标准一、前言混凝土结构是建筑工程中最常用的结构形式之一,具有优秀的耐久性、承载能力和施工性能等优点。
混凝土结构的设计是建筑工程中的重要环节,其设计的基本参数标准对于工程的质量和安全具有重要的影响。
本文将从混凝土结构设计的角度出发,详细介绍混凝土结构设计的基本参数标准。
二、基本参数标准2.1 强度等级混凝土的强度等级是指混凝土的抗压强度,其计算公式为f_c = f_cj + k_c,其中f_cj是标准养护条件下28d龄期的混凝土立方体抗压强度,k_c是强度修正系数。
根据国家标准GB 50010-2010《混凝土结构设计规范》,混凝土的强度等级分为C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80等级,其中C15表示抗压强度为15MPa,C80表示抗压强度为80MPa。
2.2 抗震设防烈度地震是混凝土结构安全性的重要考虑因素,抗震设防烈度是指建筑结构在地震作用下的最大承载能力。
根据国家标准GB 50011-2010《建筑抗震设计规范》,抗震设防烈度分为7度,分别为1度、2度、3度、4度、5度、6度、7度,其中7度为最高烈度。
建筑物所处地区的地震烈度等级是设计混凝土结构时必须考虑的因素之一。
2.3 混凝土配合比混凝土配合比是指混凝土中水泥、砂、石、水等各组成部分的比例关系。
混凝土配合比的设计必须满足混凝土的强度等级和施工工艺要求。
一般来说,混凝土配合比的设计要考虑以下因素:混凝土强度等级、材料的物理力学性质、施工工艺、养护条件等。
2.4 钢筋配筋率钢筋配筋率是指混凝土结构中钢筋与混凝土截面积之比。
钢筋的配筋率直接影响混凝土结构的抗震性能和承载能力。
根据国家标准GB 50010-2010《混凝土结构设计规范》,钢筋配筋率应满足以下要求:混凝土结构的受力性能要求、钢筋保护层厚度要求、钢筋的通径、弯曲性能、长度等要求。
2.5 混凝土配筋布置混凝土配筋布置是指混凝土结构中钢筋的布置方式和位置。
结构设计时结构参数的控制与分析一、引言结构设计是工程建筑中的重要环节,而结构参数的控制与分析则是结构设计中至关重要的一环。
结构参数的控制与分析能够影响到工程建筑的稳定性、安全性以及经济性,对结构参数的控制与分析是非常重要的。
本文将从结构参数的含义与分类、结构参数的控制方法以及结构参数的分析方法等方面展开探讨,希望能够为相关领域的研究和实践提供一些参考。
二、结构参数的含义与分类结构参数是指控制和影响结构性能的各种变量或者参数,它包括了多个方面的内容,例如截面尺寸、材料性能、载荷大小等。
一般来说,结构参数可以根据其影响因素的不同进行分类,主要分为静力参数和动力参数两大类。
1. 静力参数静力参数是指在静力作用下对结构内力分布和变形等方面有影响的参数。
截面尺寸、材料性能、截面强度等都属于静力参数。
这些参数在结构设计中起着至关重要的作用,其合理的控制和分析能够有效地保证结构的稳定性和承载能力。
动力参数则是指在动力作用下对结构振动、疲劳等方面有影响的参数。
结构的共振频率、阻尼比、振动幅值等都是动力参数。
在一些重要的工程建筑中,对于动力参数的控制和分析显得尤为重要,因为它关系到结构的安全性和稳定性。
结构参数是工程建筑中的关键因素,其合理的控制和分析是确保结构安全性和稳定性的关键。
下面将对结构参数的控制方法与分析方法进行具体探讨。
三、结构参数的控制方法1. 截面尺寸的确定截面尺寸是影响结构静力性能的重要参数。
合理的截面尺寸能够提高结构的承载能力,减小变形,从而提高整体的稳定性。
在进行截面尺寸的确定时,需要考虑结构的受力情况、载荷大小、材料性能等多方面因素,通过优化设计来确定最佳的截面尺寸。
2. 材料性能的选择材料性能是影响结构静力性能的另一个重要参数。
