空气预热器的类型及特点
- 格式:doc
- 大小:4.49 MB
- 文档页数:4
管式空气预热器的工作原理管式空气预热器是一种常见的热交换设备,广泛应用于工业生产中。
它通过将废气与进气进行热交换,将废气中的热量传递给进气,从而实现了能量的回收利用,提高了能源利用效率。
下面将从工作原理、结构特点和应用领域等方面对管式空气预热器进行详细介绍。
管式空气预热器的工作原理主要是利用废气与进气之间的热量传递来实现预热的目的。
具体来说,管式空气预热器由一组平行排列的管子组成,废气流经管子的外壁,而进气则流经管子的内壁。
废气和进气之间通过管壁进行热量传递,使进气在通过预热器之前被加热,从而达到提高进气温度的目的。
在工作过程中,废气从烟囱或燃烧炉中进入预热器的废气侧,通过预热器的管子外壁流动。
同时,进气从外部环境中通过预热器的管子内壁流动。
当废气从管子外壁流过时,其热量会逐渐传递给管壁,然后再传递给进气。
由于废气温度高于进气温度,因此热量会从高温的废气流向低温的进气,使进气得到预热。
预热后的进气将继续流入下一个工艺装置中,实现了能量的回收利用。
管式空气预热器的结构特点主要体现在以下几个方面。
首先,管式空气预热器的管子通常采用金属材料制成,具有良好的导热性能和机械强度,能够承受较高的温度和压力。
其次,管子之间的排列方式有多种,如平行排列、螺旋排列等,不同的排列方式可以适应不同的工艺需求。
此外,管式空气预热器还通常具有进气和废气的进出口,以及用于清洗和维护的检修孔等。
管式空气预热器具有广泛的应用领域。
首先,它常被应用于热电厂和工业锅炉等能源设备中,用于回收废气中的热量,提高锅炉的热效率。
其次,管式空气预热器还广泛应用于冶金、化工、石油、轻工等行业的生产过程中,用于回收废气中的热能,降低能源消耗。
此外,管式空气预热器还常被应用于烟气脱硫、烟气脱硝等烟气处理系统中,用于提高烟气处理效率。
管式空气预热器通过废气与进气之间的热量传递,实现了能量的回收利用,提高了能源利用效率。
它具有结构简单、工作可靠、使用方便等特点,并具有广泛的应用领域。
热管式余热节能交换器(热管式空气预热器)安装使用说明书上海蕲黄节能设备有限公司一.概述1、热管简介热管是一种具有高传热性能元件,它通过密闭真空管壳内工作介质的相变潜热来传递能量,其传热性能类似于超导体性能,因此它具有传热能力大,传热效率高的特点。
典型的重力热管如又图所示,在密闭的管内先抽成1~2×10PA的负压,在此状态下充入适量工质。
在热管的下端(受热段)加热,工质吸收热量汽化为蒸汽,在微小的压差下,上升到热管上端(放热段),并向外界放出热量,且凝结为液体。
冷凝液在重力的作用下,沿着热管内壁返回到受热段,并再次受热汽化,如此循环往复,连续不断的将热量从一端传向另一端。
由于是相变传热,因此热管内阻很小,所以能以较小的温差获得较大的传热率,且结构简单,具有单向导热的特点,特别是由于热管的特有机理,例冷热流体之间的热交换在管外进行,并可以方便的进行强化传热。
热管这种传热元件可以单根使用也可以组合使用,根据用户现场的条件,配以相应的流通结构组合成各种形式的换热器,热管换热器具有传热效率高,阻力损失小,结构紧凑、工作可靠和维护费用小等多种优点,它在空间技术、电子、冶金、动力、石油、化工等各种行业都得到了广泛的应用。
2、结构特点热管空气预热器由箱体、热管管束、中隔板组成。
箱体分为两侧:一侧流体为烟气,一侧流体为空气。
特点:1、烟气和空气由中隔板隔开,热管腰环与中隔板密封良好,两侧流体不串流。
2、烟气和空气通过管件外表面换热,换热面积易于扩展。
3、可调节管件表面翅片和翅片距,控制管壁温度避免烟气侧堵灰和酸腐蚀。
