当前位置:文档之家› 实验二 二极管和三极管的识别与检测实验报告

实验二 二极管和三极管的识别与检测实验报告

实验二  二极管和三极管的识别与检测实验报告
实验二  二极管和三极管的识别与检测实验报告

实验二二极管和三极管的识别与检测

一、实验目的

1.熟悉晶体二极管、三极管的外形及引脚识别方法。

2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。

3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。

二、实验仪器

1.万用表

2.不同规格、类型的半导体二极管和三极管若干。

三、实验步骤及内容

1.利用万用表测试晶体二极管

(1)鉴别正负极性

万用表及其欧姆档的内部等效电路如图所示。

图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100

?

R或K

R1

?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。

电阻小电阻大

(2)测试性能

将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。

若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。

2.利用万用表测试小功率晶体三极管

1)判定基极和管子类型

由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100

?

R或K

R1

?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

(2)判断集电极和发射极

判断集电极和发射极的基本原理是把三极管接成基本单管放大电路,利用测量管子的电流放大系数β值的大小来判定集电极和发射极。以NPN型为例,如图所示。基极确定以后,用万用表两表笔分别接另外两个极,用Ω

100的电阻一端接基极一端接黑表笔,若电表指针

K

偏转较大,则黑表笔所接的一端为集电极,红表笔接的是发射极。也可用手捏住基极与黑表笔(不能使两者相碰),以人体电阻代替Ω

K

100电阻的作用。

三极管共射极放大电路-实验报告

课程名称: 电路与模拟电子技术实验 指导老师:实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习共射放大电路的设计方法与调试技术; 2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响; 3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法; 4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法; 5.进一步熟悉示波器、函数信号发生器的使用。 二、实验内容和原理 1.静态工作点的调整与测量 2.测量电压放大倍数 3.测量最大不失真输出电压 4.测量输入电阻 5.测量输出电阻 6.测量上限频率和下限频率 7.研究静态工作点对输出波形的影响 三、主要仪器设备 示波器、信号发生器、万用表 共射电路实验板 四、操作方法和实验步骤 1.静态工作点的测量和调试 实验步骤: (1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。 (2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。 (3)将放大器电路板的工作电源端与15V 直流稳压电源接通。然后,开启电源。此时,放大器处于工作状态。 (4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。 (5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。 2.测量电压放大倍数(R L =∞、R L =1k Ω) 实验步骤: (1)从函数信号发生器输出1kHz 的正弦波,加到电路板上的Us 端。 (2)用示波器检查放大电路输出端是否有放大的正弦波且无失真。 (3)用示波器测量输入Ui 电压,调节函数信号发生器幅度,使电路输入Ui= 10mV(有效值)。 (4)负载开路,用示波器测出输出电压Uo 有效值,求出开路放大倍数。 (5)负载接上1k Ω,再次测Uo ,求出带载放大倍数。 3.测量最大不失真输出电压(R L =∞、R L =1k Ω) (1)负载开路,逐渐增大输入信号幅度,直至输出刚出现失真。 (2)用示波器测出此时的输出电压有效值,即为最大不失真输出电压Vomax 。 (3)负载接上1k Ω,再次测Vomax 。 4.测量输入电阻Ri(R L =1k Ω)

模拟电路实验报告,实验三 二极管的伏安特性

电子实验报告 实验名称二极管的伏安特性日期2014/3/30 一、实验目的 1、了解二极管的相关特性 2、学会在面包板上搭接测量电路。 3、学会正确使用示波器测量二极管的输入输出波形 4、学习使用excel画出二极管的伏安特性曲线 5、学会正确使用函数信号发生器、数字交流毫伏表。 6、学习使用 Multisim 电子电路仿真软件。 二.实验仪器设备 示波器、函数发生器、面包板、二极管、电阻、万用表,实验箱等。 三、实验内容 1、准备一个测量二极管伏安特性的电路。 2、在面包板上搭接二极管伏安特性的测量电路,给电路加入可调的正向和反向的输入电压,分别测量不同电压下流经二极管的电流,记录数据,用excel 画出二极管的伏安特性曲线。 正向输入测量8组数据,反向测量6组。 3、给二极管的测量电路加入正弦波,用示波器分别测量二极管的输入输出波形,解释输出波形的特征。 4,利用二极管和电阻画出或门和与门,并连接电路,测量检验。 四、实验原理

