2018年.初三数学重点难点总复习-专题圆.生
- 格式:doc
- 大小:2.92 MB
- 文档页数:17
中考数学专题复习六 几何(圆)【教学笔记】一、与圆有关的计算问题(重点)1、扇形面积的计算扇形:扇形面积公式 213602n R S lR π== n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积圆锥侧面展开图:(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r h π= 2、弧长的计算:弧长公式 180n R l π=; 3、角度的计算 二、圆的基本性质(重点)1、切线的性质:圆的切线垂直于经过切点的半径.2、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半;推论:(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;(2)相等的圆周角所对的弧也相等。
(3)半圆(直径)所对的圆周角是直角。
(4)90°的圆周角所对的弦是直径。
注意:在圆中,同一条弦所对的圆周角有无数个。
3、垂径定理定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧推论:(1)平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧(2)弦的垂直平分线经过圆心,并且平分这条弦所对的弧ﻫ (3)平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧ﻫ (4)在同圆或者等圆中,两条平行弦所夹的弧相等三、圆与函数图象的综合一、与圆有关的计算问题【例1】(2016•资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S阴影=S△ABC﹣S扇形C B D=×2×2﹣=2﹣π.故选A.【例2】(2014•资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是( )A.﹣2B. ﹣2C.﹣ D.﹣解答:连接OC,∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,∴△AOC的边AC上的高是=,△BOC边BC上的高为,∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2,故选A.【例3】(2013•资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( ) A. π B. πC.π D. π解答:从9点到9点30分分针扫过的扇形的圆心角是180°,则分针在钟面上扫过的面积是:=π.故选:A.【例4】(2015成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和BC弧线的长分别为()A.2,3π B.23,π C .3,23π D.23,43πﻩ【课后练习】1、(2015南充)如图,P A 和PB 是⊙O 的切线,点A 和B的切点,AC 是⊙O 的直径,已知∠P=40°,则∠A CB 的大小是( B )A .40° B.60° C.70° D .80°2、(2015达州)如图,直径AB 为12的半圆,绕A点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影部分的面积是( B )A.12π B .24π C.6π D.36π3、(2015内江)如图,在⊙O的内接四边形AB CD 中,AB 是直径,∠B CD=120°,过D 点的切线PD 与直线A B交于点P ,则∠ADP 的度数为( )A.40° B .35° C .30° D.45°解析:连接BD,∵∠D AB =180°-∠C=50°,AB 是直径,∴∠AD B=90°,∠ABD =90°-∠DAB=40°,∵PD 是切线,∴∠A DP=∠B =40°.故选A .4、(2015自贡)如图,AB 是⊙O 的直径,弦CD ⊥A B,∠CDB =30°,CD =32,则阴影部分的面积为 A.2π B.π C.3π D.32π解析:∠B OD =60°5、(2015凉山州)如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( )A.80°B.100°C.110°D.130°6、(2015凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径( )A.1cm B.2cm C.3cm D.4cm7、(2015泸州)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为( )A.65°B.130°C.50° D.100°8、(2015眉山)如图,⊙O是△ABC的外接圆,∠ACO=450,则∠B的度数为( )A.300 B.350C.400D4509、(2015巴中)如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )A.25° B.50° C.60° D.30°10、(2015攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为( )A.23πB.43πC.29πD.49π11、(2015甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是( )A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣412、(2015达州)已知正六边形ABCDEF的边心距为3cm,则正六边形的半径为cm.13、(2015自贡)如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=3,则劣弧AD的长为 .14、(2015遂宁)在半径为5cm的⊙O中,45°的圆心角所对的弧长为cm.15、(2015宜宾)如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是CF的中点,弦CF交AB于点E.