4、少数管件的漏穿不会造成烟气和空气的串流。
二.设备安装1、设备在工艺及土建设计的预定位置吊装。
吊装时按图纸所示位置或经相关技术人员同意的位置起吊,起吊时不应有附加载荷或冲击载荷。
2、设备按实际位置就位后校正水平,设备底筐与基础支撑应该接触均匀,不应出现不稳现象。
3、为了保证进口烟气的均匀性,在进口烟道内设置导流板是十分必要的。
四分仓空气预热器传热与结构分析摘要:国家节能减排以及环保压力的增大,为了改善这一状况,则四分仓空气预热器衍生出来,该空气预热器在较短的时间里得到了快速的发展,且优势较多,如低漏风率、大容量、可靠性高等特点。
但是四分仓由于其结构的复杂化、传热机制的复杂化,使得在发展的过程中会受到一定限制,为此,本文重点针对四分仓空气预热器传热过程以及节后展开详细的分析,以推动四分仓空气预热器的广泛应用。
关键词:四分仓;空气预热器;传热;结构引言在我国大型的电站锅炉的使用中,其最主要的构成部分包括空气预热器,空气预热器具有的特点主要包括传热面的密度较高、其结构较为密集化、钢耗少等特点,是大型锅炉中常见的辅助性设备,目前,国家在研发中已将原有的二分仓空气预热器进行改进,改为四分仓空气预热器,且得到了广泛的使用,为了使得四分仓空气预热器传热效果更好。
文章将重点针对四分仓预热器的传热过程即传热效果、结构等进行分析,具体分析内容如下。
1空气预热器概述所谓空气预热器指的是一种为了能够提高锅炉热交性能,有效地降低能量效果消耗的设备,该设备主要是将锅炉尾部烟道中所产生的烟气,通过空气预热器中的内部散热片(蓄热元件)进行预热处理,从而使得受热面达到一定温度,通过空气预热器的处理方式,可以在节约能源消耗下,使其温度达到预定标准。
该设备一般分为板式、回转式以及管式几种类型。
2四分仓回转式空预器的结构2.1转子结构分析在四分仓回转式空气预热器在运转的过程中,最主要的目的是为了传热,而在该空气预热器中起到装载元件的重要组成部分,则是转子结构。
转子结构中具体包括转子的外壳部分、中心筒部分以及转子中若干半径向部分、密封隔板几个重要的部分组合而成转子结构[1]。
在四分仓回转空气预热器系统中,主要是密封式节后,该密封式结构中扇形仓格总共有48个,是由同等数量的径向板将其分割而成,在所划分的每个扇形仓格中,每个仓格的角度大小未7.5°,除此之外,在整个转子部件中由24块径向隔板将其转子隔成了扇形仓格共计24个,每一个扇形仓格所划分的角度为15°角,在这24个扇形仓格中有布置了多个周向隔板组成,其中还有多个梯形的小仓室沿着径向的方向所组成,这些梯形小仓室中则放置了蓄热元件。
空气预热器的种类和特点作者:无忧备件网空气预热器是用于锅炉系统热交换性能提升的一种设备。
空气预热器的主要作用是将锅炉排出的烟气中的热量收集起来,并传导给进入锅炉前的空气。
空气预热器有三个大类,分别是板式空气预热器、回转式空气预热器和管式空气预热器。
1、板式空气预热器板式空气预热器的主要传热部件是薄钢板,多个薄钢板一起焊接成长方形的盒子,而后数个盒子拼成一组,板式空气预热器就由2到4个钢板焊接盒子组成。
板式空气预热器工作时,烟气会流经盒子的外侧,而空气流经盒子的内侧,通过钢板完成热传导。
板式空气预热器的结构松散而不紧凑,制造需要耗费大量的钢材,因此制造成本较高。
板式空气预热器的盒子由焊接方式拼接,焊接工作量大且缝隙较多,容易出现泄漏。
板式空气预热器目前已经很少被使用。
2、回转式空气预热器回转式空气预热器是指内部设有旋转部件,通过旋转的作用在烟气和空气之间传导热能的一种空气预热器。
回转式空气预热器还能够分为两个类别,也就是受热面旋转的转子回转式空气预热器,和风道旋转的风道回转式空气预热器。