示波器工作原理是利用显示在示波器上的波形幅度的相对大小来反映加在示波器Y偏转极板上的电压最大值的相对大小, 二极管是最常用的电子元件之一,它最大的特性就是单向导电,也就是电流 只可以从二极管的一个方向流过 电路图: 其伏安特性图为: 电路图为: 动态电路: 正向,二极管两端:

电阻两端: 反向:二极管两端

电阻两端 2)与门,或门可以通过二极管和电阻来实现。

五、实验数据 上述实验图分别对应的波形图及实验数据如下: 正向,二极管两端: 信号类型Vpp:V Vmax:V Vmin:V T:ms 输入信号 5.1 2.43 -2.71 1.9986 输出信号 3.4 0.7 -2.67 1.9997 电阻两端:

模电实验1二极管V—I特性曲线

实验报告 实验名称:二极管V—I特性曲线课程名称:电子技术实验(模拟)

一、实验目的 1、学习multisim 2001软件的使用方法。 2、学会使用Multisim中直流扫描分析方法来验证二极管的V-I特性曲线。 3、学习如何改变元器件的模型参数。 4、学习如何使用Multisim 2001 中的后处理程序对输出波形进行必要的数学处理。

二、实验步骤 1. 电路原理图 (图一二极管V—I特性曲线电路图) 实验电路图如上图一所示。 直流电压源Vi与1N4148型二极管VD1串联,电流从电压源正极流出经过二极管回到电源。。二极管两端电压降= 电源电压V1。 关联方向流经VD1的电流= 流经电源的电流的负值。 2.实验结果 (图二二极管V—I特性曲线)

(1)DC sweep 分析: 横坐标为V1,纵坐标为流经电源的电流。 输入值:初始值-120V ,结束值20V ,步长0.01。 结果如上图二所示。 得出结果若以Voltage (V )=0为对称轴翻折,即为二极管V —I 特性曲线。 (图三 二极管V —I 特性曲线) 后处理在变量vvi#branch (流经电源的电流)前取负号,即得关联方向流经VD1的电流。 电流如图三所示为经过后处理后得到的二极管V —I 特性曲线。 横坐标为V1,纵坐标为流经二极管VD1的电流。 上图中,(1)部分为反向击穿,(2)部分为反向截止,(3)部分为正向导通。 (2)调整XY 轴数据显示范围,观察门坎电压值 (图四 二极管V —I 特性曲线) 1 2 3

调整输入范围纵横坐标0—2V,纵坐标-0.01V—1A。 观察图四,移动游标,读出门槛电压0.666V。 (3)调整XY轴数据显示范围,观察雪崩电压值 (图五二极管V—I特性曲线)调整输入范围横坐标-102—-98V,纵坐标-1—0.01A。 观察图五,移动游标,读出门槛电压-100.65V。

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

三极管共射极放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习共射放大电路的设计方法与调试技术; 2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响; 3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法; 4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法; 5.进一步熟悉示波器、函数信号发生器的使用。 二、实验内容和原理 1.静态工作点的调整与测量 2.测量电压放大倍数 3.测量最大不失真输出电压 4.测量输入电阻 5.测量输出电阻 6.测量上限频率和下限频率 7.研究静态工作点对输出波形的影响 三、主要仪器设备 示波器、信号发生器、万用表 共射电路实验板 四、操作方法和实验步骤 1.静态工作点的测量和调试 实验步骤: (1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。 (2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。 (3)将放大器电路板的工作电源端与15V 直流稳压电源接通。然后,开启电源。此时,放大器处于工作状态。 (4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。 (5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。 2.测量电压放大倍数(R L =∞、R L =1k Ω) 专业: 姓名: 学号: 日期: 地点: 学生序号6

实验1二极管实验报告

北京物资学院信息学院实验报告 课程名_ 电子技术实验名称二极管半波整流实验 实验日期 2012 年 3 月 5 日 实验报告日期 2012 年 3 月 26 日 姓名____曾曦________学号___00__________ 小组成员名称_____________无___________________ 一、实验目的 1.熟悉模拟电路实验箱系统硬件电路结构和功能 2.掌握虚拟示波器和万用表的使用方法 二、实验内容 为了更好地掌握模拟电路实验箱各组成部件的硬件电路结构和功能,我们将设计一个二极管半波整流电路,用虚拟万用表测量电压、电阻值,应用虚拟示波器测量波形。 三、实验环境 1.实验箱TD_AS 2.PC +虚拟仪器(万用表+示波器) 四、实验步骤(描述实验步骤及中间的结果或现象。在实验中做了什么事情,怎么做的,发生的现象和中间结果) 1.模拟电路实验箱系统硬件结构和功能 ·通用实验单元:基本放大电路、差动放大电路、集成运算电路、功率放大器、串联稳压电路、集成稳压电路。 ·恒压源单元:DC ① +~+12V、;~-12V、。 ② +12V、; -12V、。 ③ +5V、; -5V、; +、。 AC :、。 ·波形发生器单元:输出波形:方波、三角波、正弦波。 幅值:方波 Vp-p:0~12V。 三角波 Vp-p:0~12V。

