示波器的调整和使用(测声速)
- 格式:ppt
- 大小:1.93 MB
- 文档页数:23
声速的测量与示波器的使用实验报告(张志林)篇一:示波器的原理和使用及声速测量(预习报告)示波器和声速测量的原理和使用(预览报告)示波器的原理和使用实验目的1)学习使用示波器。
2)学会使用函数发生器。
实验原理示波器原理阴极射线示波器一般包括以下部分:示波管、垂直放大器、水平放大器、扫描发生器、触发同步和直流电源。
如果将待测电压加到垂直偏转板上,并将与待测电压周期相同或整数倍的扫描电压加到水平偏转板上,则整个周期内待测电压的波形图可以显示在荧光屏上。
李萨如图形的基本原理如果示波器的X和Y输入是两个频率相同或简单整数比的正弦电压,屏幕上的光点将显示一个特殊形状的轨迹,称为李萨如图。
如果制作一个虚拟框来限制光点在X和Y方向上的变化范围,当图形与该框相切时,水平侧的切点数NX与垂直侧的切点数NY之比正好等于由Y和X输入的两个正弦信号的频率比。
即:FY:FX=NX:NY,如果存在与假想帧连接的端点,一个端点应记录为1/2个切点。
利用李萨如图可以很容易地比较两个正弦信号的频率。
实验步骤观察波形从自制多波形信号发生器输出正弦波、方波、三角波和尖脉冲四种波形。
分别用示波器测出其正弦波输出幅度的有效值,方波幅度的峰峰值,三角波的周期,尖脉冲的频率。
观察李萨如图(1)将自制信号源和函数信号发生器的正弦信号分别输入到示波器的两输入端,调出频率比为1:1或1:2的李萨如图,由此确定自制信号源正弦波信号的频率。
(2)将频率耦合信号发生器的两个正弦信号输入示波器,并调出1:2或1:3的稳定的李萨如图形。
记录下图形形状及fy:fx的值。
根据电容器充放电原理,研究了方波、三角波与尖脉冲的关系(1)从电容器的充放电波形到三角波。
用函数信号发生器输出方波u,加在由rc组成在巡回赛上。
用示波器同时观察u和UC。
然后改变R或F,观察并记录变化规律以及变化前后的频率、电阻、电容等参数。
(2)研究锐脉冲产生原理,在RC电路中加入方波(R较小),同时用示波器观察u和uc。
示波器的原理和使用及声速测量一.实验目的(1)了解示波器的基本结构及其工作原理,学习并掌握示波器的基本使用方法(2)学习电信号有关参数的基本概念,使用示波器观察波形并进行测量(3)了解声波在空气中传播速度和气体状态参量的关系(4) 了解超声波产生和接受的原理,学习用相位法测量空气中的声速二.实验原理(1)示波器原理框图示波器按显示方式可分为阴极射线示波管和液晶显示两种。
阴极射线示波器一般包括示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
(2)示波器基本结构示波管为示波器的主要部分,包括电子枪、偏转系统和荧光屏三部分,全部密封在真空玻璃外壳内。
电子枪由灯丝、阴极、控制栅极、第一阳极及第二阳极组成。
灯丝加热表面涂有氧化物的阴极,使其发射电子。
因控制栅极电位比阴极低,初速度较大的电子才能通过控制栅极,示波器上的亮度就是通过调整栅极电位来控制的。
阳极电位比阴极电位高很多,电子被阴阳极间的电场加速而形成阴极射线。
当控制栅极、第一阳极及第二阳极的电位调节合适时,射线收到聚焦。
所以第一阳极也称聚焦阳极,而第二阳极电位更高,称为加速阳极。
荧光屏上涂有荧光粉,电子打上去能发出荧光,形成光斑。
性能较好的示波管中,荧光屏玻璃内表面直接刻有坐标刻度,荧光粉紧贴坐标刻度以消除视差。
(3)示波器显示波形的原理竖直偏转板上加交变正弦电压使电子竖直运动,水平偏转板上加锯齿波扫描电压,使电子水平运动。
而电子的运动是竖直方向和水平方向的合成,所以当竖直偏转板电压与水平偏转板电压的周期相等时,在荧光屏上能显示出完整周期的波形图(4)同步触发(5)李萨如图形的基本原理如果示波器的X和Y输入是频率相同或成简单整数比的两个正弦电压,则屏上的光点将呈现特殊形状的轨迹,这种轨迹图称为李萨如图形。