回转式空气预热器的优点是体积小、重量轻、结构紧凑,传热元件承受磨损的余量大,因此回转式空气预热器特别适合应用于大型锅炉。
回转式空气预热器的缺点是内部的机构复杂,消耗电力较大且漏风量较高。
3、管式空气预热器管式空气预热器的主要传热部件是薄壁钢管。
管式空气预热器多呈立方形,钢管彼此之间垂直交错排列,两端焊接在上下管板上。
管式空气预热器在管箱内装有中间管板,烟气顺着钢管上下通过预热器,空气则横向通过预热器,完成热量传导。
管式空气预热器的优点是密封性好、传热效率高、易于制造和加工,因此多应用在电站锅炉和工业锅炉中。
管式空气预热器的缺点是体积大、钢管内容易堵灰、不易于清理和烟气进口处容易磨损。
空气预热器空气预热器的分类:按空气预热器的工作原理,空气预热器可分为间壁导热式和再生式两种。间壁导热式空气预热器的特点是在烟气与空气之间存在一个壁面,烟气将热量通过这中间壁面传给空气。再生式空气预热器是烟气和空气轮流地流过一种中间载热体(金属、陶瓷、液体等)来实现传热,当烟气流经中间载热体时,把载热体加热。当空气流经载热体时,载热体本身受到冷却,而空气得到加热。间壁导热式可分为管式和板式预热器。再生式空气预热器可分为转子转和风罩转等型式。空气预热器的作用:空气预热器的作用包括:(1)降低排烟温度提高锅炉效率。随着电站循环中工质参数的提高,由于采用回热循环,用汽轮机的抽汽来加热给水,进入锅炉的给水温度愈来愈高。给水温度由中压的150℃提高到亚临界压力的260℃。原来低压锅炉中用省煤器来降低排烟温度的功能随着锅炉给水温度的提高而下降。只用省煤器就不能经济地降低锅炉的排烟温度,甚至无法降低到合适的温度。然而空气的温度较低,若将省煤器出口的烟气来加热燃烧所需的空气,则可以进一步降低排烟温度,提高锅炉效率。(2)改善燃料的着火条件和燃烧过程,降低了燃烧不完全损失,进一步提高锅炉效率。对于着火困难的燃料,如无烟煤,常把空气加热到400℃左右。(3)热空气进入炉膛,提高了理论燃烧温度并强化炉膛的辐射传热,进一步提高锅炉的热效率。(4)热空气还作为煤粉锅炉制粉系统的干燥剂和输粉介质。鉴于以上几点,现代锅炉中空气预热器成为锅炉不可少的部件。对于低压锅炉,因给水温度很低,用省煤器已能很有效地将烟气冷却到合理的温度,常无空气预热器。不过有的工业锅炉,给水除氧后温度也只有104℃,为了改善着火燃烧条件,也有采用空气预热器的。对于火床燃烧的工业炉,因炉排片温度的限制,即使有空气预热器,空气的温度也不超过150~180℃。回转式空气预热器:回转式空气预热器的缺点是漏风系数大,结构复杂,传动装置消耗电能。优点是受热面两面受热,传热系数高,单位体积内受热面大,外形尺寸小、重量轻,不怕腐蚀。同等换热容量的空气预热器,采用回转式空气预热器可比管式空气预热器节省约1/3的钢材。受热面回转再生式空气预热器又称容克式空气预热器,其基本结构如下图:空气预热器是由转子、受热元件、密封装置、传动装置、上下轴承座及其润滑系统、上下连接板、外壳支承座、吹灰和水冲洗装置、漏风控制装置等组成。烟气从上方通过入口5进入空气预热器,通过转子的一半(180°)的受热元件向下流,通过出口6流出。在烟气流经旋转着的转子1中的受热元件时,把热量传给受热元件使其温度升高。空气从另一侧下方的空气入口7流入空气预热器,并流过旋转着的转子的120°的范围,冲刷其中已被烟气加热的受热元件,吸取它在被烟气加热时所储蓄的热量,空气温度升高,最后通过出口8流出。由于烟气的容积流量比空气大,因此烟气通道占转子总横截面的50%,空气通道只占30%~40%。转子1从上到下被径向的隔板9分隔成互不通气的12个大格(每格30°,里面还有小格)。