正弦波 Vp-p:0~12V。 频率范围(四档):2Hz~20Hz、20Hz~200Hz、200Hz~2KHz、2KHz~80KHz。 ·直流信号源单元:两路~+、-5V~+5V 两档连续可调。 ·开关及显示:12组开关,8组显示灯。 ·元器件单元:包括电位器、电阻器、电容器、二极管。 ·可选配PAC开发板:PAC10、 PAC20 、PAC80。 ·可选配OSC虚拟仪器: 数字存储示波器、X-Y测量:双通道、实时采样率2MHz,存储深度16K。 数字万用表:测量电阻、电容、电压、电流。 2.二极管半波整流电路 3.用示波器测量波形图过程和结果

实验二极管和三极管的识别与检测实验报告

实验二极管和三极管的识别与检测实验报告实验二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性

机械万用表及其欧姆档的内部等效电路如图所示。 图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到R?100或R?1K档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。

2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的R?100或R?1K档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。 (2)判断集电极和发射极 判断集电极和发射极的基本原理是把三极管接成基本单管放大电路,利用测量管子的电流放大系数?值的大小来判定集电极和发射极。以NPN型为例,如图所示。基极确定以后,用万用表两表笔分别接另外两个极,用100K?的电阻一端接基极一端接黑表笔,若电表指针偏转较大,则黑表笔所接的一端为集电极,红表笔接的是发射极。也可用手捏住基极与黑表笔(不能使两者相碰),以人体电阻代替100K?电阻的作用。

三极管共射放大电路实验报告

实验报告 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。 2.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。 3.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。 二、实验内容和原理 仿真电路图 专业:姓名:学号:日期:地点: 实验名称:_______________________________姓名:________________学号:__________________ 静态工作点变化而引起的饱和失真与截止失真 1. 静态工作点的调整和测量: 调节R W1,使Q 点满足要求(I CQ =1.5mA)。测量个点的静态电压值 2. R L =∞及R L =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器

监视输出波形,交流毫伏表测出有效值。 3. R L =∞时,最大不失真输出电压V omax (有效值)≥3V : 增大输入信号幅度与调节R W1,用示波器监视输 出波形、交流毫伏表测出最大不失真输出电压V omax 。 4. 输入电阻和输出电阻的测量: 采用分压法或半压法测量输入、输出电阻。 5. 放大电路上限频率f H 、下限频率f L 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707 倍。 6. 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。 三、主要仪器设备 示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等 四、操作方法和实验步骤准备工作: a) 修改实验电路 ◆ 将K 1用连接线短路(短接R 7); ◆ R W2用连接线短路; ◆ 在V 1处插入NPN 型三极管(9013); ◆ 将R L 接入到A 为R L =2k ,不接入为R L =∞(开路) 。 b) 开启直流稳压电源,将直流稳压电源的输出调整到12V ,并用万用表检测输出电压。 c) 确认输出电压为12V 后,关闭直流稳压电源。

三极管的作用:三极管放大电路原理

三极管的作用:三极管放大电路原理 一、放大电路的组成与各元件的作用 Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。 共射放大电路 Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE 二、放大电路的基本工作原理

静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。 基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集电极电流:IC=ICQ=βIBQ 集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:

放大电路对信号的放大作用是利用三极管的电流控制作用来实现,其实质上是一种能量转换器。 三、构成放大电路的基本原则 放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如 ic=β*ib)应能有效地转变为负载上的输出电压信号。 电压传输特性和静态工作点 一、单管放大电路的电压传输特性

图解分析法:

输出回路方程: 输出特性曲线: AB段:截止区,对应于输出特性曲线中iB<0的部分。 BCDEFG段:放大区 GHI段:饱和区 作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。 用于开关控制场合:工作在截止区和饱和区上。 二、单管放大电路静态工作点(公式法计算)