不同的材料具有不同的力学性能,合理的选择材料类型和材料性能能够有效地提高结构的承载能力和稳定性。
在进行材料性能的选择时,需要进行全面的分析和比较,从而确定最适合的材料类型和材料性能。
期刊文章分类查询,尽在期刊图书馆摘要:自2002年开始,建筑结构设计方面的新规范全面颁布实施已有六年多时间。
规范条文本身应当只是做一些原则性的规定,让设计人员根据自己的理解和经验来掌握应用,但是规范中某些条文过于笼统,设计人员也难以把握。
目前我国实行施工图审查制度,由于设计人员与审查人员对规范一些不够具体的条文规定的理解不同,常常会引起争议,而且少数设计人员或审查人员不考虑工程的实际情况,机械地执行规范。
下面就高层建筑设计过程中遇到的一些问题,与同行们进行探讨。
关键词:结构设计;短肢剪力墙;新规范;《高规》;设计建议1 关于高层建筑高宽比《高层建筑混凝土结构技术规程》(以下简称《高规》)对高层建筑适用的最大高宽比有明确要求,但在计算高宽比时,对建筑宽度的取法却无明确规定,在第4.2.3条的条文说明中指出“一般场合,可按所考虑方向的最小投影宽度计算高宽比……对于不宜采用最小投影宽度计算高宽比的情况,应由设计人员根据实际情况确定合理的计算方法”,对设计人员来说,难以确定何为合理的计算方法,而且这是一个涉及建筑是否为超限高层建筑的敏感问题,应该有一个较为明确的取法,以便设计及审查人员掌握。
2 关于剪力墙的高厚比新的《抗震规范》及《高规》对剪力墙高厚比的要求较“89规范”更高。
通常在底部加强区,由于底部层高相对较高,剪力墙的厚度往往由高厚比确定,而不是由承载力或结构刚度确定,按《高规》第7.2.2条第4款的规定,当高厚比不满足要求时,如剪力墙所承受的竖向力不大,验算墙体稳定一般都能通过,因为剪力墙主要作为抗侧力构件使用。
在按《高规》附录D计算墙体稳定时,规程列出了单片墙及T形、工字形剪力墙的计算方法,有些设计人员对在工程设计中常遇到的L形及I形剪力墙是否可按T形及工字形墙的公式进行计算拿不准。
从原理分析,T形及工字形墙的稳定计算,考虑了一侧墙肢对另一向墙肢的支承作用,所以L形及I形墙,只要墙肢具有一定的长度,其作用是和T型及工字形墙完全相同的。
但对于多长的墙肢才可视为有翼缘的问题,规程并没有明确规定,参照约束边缘构件的规定,翼墙长度小于其厚度3倍或端柱截面边长小于墙厚2倍时,视为无翼墙或无端柱。
当按层高计算墙体稳定时,视其为支承边时,此规定可参考执行,但对较厚墙体,又不太合理,比如-300厚剪力墙,翼墙长度要大于900才可视为有支承,对一般层高而言,900墙肢在肢长方向有足够的刚度,完全可视为另一向墙肢的支承,因此,如果规定按一定的层高与肢长比来确定是否可视为支承应该更为合理,而不是肢长与肢厚比。
在计算剪力墙高厚比时,新规范对于层高的取值也不够明确,对有地下室的结构,底层层高取为±0.00地面到一层楼面间的高度,而对于无地下室的小高层建筑,由于基础有一定的埋深要求,如果计算高度取基础至二层楼板面的高度,则计算高度一般达到3.0+0.6(高差)+1.4(基顶埋深)=5.0m,如果底层为商场,则计算高度更大,这样势必会增加剪力墙的厚度,特别是对一字形墙,能否考虑首层刚性地面对墙体稳定的有利影响,譬如可否取到刚性地面以下500mm,这是一个值得探讨的问题。
3 关于计算方法及参数取值建筑结构在进行内力和位移计算时,除了选择合理的结构分析模型和适用的结构计算程序外,对计算方法、参数取值也要准确把握。
计算程序中的各种参数在应用时只要理解程序说明,一般比较容易掌握,而计算方法的选择,则要充分理解规范条文,并结合工程实际,灵活运用。
《抗震规范》第5.1.1条的第2、3款规定“有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。