在烟气与空气之间有30°的过渡区10,这里既不流空气也不流烟气,因而烟气与空气不会相混。但空气处于正压,烟气处于负压,可能有空气漏入烟气的问题。此外,空气入口风罩、出口风罩、烟气入口、出口流通罩与转子之间都有密封装置11。转子周界与外壳之间也都有密封装置,使空气不致漏入烟气中去。转子中放置受热元件,由12块或24块径向隔板与中心筒和转子壳体连接形成12个或24个扇形仓。每个扇形仓是由横向隔板分成多个梯形小室,放置受热元件篮子。冷段和冷段中间层受热元件制成抽屉式结构,便于更换。大容量锅炉多采用三分仓回转式空气预热器,即将高压一次风和低压二次风分隔在两个分仓进行预热,二次风可用低压头送风机,这样能降低风机的电耗。同时,以布置在空气预热器前面的冷一次风机代替二分仓回转式空气预热器系统中工作条件较差的热一次风机。在环境温度下输送干净冷空气的冷一次风机可以采用体积小、电耗低的高效风机,这样可减轻风机磨损,延长寿命,使系统运行的可靠性和经济性得到提高。下图为典型的三分仓模块式预热器的立体外形图:下图为空气预热器分解图:常用的受热元件板型有DU、CU和NF三种,如下图所示:每一种板型都是由定位板和波纹板组成的。波纹板的波纹为有规则的斜波纹,定位板则是垂直波纹与斜波纹相间。波纹板与定位板的斜波纹与气流方向成一定的夹角,以增强气流扰动,强化传热。定位板既是受热面,又将波纹板相互固定在一定距离,保证气流有一定的流通截面。不同波纹板的结构特性如下表:对于固体燃料,热端和热端中间层采用24GA材料DU型受热元件,冷端层和冷端中间层采用18GA材料NF型受热元件。对于气体燃料,采用CU受热元件,CU型受热元件的单位容积的热面积多,材料采用普通碳钢,冷端采用耐腐蚀的低合金材料,在腐蚀严重的条件下,冷端也可采用涂搪瓷受热元件。受热元件沿高度方向分层放置,一般最多可分为四层,即热端层、热端中间层、冷端中间层和冷端层,每层高度为300~600mm。下图为风罩回转式空气预热器:受热面静止不动,通过上下对应的风罩旋转来改变空气和烟气流过受热面的位置,使烟气和空气交替流过传热元件达到预热空气的目的。其静子结构和传热元件与受热面旋转式空气预热器的转子和传热元件相似。上下风罩为两个相对的扇形空气通道组成,将整个静子分为两个烟气通道和两个空气通道。烟气与空气通道之间为密封区。上下风罩由中心轴相连,在电动机驱动下同步旋转。风罩转动一周,烟气和空气交替流过受热面两次,因此风罩转动的速度可以稍慢些,约为1~3r/min。由于风罩的重量较受热面传热元件重量轻,因此支承轴的负荷减轻。风罩回转再生式空气预热器是我国20世纪60年代中期引进开发的产品。70年上半期已制造出配300MW火力发电机组的直径为9.5m 的大型空气预热器。国内的几家主要锅炉厂都分别制造过配300MW、200MW、125MW和100MW发电机组的各种规格的风罩回转预热器。与受热面回转的三分仓空气预热器一样,风罩回转再生式空气预热器也可对一、二次风分别进行加热,即双流道空气预热器。下图为某300MW机组锅炉采用的双流道空气预热器简图,它的上、下风罩分内外两层。管式空气预热器:管式空气预热器是由许多薄壁钢管装在上、下及中间管板上形成的管箱。最常用的电站锅炉管式空气预热器有立式和卧式两种。立式预热器是烟气在管内纵向流动,空气在管外横向流动冲刷管子,常用于燃煤锅炉。卧式预热器是烟气在管外横向冲刷管子,空气在管内纵向流动,常用于燃油锅炉。总之,烟气、空气作相互垂直的逆向流动。立式管式空气预热器的典型结构示意图如下:它是由钢管、管板(上、中、下)、框架、连通罩、导向板、墙板、膨胀节和冷、热风道连接接口等组成。