若⊙O的半径为2,则CF= .16、(2015泸州)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.17、(2015眉山)已知⊙O的内接正六边形周长为12cm,则这个圆的半经是_________cm.18、(2015广安)如图,A.B.C三点在⊙O上,且∠AOB=70°,则∠C= 度.19、24.(2015巴中)圆心角为60°,半径为4cm的扇形的弧长为cm.20、(2015甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.二、圆的基本性质【例1】(2016•资阳)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.【例2】(2015•资阳)如图11,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,求sin∠CAE的值.解答:解:(1)连接OD,BD,∴OD=OB ∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(2)作EF⊥CD于F,设EF=x∵∠C=45°,∴△CEF、△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=x,∴AB=BC=2x,在RT△ABE中,AE==x,∴sin∠CAE==.【例3】(2014•资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.【例4】(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.解答:(1)如图,过点O作OE⊥AC于E,则AE=AC=×2=1,∵翻折后点D与圆心O重合,∴OE=r,在Rt△AOE中,AO2=AE2+OE2,即r2=12+(r)2,解得r=;(2)连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,所对的圆周角等于所对的圆周角,∴∠DCA=∠B ﹣∠A =65°﹣25°=40°.【课后练习】1、(2015达州)如图,A B为半圆O 的在直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连接OD 、O C,下列结论:①∠DOC =90°,②A D+BC =C D,③22ΔAOD ΔBOC ::S S AD AO =,④OD :OC =DE :EC,⑤2OD DE CD =⋅,正确的有( )A.2个 B.3个 C .4个 D.5个解析:如图,连接OE,ﻫ∵AD 与圆O 相切,D C与圆O 相切,BC 与圆O 相切,∴∠DAO=∠DEO =∠OBC=90°,∴DA=DE ,CE=C B,AD ∥BC 。
2018中考数学必考知识点-圆2018中考数学必考知识点-圆1圆的重要性质;2直线与圆、圆与圆的位置关系;③3与圆有关的角的定理;4与圆有关的比例线段定理。
一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:内角的一半: (右图)(解Rt△OAM可求出相关元素,、等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。
初三数学圆的全章复习重、难点:圆的概念、性质、判定及应用 【知识梳理】圆这一章的内容可分为五大块来复习第一块:垂径定理。
掌握重点:过圆心垂直平分弦长。
涉及计算,记住连半径构造直角三角形,应用勾股定理计算。
垂径定理简记口诀:一垂,二径,三平分。
第二块:圆心角,圆周角应用。
重要结论:同弧上的圆周角等于圆心角的一半;同弧上的圆周角相等;直径所对的圆周角是直角。
圆心角与圆周角轻松实现角的转移与传递。
记住封闭直径所对的圆周角是直角,作直径是圆中常见的辅助线。
圆的旋转不变性——三组量之间的关系:同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,其余各组量都相等。
这是圆中角、弧、线段进行相互转化的重要结论。
圆既是轴对称图形,又是中心对称图形。
第三块:切线的概念;切线与过切点的半径垂直。
切线长定理的应用证明。
若求证直线是圆的切线一般有两种方案:(1)连半径证垂直;(2)作垂直证半径。
证明直线与圆相切是考察的重点,务必掌握。
切线长定理要熟记基本图,其中涉及到多对相等的弧、弦、角,这些内容要心中有数。
第四块:点与圆的位置关系,直线和圆的位置关系,圆与圆的位置关系。
数形结合相互转化。
第五块:正多边形和圆,圆的有关计算:弧长和扇形面积,圆锥的侧面展开面积和全面积。
阴影部分面积的求法。
重视转化思想的运用。
基础题分类突破 一、垂径定理1、在半径为10cm 的圆O 中,圆心O 到弦AB 的距离为6cm ,则弦AB 的长是 cm .2、如图,水平放置的一个油管的截面半径为13cm ,其中有油部分油面宽AB 为24cm ,则截面上有油部分油面高CD (单位:cm )为 .答案:8cm点评:将半径、弦的一半和圆心到弦的距离集中到一起,利用勾股定理建立方程解决问题。