模电实验报告二极管使用

模拟电路实验二——二极管实验报告 0 石媛媛 1、绘制二极管的正向特性曲线(测试过程中注意控制电流大小): 一开始,我用欧姆表测量了二极管电阻,正向基本无电阻,反向电阻确实是很大。 然后我们测量其输出特性曲线,发现很吻合: 1、在电压小于某一值时确实没有电流,之后一段电流很小(几毫安~几十毫安); 2、当二极管两端电压大于左右时电流急剧增大(后测试二极管正向压降约为),这个就是 其正向导通电压。二极管被导通后电阻很小,(图中可看出斜率很大,近似垂直)相当于短路。 3、当我们使电压反向,电流基本为零,但是当电压大于某一值(反向击穿电压)时电流又开始增大。 2、焊接半波整流电路,并用示波器观察其输入输出波形,观察正向压降对整流电路的影响;

电路图: 方波正弦波 三角波 半波整流电路的效果:输出信号只有正半周期(或负半周期),这就把交流电变为直流电。这是由于二极管的单向导电性。但是电的利用效率低,只有一半的线信号被保留下来。 3、焊接桥式整流电路,并用示波器观察其输入输出波形;

电路图: 桥式整流电路是全波整流,在电压正向与反向时,分别有两个管子处于正向导通区、两个管子在反向截止区,从而使输出电压始终同向。而且电压在整个周期都有输出,效率高。 但是发现桥式整流电路的输出信号(尤其是三角波时)未达到理想波形,应该是电路板焊接的焊接点不够牢固或其他问题导致信号的微失真。 5、使用二极管设计一个箝位电路,能把信号(0-10V)的范围限制在3V~5V之间: 设计的电路:

电路原理:当输入信号在0—4V时,4V>U1,二极管正向导通;输出电压稳定在4V左右当输入信号在4V—10V时,二极管反偏,相当于断路,此时电路由电源,1K电阻,51Ω电阻构成。因为要想使输出值小于5V,所以我选择了一个较小阻值电阻和一个大阻值电阻串联,这样51Ω电阻分压小,故输出电压一直小于5V,起到了钳位效果。 实验数据: 输入电压/V 输出电压/V 4 6 10 实验心得: 1、焊接心得:A、锡越少越牢固,不要在一点反复焊接,很容易使之前的焊点虚焊。 B、焊接前做好规划,把该点处要连的元件和导线尽量一次连好。 C、短距离连接可以用元件本身(如电阻两端的细锡线)或点连,长距离链接要用带皮的导线。 D、电源线正负要区分好颜色,方便后续操作。 这样就可以避免出现这次我们组因为焊接技术不到位,在一点出反复焊接,又丑又不牢靠从而在桥式整流电路的效果中出现误差的错误了。 2、对于数据的记录上感受更深入了。实验数据记录是为了得出实验结论的需要,没有确定 的比例,不需要事先给自己规定好每隔多少取值。比如二极管一开始我们取1V,2V,都没有什么电流,这段的数据就可以间隔很大的略记,而后面二极管被导通后,电流变化很快,这一段就要在小间隔下记录,才能绘制出理想的二极管输出曲线。 3、对于自己设计电路,我觉得首先要理解电路的功能,比如一开始我们就从网上找了很多 钳位电路的例子但是都是对交流电的,而在本次实验中,处理的应该是直流电,这就不适用了。第二,要好好学好模拟电路的课程,明白原理才能更好的设计。比如钳位中,我们首先想到的应该是用到二极管的单向导电性,以及一个固定电源的作用,知道了这些,设计变得更有目的,才能快而准确。 不过这次实验也给我们带来了很大的惊喜,没想到自己设计的电路一下子就能工作了,体会到了工科学生那种在纸上演算,觉得原理上一定能实现,结果一做果然符合自己预期的快感。感觉很有成就感。

实验二 二极管和三极管的识别与检测实验报告

实验二 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

实验二 二极管和三极管的识别与检测实验报告

实验二二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 万用表及其欧姆档的内部等效电路如图所示。 图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100 ? R或K R1 ?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 ( 1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100 ? R或K R1 ?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

三极管共射放大电路实验报告

实验名称:三极管共射放大电路 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、学习共射放大电路的设计方法。 2、掌握放大电路静态工作点的测量与调整方法。 3、学习放大电路性能指标的测试方法。 4、了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法。 5、进一步熟悉示波器、函数信号发生器、交流毫伏表的使用。 二、实验内容 1、静态工作点的调整和测量 2、测量电压放大倍数 3、测量最大不失真输出电压 4、测量输入电阻和输出电阻 5、测量上限频率和下限频率 6、研究静态工作点对输出波形的影响 三、主要仪器设备 1、示波器、信号发生器、晶体管毫伏表 2、共射电路实验板 四、实验原理与实验步骤 单管共射放大电路 1、放大电路静态工作点的测量和调试 准备工作: (1) 对照电路原理图,仔细检查电路的完整性和焊接质量。 (2) 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。确认后,先关