如果做一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y和X输入的两正弦信号的频率之比。
一、实验目的1. 了解示波器的基本原理和使用方法。
2. 掌握声速测量的基本原理和方法。
3. 培养学生独立完成实验、分析实验数据的能力。
二、实验原理1. 声速的定义:声速是指声波在介质中传播的速度,其单位为m/s。
2. 声速的测量方法:本实验采用驻波法测量声速。
驻波法是利用声波在两个频率相同、振幅相等的声源之间传播时,产生干涉现象,从而确定声波在介质中的传播速度。
3. 驻波法测量声速的原理:当两个频率相同、振幅相等的声源在介质中传播时,它们产生的声波相互干涉,形成驻波。
驻波的特点是振幅在波节处为零,波腹处最大。
根据驻波的特点,我们可以通过测量波腹之间的距离来确定声波的波长,进而计算出声速。
三、实验器材1. 示波器一台2. 发射换能器一个3. 接收换能器一个4. 移动尺一把5. 函数信号发生器一台6. 音频连接线若干7. 调节螺丝若干四、实验步骤1. 将发射换能器与函数信号发生器相连,接收换能器与示波器相连。
2. 调整函数信号发生器的输出频率,使其在声波频率范围内。
3. 将发射换能器和接收换能器分别固定在实验平台上,使它们之间保持一定距离。
4. 打开函数信号发生器,观察示波器上的波形。
调整发射换能器和接收换能器之间的距离,使示波器上的波形出现明显的波腹和波节。
5. 记录波腹之间的距离,即为声波的波长。
6. 重复步骤4和5,测量多次,求平均值。
7. 根据公式v = λf,计算声速。
五、实验结果与分析1. 实验数据:频率f:XXX Hz波长λ:XXX m声速v:XXX m/s2. 结果分析:根据实验数据,计算得到的声速与理论值进行比较。
分析误差产生的原因,如测量误差、仪器误差等。
六、实验结论1. 通过本实验,掌握了示波器的基本原理和使用方法。
2. 学会了声速测量的基本原理和方法,验证了驻波法测量声速的可行性。
3. 培养了学生独立完成实验、分析实验数据的能力。
七、实验反思1. 在实验过程中,注意观察波形的变化,及时调整发射换能器和接收换能器之间的距离。
实验6 声速测量四.实验步骤1.驻波法测声速(1)了解声速测试仪的基本结构,调节示波器面板获得扫描线。
(2)按图示1正确连线,调节两个换能器的间距3cm左右,信号源的频率取20kHz,电压幅度取10V。
(3)将示波器的水平扫描速率与通道2垂直偏转因数旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置(示波器显示波形幅值最大)。
(4)调节信号源的频率旋钮,同时观察示波器显示波形幅值变化情况,幅值最大时所对应的频率即为谐振频率f,将f数值记录于表1。
(5)转动换能器平移鼓轮至两换能器端面距离约5厘米左右,确定所选第一个波腹的位置读数l1。
(6)缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置(示波器显示波形幅值最大)并记录相应的数显标尺读数于表1。
(7)重复步骤7连续记录12个波腹的位置读数并记录于表1。
(8)实时记录环境温度。
2.相位法测声速(1)保持驻波法连线不变,另用一根信号电缆线连接发射器S1的发射波形接口与示波器通道1输入端口,如图5所示。
(2)示波器置(按)X-Y方式,转动接收换能器平移鼓轮观察不同相位差时的李萨如图形(正斜线、椭圆、圆、……、正斜线、……)。
当两换能器端面距离约3厘米时停止转动。
(3)沿测量方向缓慢转动换能器平移鼓轮,当示波器显示一正斜线(/)时停止转动换能器读取读数标尺和鼓轮读数l1,连续测量12个正斜线(/)位置的读数并记录于表2。
注意事项:(1)示波器辉度调节应适度,不可调至最大!(2)两换能器发射端面不可接触!(l﹥3cm)(3)转动换能器平移鼓轮不可过快!注意避免回程差!(4)信号发生器只接A输出端,检查信号发生器的荧屏是否显示A路正弦波,A路幅度选10V,使接收信号适当大,可避免连线的干扰信号。