二、圆心角、圆周角的性质及两者间的关系3、如图,圆O 的直径CD 过弦EF 的中点G ,40EOD ∠= ,则DCF ∠等于( ) A. 80 B. 50 C. 40 D. 20 答案:D4、如图,圆O 是等边ABC △的外接圆,P 是圆O 上一点,则CPB ∠等于( ) A. 30B. 45C. 60D. 90答案:C三、切线的判定与性质及切线长定理5、已知:如图,ABC △内接于圆O ,点D 在OC 的延长线上,1sin 2B =,30CAD ∠=. (1)求证:AD 是圆O 的切线;(2)若OD AB ⊥,5BC =,求AD 的长.解:(1)证明:如图,连结OA . 因为1sin 2B =,所以30B ∠=. 故60O ∠= .又OA OC =,所以ACO △是等边三角形. 故60OAC ∠=. 因为30CAD ∠= , 所以90OAD ∠= . 所以AD 是圆O 的切线.(2)解:因为OD AB ⊥, 所以OC 垂直平分AB . 则5AC BC ==. 所以5OA =.在OAD △中,90OAD ∠=, 由正切定义,有tan ADAOD OA∠=.所以AD =6、如图,圆O 的直径430AB ABC BC ===,,∠D 是线段BC 的中点. (1)试判断点D 与圆O 的位置关系,并说明理由;(2)过点D 作DE AC ⊥,垂足为点E ,求证直线DE 是圆O 的切线.解:(1)点D 在圆O 上.连结OD ,过点O 作OF BC ⊥于点F .在Rt BOF △中,12302OB AB B === ,∠, 330cos 2BF =︒=∴.12BD BC ==DF ∴=在Rt ODF △中,2OD OB === ,∴点D 在圆O 上.(2)D 是BC 的中点,O 是AB 的中点, OD AC ∴∥. 又DE AC ⊥ ,90EDO ∴= ∠.又OD 是圆O 的半径, DE ∴是圆O 的切线.7、如图,AC 是圆O 的直径,60ACB ∠=,连接AB ,过A B ,两点分别作圆O 的切线,两切线交于点P .若已知圆O 的半径为1,则PAB △的周长为 .答案:四、三角形的内切圆和外接圆8、如图,点O 是ABC △的内切圆的圆心,若80BAC =∠,则BOC =∠( )A. 130B. 100C. 50D. 65答案:A五、点与圆、直线与圆、圆与圆的位置关系 点与圆的位置关系的判断请参见例6(1)9、圆O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与圆O 的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 无法确定 答案:A10、如果圆O 1和圆O 2相外切,圆O 1的半径为3,125O O =,则圆O 2的半径为( )A. 8B. 2C. 6D. 7 答案:B11、半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( ) A. 相交 B. 相切 C. 内切或相交 D. 外切或相交 答案:D点评:熟悉位置关系与数量关系的相互转化是解决问题的关键。
中考压轴圆知识点总结中考数学是学生们的一大难题,而数学中颇具难度的数学圆知识点更是让许多学生头疼。
在中考中,圆的知识点占据了重要的地位,学生们需要认真复习和掌握这些知识点才能顺利通过考试。
下面我们就来总结一下中考数学圆的知识点,希望对大家有所帮助。
一、圆的基本概念1. 圆的定义:在平面上所有到圆心的距离都相等的点的集合称为圆。
圆用字母 O 表示。
2. 圆的元素:圆的圆心、半径和弧。
3. 直径、半径、弧长与圆的关系:直径是通过圆心的线段,它的长度等于两倍的半径;半径是从圆心到圆上任意一点的距离;弧长是指圆的一部分弧所对的圆周的长度。
4. 弧度制:一周角的度数为 360°,而一周角对应的弧长为圆周的长度,如果圆的周长为 L,那么一周角所对应的弧长的度数衡量单位是圆周的长度的一个弧长。
这就是弧的弧度制,以弧长等于半径的角叫做1弧度的那个角。
5. 圆内接与外接:内接四边形是指四边形的四个顶点都在圆上,外接四边形是指四边形的四个顶点都在圆的外切,在圆上。
6. 一个绕圆一周转的圆心角是360°(或2 π 弧度)。
这被称为一周角。
二、圆的相关定理1. 圆内切四边形定理:一个四边形是积形,当且仅当它的内部与外部不相交,并且内部的一个角是直角。
2. 圆的面积和周长计算公式:圆的面积公式A=πr^2 ;圆的周长公式C=2πr3. 圆周角的性质:一个绕圆一周转的圆心角是360°,我们也称这个角叫一周角。
4. 圆的切线定理:在过圆外一点做圆的切线,这条圆的切线和这个点到圆心的连线垂直。
5. 弧长与扇形面积关系:圆心角相等的两个弧所对的圆周相等,圆心角相等的两个扇形的面积与依次对应的弧长成正比。
6. 圆内角、弦长与弧长的关系:在一个圆上的两个弦所确定的两个弧,弦分数相等,它们所对应的圆心角相等。
7. 圆的内切关系和切线定理:8. 圆的位置关系定理:每一对不同圆,在共有的外部和内部至少有一个定位的情态。
2018 年中考数学复习:重难点知识汇总一、建立完好的知识框架1.建立完好的知识框架是我们解决问题的基础,想要学好数学一定重视基础观点,一定加深对知识点的理解,而后会运用知识点解决问题,碰到问题自己学会反省及多维度的思虑,最后形成自己的思路和方法。
但有好多初中学生不重视书籍的观点,对某些观点一孔之见,对知识点没有吃透,知识系统不完好,就会出现成绩飘忽不定的现象。
2.正确理解和掌握数学的一些基本观点、法例、公式、定理,掌握他们之间的内在联系。
因为数学是一门知识的连接性和逻辑性都很强的学科,正确掌握学过的每一个观点、法例、公式、定理能够为此后的学习打下优秀的基础,假如在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其相关的、从前的一些基本知识没有掌握好所造成的,所以要常常查缺补漏,找到问题并实时解决之,努力做到发现一个问题实时解决一个问题。
只有基础扎实,解决问题才能驾轻就熟,成绩才会提高。
二、初中数学中考知识重难点解析1.函数(一次函数、反比率函数、二次函数)中考占总分的 15%左右。
特别是二次函数是中考的要点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。
并且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
有必定难度。
假如在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2.整式、分式、二次根式的化简运算整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的要点,它贯串于整个初中数学的知识,是我们进行数学运算的基础,此中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但倒是解答题完好解答的基础。