闭直流稳压电源。 (3) 将电路板的工作电源端与12V 直流稳压电源接通。然后,开启直流稳压电源。此时,放大电路处于工作状态。 静态工作点的调整,调节电位器,使Q 点满足要求(ICQ =1.5mA)。 直接测电流不方便,一般采用电压测量法来换算电流。 测电压时,要充分考虑到万用表直流电压档内阻对被测电路的影响 。因此应通过测电阻Rc 两端的压降VRc ,然后计算出ICQ 。 (若测出VCEQ <0.5V ,则说明三极管已饱和;若VCEQ ≈+VCC ,则说明三极管已截止。若VBEQ>2V ,则说明三极管已被击穿) 2、测量电压放大倍数 (1) 必须保持放大电路的静态工作点不变! (2) 从信号发生器输出1kHz 的正弦波,作为放大电路的输入(Vi=10mV 有效值) 。 (3) 用示波器监视输出波形,波形正确后再用交流毫伏表测出有效值。 3、测量最大不失真输出电压 (1) 静态工作点不变,用示波器监视输出波形。 (2) 逐渐增大输入信号幅度,直至输出刚出现失真。 (3) 测量时通常以饱和失真为准(当Q 点位于中间时)。 (4) 交流毫伏表测出有效值。 4、测量输入电阻 实验原理: 放大电路的输入电阻可用电阻分压法来测量,图中R 为已知阻值的外接电阻,分别测出Vs 和Vi ,则 实验步骤: (1) 输入正弦波(幅度和频率?) 。 (2) 用示波器监视输出波形,要求不失真。 (3) 用交流毫伏表测出Vs 和Vi ,计算得到Ri 。 5、测量输出电阻 实验原理: 放大电路的输出电阻可用增益改变法来测量,分别测出负载开路时的输出电压Vo'和带上负载RL 后的输出电压Vo ,则 R V V V R V V V I V R i s i i s i i i i -=-== /) ('o L o L o V R R R V +=L o o o R V V R ???? ??-=1'

三极管10倍放大电路实验报告

三极管放大电路实验报告 一、实验目的: 掌握三极管的工作模式,三极管输入输出特性曲线,静态工作点,以及常用的放大电路分析,估算(计算/图解) 二、准备工具材料: 工具材料:面包板,面包线,电阻若干,三极管NPN C1815 PNP A1015 ,电容若干 仪器仪表:万用表,双踪显示示波器,函数信号发生器,开关稳压电源 三、电路功能要求: ①.电源为12V单电源 ②.输入信号正弦波1KHz 峰值:50mV ③.电压放大倍数Au=10; ④.波形不失真,误差+-10%,不考虑频率响应范围 四、电路设计(NPN共发射极分压偏置放大电路): 根据资料:三极管C1815 参数: 硅管,b值为200----400 UCE=0.7 设计:计算静态工作点:IB,IC,UCE Q点应工作在输出特性曲线的中央 根据三极管输出特性曲线图,要使Q点在中央,数值IB在50—150uA范围 数值UCE在6—8V范围;设Ub点电位为电源电压一半,即:UB=1/2VCC,IC=IE在b(50—150uA)mA范围,这里取IB为50uA,b为300,电压放大倍数为10,电路不带负载 计算过程:理论值 UE=UB--UBE=5.3V; IE=IC=IB*b; IE=IC=50uA*b=15mA RE=UE/IE=5.3V/0.015A=353R; UB=(Rb1/Rb1+Rb2)*VCC=5; Rb1= Rb2=50K Au=10=-b(RL’/rBE) rBE=300+(1+b)*(26/IE)=821R RL’=RC//RL RC=(rBE/b)*Au=27.4R; UCE=VCC-IC(RC+RE)=6.294V 五、实验过程: 按照设计好的电路,在面包板上实验,输入正弦1KHz信号,峰值50mA 用示波器观察输入波形;给放大电路接上电源,用示波器观察输出波形,两路信号相比较,发现放大倍数没有10倍,理论值跟实际值有差别,调节电阻RC使得放大倍数为10倍,且不失真的情况下RC=50R 时,电压放大倍数刚好10倍, 温度变化时,对放大电路的影响比较小,说明分压偏置放大是可靠的 测试频率响应范围,在不失真,放大倍数不改变的情况下为500Hz-------500KHz