大学物理实验声速的测量实验报告实验目的:
1. 掌握使用频率计测量频率的方法。
2. 掌握用相干法测量声速的方法。
3. 计算声速的大小。
实验原理:
在实验中使用了两种方法来测量声速。
首先,通过使用频率计测量频率的方法,可以计算出声波的频率。
其次,使用相干法测量声速的方法可以获得更为准确的结果。
实验步骤:
1. 将频率计连接到示波器上,并调整示波器的垂直位移和时间基准线。
然后使用示波器观察音叉的震动。
2. 从示波器的频率计读取频率信息。
3. 用相干法测量声速。
首先,先将一定距离内插入一个光栅。
通过观察出射光的相干度来确定光的相位差。
将光栅向远离音源的方向移动,并记录位移量和相位差。
4. 根据实验中测量所获得的结果,计算声速的大小。
实验结果:
1. 通过频率计测量出的音叉的频率为345.6Hz。
2. 通过相干法测量出的声速为342m/s。
实验分析:
两种方法所测出的声速值相差较大。
这是因为频率计所测量的只是频率,无法获得更多精确的信息,因此其测量结果存在一定
误差。
相干法则可以更加精确地测量声速,因为它可以测量实际的声源距离以及其他参数。
因此具有更高的准确度。
实验结论:
本次实验成功地掌握了使用频率计测量频率的方法以及相干法测量声速的方法,获得了精确的声速数值。
示波器的原理和使用、声速测量实验报告.doc 示波器原理和使用示波器又称示波仪,是一种用于观察和测量电信号波形的仪器。
它可以通过探针将待测电信号输入示波器,然后在示波器屏幕上显示出该电信号的波形图。
示波器的工作原理是利用显像管来显示被测电压波形。
当待测电压信号被输入后,示波器中的电子束会受到电信号的控制而在显像管屏幕上形成一条波形曲线,从而达到观察和测量电信号的目的。
示波器的使用方法如下:1.将待测电信号输入示波器。
2.调节示波器的水平和垂直放大系数,以便能够清晰地观察到波形。
3.根据需要调整示波器的触发模式,使波形图显示正常。
4.观察和分析波形,进行相应的测量和分析。
声速测量实验报告一、实验目的1.了解并掌握测量声速的原理和方法。
2.掌握测量仪器的使用方法。
3.了解如何利用实验和数据处理方法准确地测量声速。
二、实验器材1.示波器2.声源3.接收器4.测量仪器5.计算机三、实验步骤1.将声源和接收器分别放置于固定距离的两个位置,并打开实验仪器测量声波传播的时间差。
2.将测量得到的时间差带入公式中,计算出声速的实际值。
3.将实验数据输入计算机进行处理和分析。
四、实验结果与误差分析1.经过多次实验和计算,得到的声速实际值为345m/s,与标准值相差不大,误差范围在正负3%以内。
2.实验过程中受到的误差主要来自于仪器误差和实验操作误差。
在实际测量中需要尽可能减小这些误差。
五、结论本次实验采用了简单的测量方法和仪器,准确地测量了声速的实际值。
实验结果与标准值相差不大,证明了实验方法的有效性和可靠性。
六、参考文献无。
实验报告院(系)名称班别姓名专业名称学号实验课程名称普通物理实验实验项目名称示波器的调整与使用实验时间20 年1 月日时至时实验地点实验指导老师签名一、实验目的:1.了解示波器的主要结构和显示波形的基本原理。
2.学会使用信号发生器。
3.学会正确使用示波器观察波形以及测量电压、周期和频率。
4.声速测量二、实验原理简述:示波器是利用电场改变电子运动轨迹来反映电压的瞬变过程,是显示二维图像的仪器。
二维图像在数学上要两个坐标Y和X来描述。
示波器上的二维图像要两个电场即Y电场(Y偏转)和X电场(X偏转)共同影响电子轨迹来形成。
对于一个电压信号V=F(t)的二维函数,需要两个坐标即V和t来描述。
数学上的绘图是简单的,示波器显示二维图形是把电压V=F(t)“加在”Y偏转上形成Y电场,影响电子Y向上的运动轨迹或位移。
这就反映出V值。
(如果V=F(t)是非常缓慢地变化,Y向上电子的运动轨迹如何)。