”对第2款而言,按笔者理解,这类所谓的斜交抗侧力构件,不应指个别构件,而是主要的抗侧力构件,例如对于框架-剪力墙结构,其中有一两榀框架是斜交的,而剪力墙均为正交,由于程序处理剪力墙时在某一定角度范围外不再计入其在该方向的抗侧刚度,此时如果按斜角度计算,会导致不合理的结果。
而对第3款而言,系指质量和刚度分布明显不对称,而不是其中某一项不对称,也就是说在结构的刚心和质心相距较大时,才进行双向地震作用计算,否则计算结果也会产生较大的差异。
《抗震规范》第5.2.3条规定,在计算水平地震作用扭转影响时,规则结构可不进行扭转耦联计算,对边榀框架乘以地震作用效应增大系数,对不规则结构则按扭转耦联振型分解法计算,设计人员往往对结构规则不规则难以准确界定,于是在计算时就干脆都选择耦联计算。
对长宽比较大的结构,如果质心有一些偏移,耦联计算时会产生“甩尾效应”,各榀框架内力会沿长向依次递增或递减,首尾相差可达一倍以上,所以采用耦联计算也要根据结构特点,不能一概而论。
4 关于抗震构造措施新的《高规》较“89规范”增加了有关短肢剪力墙的规定,但有些条文在设计应用时,尚不尽完善,且规程对短肢剪力墙的纵向钢筋配筋率要求偏高。
短肢剪力墙原来系用于高层点式筒体的结构,近年来大量应用于10~16层的小高层商住楼,对这种高度一般不超过50m的建筑,是否应当采取如此严格的构造措施,是值得商榷的。
例如,《高规》第7.1.2条第2款规定“筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的50%”,相比于框剪结构中的框架而言,短肢墙的抗侧刚度要大的多,这样势必增加长墙的数量,进而增大地震作用。
而有些地方在审查剪力墙结构时,对少数的短墙甚至对长墙中的短墙肢,也要求按短肢墙的规定来设计,应属对规程的理解偏差。
关于短肢剪力墙抗震等级的规定不尽合理,《高规》第7.1.2条第3款规定“短肢剪力墙的抗震等级应比本规程表4.8.2规定的抗震等级提高一级采用”,在短肢剪力墙结构中,既然规定了一般墙或筒体承受的倾覆力矩大于50%,则筒体或一般墙为主要抗侧力构件,应提高筒体或一般墙的抗震等级才合理,就如框-剪结构中的剪力墙抗震等级高于或等于框架抗震等级。
在约束边缘构件设置上,对于设防烈度Ⅶ度、高度小于80m的短肢剪力墙结构,根据《高规》要求,主要承担地震倾覆力矩的长墙的抗震等级为Ⅲ级,无须设置约束边缘构件,反而承担倾覆力矩较少的短墙却需要设置约束边缘构件,这是不合理的,因为长墙承担的倾覆力矩更大,边缘构件由倾覆力矩所引起的附加应力也更大,更应设置约束边缘构件。
《高规》第7.1.8条规定,当连梁跨高比不小于5时,宜按框架梁进行设计。
连梁主要承受水平荷载带来的剪力和弯矩,容易出现剪切裂缝,其抗剪计算式与框架梁不一样(见《高规》第7.2.24条),箍筋间距要求要严。
连梁抗震设计时,对配筋率没有特殊要求,其最小配筋率同非抗震设计,最大配筋率则通过截面条件来控制。
而框架梁则要满足截面条件及配筋等多项构造要求。
在设计此类连梁时应注意,在计算时要设为非连梁,否则程序对其刚度不乘考虑楼板作用的增大系数,还要按连梁折减。
对跨高比小于5,但对在较大集中荷载作用下(集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况)的连梁,也应按框架梁进行抗剪承载力计算。
参考文献[1]GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.[2]JGJ3-2002,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2002.(3)地震剪力与地震层间位移比值:即《抗规》建议的方法。