运算能力的娴熟程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进尔后边的的方程、不等式、函数也没法学好。
3.应用题,中考取占总分的30% 左右包含方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
初三(初三)数学复习知识点圆初三数学知识点圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的差不多性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5. 与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及运算中心角:内角的一半:(右图)(解Rt△OAM可求出相关元素, 、等)六、一组运算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的运算方法6.圆柱、圆锥的侧面展开图及相关运算七、点的轨迹六条差不多轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、差不多图形十、重要辅助线1.作半径那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?2.见弦往往作弦心距3.见直径往往作直径上的圆周角事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
初三数学复习知识点:圆的知识点?★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:内角的一半:(右图)(解Rt△OAM可求出相关元素,、等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
适用标准文档圆—苑老师一、圆的看法会集形式的看法:1、圆可以看作是到定点的距离等于定长的点的会集;2 、圆的外面:可以看作是到定点的距离大于定长的点的会集;3 、圆的内部:可以看作是到定点的距离小于定长的点的会集轨迹形式的看法:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(增补)2、垂直均分线:到线段两端距离相等的点的轨迹是这条线段的垂直均分线(也叫中垂线);、角的均分线:到角两边距离相等的点的轨迹是这个角的均分线;、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的地点关系1、点在圆内d r点C在圆内;2、点在圆上d r点B在圆上;3、点在圆外d r点A在圆外;三、直线与圆的地点关系1、直线与圆相离 d r无交点;2、直线与圆相切 d r有一个交点;3、直线与圆订交 d r有两个交点;Adr OBdCrdd=r r d 四、圆与圆的地点关系外离(图1)无交点d R r;外切(图2)有一个交点d R r;订交(图3)有两个交点R r dRr;内切(图4)有一个交点d R r;文案大全适用标准文档内含(图5)无交点 d R r;d d dR r R r R r 图1图2图3d d rR rR图4图5五、垂径定理垂径定理:垂直于弦的直径均分弦且均分弦所对的弧。
推论1:(1)均分弦(不是直径)的直径垂直于弦,而且均分弦所对的两条弧;(2)弦的垂直均分线经过圆心,而且均分弦所对的两条弧;(3)均分弦所对的一条弧的直径,垂直均分弦,而且均分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道此中2个即可推出其余3个结论,即:①AB是直径②AB CD③CE DE④弧BC弧BD⑤弧AC弧AD中任意2个条件推出其余3个结论。
推论2:圆的两条平行弦所夹的弧相等。
中考数学复习资料3 2第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数零 有限小数和无限循环小数实数负有理数 正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1) 开方开不尽的数,如 7, 等;π(2)有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等; 3 (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a= - b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则 a≥0;若|a|=-a ,则 a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。
倒数等于本身的数是 1 和-1。
零没有倒 数。
a a aa 考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ ± ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a ≥ 0) ≥ 0= a =;注意 的双重非负性:- a ( a <0)a ≥ 03、立方根如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2018年.初三数学重点难点总复习-专题圆.生2018年九年级数学总复习—圆专题复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;AC .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.2、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm.3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.4、已知:△ABC 内接于⊙O ,AB=AC ,半径OB=5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.5、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.OAE F例题3、度数问题1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径.2、 已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。