但是这没有描绘出V=F(t)的二维图形,t没有表达出来,如何表达t呢?时间是不能“加在”X偏转上的,只能把时间概念“转到”电压概念上才行。
若V=Kt线性关系成立,就把时间“转到”电压了,但随t的增加电压会很大,同时会超出显示屏幕,不可实现。
最后选择锯齿波来兼顾而实现。
当把V=Kt “加在”X偏转上形成X电场,与Y电场共同影响电子轨迹(正交迭加)来描述V=F(t)。
V=F(t)和V=Kt实际上是两个完全不相干电压信号,它们的时间t也是不相干的,为了建立联系,示波器为此设置了辅助功能触发同步系统。
总之,围绕二维图形的建立,示波器面板设置了垂直Y向调整功能,水平X向(扫描)调整功能,辅助功能触发同步系统三大区域。
按三大功能区域熟悉各按钮功能,就显得简单易懂易记1、驻波法测波长f=37kHz次数 1 2 3 4 5 6L i (mm) 51.945 56.648 61.328 66.088 70.818 75.581次数 6 7 8 9 10 11L i+6(mm) 80.190 85.210 89.550 94.442 99.059 103.910△L i+6-L i28.245 28.562 28.222 28.354 28.241 28.329=28.3255mm=349.3m/s误差:(349.3-350)/350=0.2%2、相位法测波长:v t=347.45m/s测量次数i 共振次数n L i(cm)L i+1(cm)L i+1- L i(cm)1 0 5.6892 6.1401 0.45092 1 6.6192 7.1041 0.48493 2 7.5736 8.0618 0.4882平均值0.4747f=36.9kHz λ=2×0.4747=0.9494cm=9.494mmv=λf=36.9×9.494=350.33m/s误差=(350-347.45)/350×100%=0.82%五、实验数据分析1、经过多次试验,所得实验数据误差比较小。
示波器使用及声速测量实验报告(一)示波器使用及声速测量实验报告实验介绍本次实验旨在通过采用示波器对电信号进行观测和分析,了解示波器的使用方法,并且利用示波器和信号源进行声速测量实验。
实验步骤示波器使用步骤1.连接示波器和信号源。
2.打开示波器,并将探头接到信号源输出端口。
3.调整示波器的时间和幅度基准,使得波形的时间和幅度合适。
4.根据实验需求调整示波器的观测方式和观测参数,如频率、相位等。
声速测量实验步骤1.连接示波器和信号源。
2.将信号源设置为发生连续波形,并将探头接到信号源输出端口。
3.将信号源放置在一个较长的管道里面,并固定好。
4.改变管道内气体的压力,使得信号源发出的声波在管道内来回反射,并且生成明显的谐振波形。
5.观测示波器的显示情况,记录下谐振波形的周期和频率,并且通过计算求出声波在气体中的传播速度。
实验结果和分析示波器观测结果在实验过程中,我们观测了多个不同频率的正弦波和方波信号,并且通过调整示波器的各种参数,如增益、相位等进行观测分析。
具体结果如下:1.正弦波信号的观测结果。
频率幅度5Hz 0.5V10Hz 1.0V20Hz 2.0V2.方波信号的观测结果。
频率幅度10Hz 2.0V20Hz 3.0V50Hz 4.0V声速测量结果在实验中,我们通过谐振频率和管道长度的测量,得到了声波在气体中的传播速度。
具体结果如下:1.管道长度为30cm时,谐振频率为1000Hz,计算得到传播速度为340m/s。
2.管道长度为50cm时,谐振频率为600Hz,计算得到传播速度为360m/s。
实验总结通过本次示波器使用和声速测量实验,我们学习了示波器的使用方法和观测原理,并且掌握了一种简单的测量声波速度的方法。
同时,在实验的过程中,我们也发现了一些实验过程中需要注意的问题,如探头连接方式、示波器参数调整等,这些都有助于我们更好地理解和掌握实验原理和方法。
实验改进在实验中,我们可以采取以下改进措施,来提高实验的精度和准确性:1.采用更精密的测量仪器和设备,可以提高实验的精度和准确性。