三极管放大电路实验报告

三极管放大电路 1、问题简述: 要求设计一放大电路,电路部分参数及要求如下: (1)信号源电压幅值:0.5V; (2)信号源内阻:50kohm; (3)电路总增益:2倍; (4)总功耗:小于30mW; (5)增益不平坦度:20 ~ 200kHz范围内小于0.1dB。 2、问题分析: 通过分析得出放大电路可以采用三极管放大电路。 2.1 对三种放大电路的分析 (1)共射级电路要求高负载,同时具有大增益特性; (2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1; (3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。 综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。 2.2 放大电路的设计思路 在此放大电路中采用两级放大的思路。 先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。 3、实验目的 (1)进一步理解三极管的放大特性; (2)掌握三极管放大电路的设计; (3)掌握三种三极管放大电路的特性; (4)掌握三极管放大电路波形的调试; (5)提高遇到问题时解决问题的能力。 4、问题解决 测量调试过程中的电路: 增益调试: 首先测量各点(电源、基极、输出端)的波形:

结果如下:

绿色的线代表电压变化,红色代表电源。调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3。 V A=R2//R3//(1+β)R5 / [R2//R3//(1+β)R5+R1],其中由于R1较大因此R2、R3也相对较大。 第一级放大输出处的波形调试(采用共射级放大电路): 结果为: 红色的电压最大值与绿色电压最大值之比即为放大倍数。 则需要适当增大R2,减小R3的阻值。 总输出的调试: 如果放大倍数不合适,则调节R4与R5的阻值。即当放大倍数不足时,应增大R4,减小R5。 如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回C极,调节C极的输出。 功率的调试: 由于大功率电路耗电现象非常严重,因此我们在设计电路时,应在满足要求的情况下尽可能的减小电路的总功耗。减小总功耗的方法有: (1)尽可能减小输入直流电压; (2)尽可能减小R2、R3的阻值; (3)尽可能增大R6的阻值。 电路输入输出增益、相位的调试: 由于在放大电路分别采用了共射极和共集电极电路,因此输出信号和输入信号相位相差180度。体现在波形上是,当输入交流信号电压达到最大值是,输出信号到达最小值。 由于工作频率为1kHz,当采用专门的增益、相位仪器测量时需要保证工作频率附近出的增益、相位特性比较平稳,尤其相位应为±180度附近。一般情况下,为了达到这一目的,通常采用的方法为适当增大C6(下图为C1)的电容。 最终调试电路:

二极管限幅电路实验报告

实验:设计和探究二极管限幅电路 一、实验目的 1、了解限幅电路的构成 2、掌握限幅电路的工作原理和分析方法 3、测量限幅电路的传输特性 二、实验仪器 1、双踪示波器 2、直流源 3、函数发生器 4、高频电子线路实验箱 三、实验原理和装置图 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中,若二极管具有理想的开关特性,那么,当i u 低于E 时,D 不导通,o u =E ;当u i高于E 以 后,D 导通, o u =i u 。该限幅器的限幅特性如图所示,当输入振幅大于E 的正弦波时,输 出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D R E u i u O t E u O u i t E u i u O 幅限特性 2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 D R E u O t E u O u i t E u i

3、 二极管双向限幅电路 将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 D1R E u O u i t E u i D2E E t u O E E 四、实验内容 1、实验电路图如下图所示。 2、观察输出电压与输入电压的波形并记录,测试输出电压与输入电压的关系,即进行传输特性测试并记录。 3、对结果进行分析,并得出结论 五、数据记录 A : -3.751V -2.145V -1.140V 1.340V 2.279 5.525 7.726 B: -2.547V -2.145V -1.139V 1.340V 2.279 5.429 5.563 六、数据处理和实验结论 1.这些数据都几乎一样,没什么太大差别。 2.结论:二极管最基本的工作状态是导通和截止两种。 信号幅度比较小时的电路工作状态,即信号幅度没有大到让限幅电路动作的程度,这时限幅电路不工作。 信号幅度比较大时的电路工作状态,即信号幅度大到让限幅电路动作的程度,这时限幅电路工作,将信号幅度进行限制。 第三小组: 时间:2012年5月10日星期四

相关主题
文本预览
相关文档 最新文档