,适用于其它多层结构。
注意:1:上述三种方法计算刚度的含义是不同的,差异较大。
如果仅有一个标准层的简单框架结构,按方法1、2计算各层的刚度都相同,按方法3计算各层的刚度不相同。
2:对于高位转换层(8度三层、7度五层以上),建议人工按《高规》附录E.0.2分别建两个模型计算。
14、关于P—△效应:重力二阶效应一般称为P—△效应,在建筑结构分析中指的是竖向荷载的侧移效应。
当结构发生水平位移时,竖向荷载就会出现垂直于变形后的的竖向轴线分量,这个分量将增大水平位移量,同时也会增大相应的内力,这在本质上是一种几何非线性效应。
设计者可根据需要选择考虑或不考虑P—△效应。
注意:(1)这里考虑的是针对结构原始刚度计算的P—△效应,与《混规》7.3.12条考刚度折减的要求是完全不同的。
(2)只有高层钢结构和不满足《高规》5.4.1条的高层混凝土结构才需要考虑P—△效应对应水平力作用下结构内力和位移的不利影响。
(3)计算完后设计可打开SATWE文本文件“结构设计信息输出文件WMASS.OUT文件”,查看是否满足要求。
(4)高厚比超限的钢筋混凝土的设计者应特别注意。
15、关于上部结构嵌固端的选取:《高规》5.2.7条规定:当地下室顶板作为上部结构的嵌固层时,地下室结构的楼层侧向刚度不应小于相邻上部楼层侧向刚度的2倍,而规范中设计内力调整系数所对应的底层即指嵌固层楼板。
因此,正确选取嵌固层就成为结构整体计算是否正确的关键。
但是目前程序还不能自动判断嵌固层位置,这就需要设计者人工干预。
SATWE提供了两种考虑基础回填土对结构约束作用的方法:(1)方法一:输入基础回填土对结构约束的相对刚度,即输入基础回填土对结构约束刚度与地下室抗侧移侧移刚度的比值,若取该参数为0,则认为基础回填土对结构没有约束作用,即结构在基础底板处嵌固。
若取该参数为5,则认为结构的地下室部分基本没有位移,即相当于认为结构在地下室顶板处嵌固。
(2)方法二:指定地下室水平嵌固层数。
如对一个有M层地下室的结构,可指定m(m<=M)层地下室没有水平位移。
(3)首先按实有地下室层数进行第一次计算,先假设回填土对地下室抗侧移侧移刚度的比值为3,然后打开SATWE文本文件“结构设计信息输出文件WMASS.OUT文件”,查看地下结构与地上一层抗侧移侧移刚度的比值,如果。
地下结构与地上一层抗侧移侧移刚度的比值>=2.0,则可认为结构在地下室顶板处嵌固。
如果。
地下结构与地上一层抗侧移侧移刚度的比值<2.0,则可认为地上结构不能完全嵌固在地下室顶板处,此时建议将嵌固下移至基础底板处。
注意:1:结构的侧刚是结构自身固有的特性,不会因地下室层数的变化而变化。
2:当地下室顶板不能作为嵌固上部结构时,单纯将地下室结构加入到上部结构进行计算,即认为嵌固层位置在地下顶板以下或更低,则可能造成结构内力与位移计算结果不符合实际,有时甚至导致薄弱层位置变化等,因此在设计时应将两种计算结果进行比较,取最不利结果作为设计依据。
3:设计时应注意无论计算是否考虑地下室外回填土对结构的约束作用,地下室外墙在计算时均未考虑土压力的作用。
[和用户手册有矛盾,请测试]关于阻尼比:不同的结构有不同的阻尼比,设计者应区别对待:钢筋混凝土结构:0.05小于12层纲结构:0.03大于12层纲结构:0.035纲结构:0.05)按GB50011-2001 8.2.2应该是小于12层纲结构:0.035大于12层纲结构:0.02罕遇地震下的纲结构:0.05四、地震作用的调整1.最小地震剪力调整《抗规》5.2.5条规定,抗震验算时,结构任一楼层的水平地震的剪重比不应小于表5.2.5给出的最小地震剪力系数,此条程序自动调整,无须人工干预。