例题4、相交问题如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.AB DC E O例题5、平行问题在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为b a ,.求证:22b a BD AD -=⋅.例题7、平行与相似已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证:FD EC =.六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角∴2AOB ACB ∠=∠ 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
BBA即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?【例2】如图,已知⊙O 中,AB 为直径,AB=10cm ,弦AC=6cm ,∠ACB 的平分线交⊙O 于D ,求BC 、AD 和BD 的长.【例3】如图所示,已知AB 为⊙O 的直径,AC 为弦,OD ∥BC ,交AC 于D ,BC=4cm . (1)求证:AC ⊥OD ; (2)求OD 的长; (3)若2sinA -1=0,求⊙O 的直径.【例4】四边形ABCD 中,AB ∥DC ,BC=b ,AB=AC=AD=a ,如图,求BD 的长.CBA【例5】如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB2.(1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB2是否成立?请说明理由.(2)如图3,若两弦AC、BD的延长线交于P点,则AB2= .参照(1)填写相应结论,并证明你填写结论的正确性.八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O中,∵四边形ABCD是内接四边形∴180C BAD∠+∠=︒180B D∠+∠=︒DAE C∠=∠EDCBA例1、如图7-107,⊙O 中,两弦AB ∥CD ,M 是AB 的中点,过M 点作弦DE .求证:E ,M ,O ,C 四点共圆.九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠利用切线性质计算线段的长度NMOBO例1:如图,已知:AB是⊙O的直径,P为延长线上的一点,PC切⊙O于C,CD⊥AB于D,又PC=4,⊙O的半径为3.求:OD的长.利用切线性质计算角的度数例2:如图,已知:AB是⊙O的直径,CD切⊙O于C,AE⊥CD于E,BC的延长线与AE的延长线交于F,且AF=BF.求:∠A的度数.利用切线性质证明角相等例3:如图,已知:AB为⊙O的直径,过A作弦AC、AD,并延长与过B的切线交于M、N.求证:∠MCN=∠MDN.利用切线性质证线段相等例4:如图,已知:AB是⊙O直径,CO⊥AB,CD切⊙O于D,AD交CO于E.求证:CD=CE.利用切线性质证两直线垂直例5:如图,已知:△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于D ,DE 切⊙O 于D ,交AC 于E .求证:DE ⊥AC .十一、圆幂定理(1) 相交弦定理:圆内两弦相交, (2) 交点分得的两条线段的乘积相等。
PO DB即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅例1.如图1,正方形ABCD 的边长为1,以BC 为直径。
在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。
BA例2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,BE=2cm,CD=7cm,那么CE=_________cm。
图2例3.如图3,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________cm。
图3例4.如图4,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D,(1)求证:;(2)若AB=BC=2厘米,求CE、CD的长。
图4例5.如图5,PA 、PC 切⊙O 于A 、C ,PDB 为割线。
求证:AD·BC=CD·AB图5例6.如图6,在直角三角形ABC 中,∠A=90°,以AB 边为直径作⊙O,交斜边BC 于点D ,过D 点作⊙O 的切线交AC 于E 。
求证:BC =2OE 。
图6十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:12O O 垂直平分AB 。
即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分ABBAO1O2C O2O1B A十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。
十四、圆内正多边形的计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.十五、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π=lOC 1D 13 .圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r h π=。