管式空气预热器的优点是无转动部分,结构简单,工作可靠,维修工作量少,严密性好,如果能采取措施解决预热器的低温腐蚀和磨损,则漏风量不超过5%。缺点是体积很大,钢材消耗多,漏风量随着预热器管的低温腐蚀和磨损穿孔而迅速增加。由于大容量锅炉的尾部烟道体积相对减少,常发生管式空气预热器难以布置的情况。为了保持空气流速和烟气流速的合理比值,空气预热器结构设计时,必须正确地选择空气预热器的通道数目和进风方式。空气预热器的几种典型布置如下图:各种流程布置主要由锅炉总体布置设计确定。大容量电站锅炉的空气预热器流程大都采用双面进风或多面进风,以减少空气侧流动阻力。卧式空气预热器的结构基本上与立式相似,仅仅将管箱水平横卧。这种预热器适用于燃油锅炉或燃煤旋风炉(液态排渣炉),并在尾部烟道中装设钢珠除尘装置,以清除油炱或升华的细煤灰。卧式相比于立式空气预热器具有下列几个优点:(1)在烟、空气温度相同条件下,卧式预热器壁温要比立式高10~30℃。这对改善腐蚀和堵灰有利。(2)卧式预热器的腐蚀部位在冷端几排管子,易于设计上采用可拆结构,便于调换、减少维修工作量,而立式的腐蚀部位是在管子根部,以至整个管箱调换。(3)高温预热器的进口管板不再位于高温烟气中,相应于管板的过热、翘曲和变形等缺陷不易发生,提高了钢珠除灰的效果。管式空气预热器的管径和节距的选择主要取决于传热、烟风速的最佳比值、烟空气阻力、堵灰、清洗、振动和制造工艺等因素。常用的管式预热器采用错列布置,管子采用Ф40mm×1.5mm的有缝钢管,其相应的节距如下表:为了延长使用寿命,低温段空气预热器的管子采用Ф38mm×2mm或Ф42mm×3.5mm。又,为了降低堵灰的可能性,采用较大直径Ф51mm×2mm。卧式空气预热器中采用钢珠除灰时,预热器上排管子要经受钢珠的冲击故采用厚壁管Ф40mm×3mm。同时,为了增加管箱的刚性,减少管箱中间的挠度,在管箱的中心和两侧采用间隔布置厚壁管。考虑到运输、安装和制造的尺寸超限和起重设备等因素,管式空气预热器通常沿着锅炉宽度方向均分成若干个管箱。管箱的高度或长度一般不宜太高或太长。同时,立式管箱高度还与原材料长度和厂房高度以及起重设备能力和高度有关。若立式管箱高度太高,则不但刚性差、制造装配不便,还给运行维护、管内清灰带来不便。一般推荐高度不超过5m。卧式管箱的长度也不宜太长,以免中间过度挠曲。一般推荐长度为3~3.5m。对于低温段预热器,不论是立式或卧式,管箱的高度一般取为1.5m左右,便于维修和更换。空气预热器中烟气和空气速度的选择应从传热、阻力和磨损等诸方面加以综合考虑。推荐的烟、空气速度如下表:上表中大的数值适用于燃油或燃气机组,小的数值适用于固体燃料,且随固体燃料中的灰分及其灰渣磨损性而异,多灰或含磨损性严重灰渣,偏向于采用较低的速度。烟、空气速度值的选择从传热角度分析,要获得较佳的传热系数应使烟气侧表面传热系数接近于空气侧表面传热系数。因此,立式预热器中,空气速度与烟气速度之比值约为0.45~0.55。卧式预热器大都用于液体燃料机组。设计的主要需注意的问题是腐蚀。为此,应尽可能提高管壁温度,故空气速度与烟气速度之比值为0.4~0.6。比值小时,壁温较高,但当比值<0.4时,带来结构布置上的困难和烟速增加后,烟气阻力的急剧上升。按照上述的烟、空气速度推荐值,预热器的传热系数约为17.5~23.3W/(㎡·℃)。当燃用的燃料中硫分较高又没有采取特殊措施时,空气预热器可能发生低温腐蚀。这种低温腐蚀大多发生在首先与冷空气换热的空气预热器下部,即所谓的冷端。而在预热器的上部,由于烟气温度和空气温度都较高,预热器管壁温度高于烟气露点,很少发生低温腐蚀。如果将低温段预热器易腐蚀的下部与不易腐蚀的上部分别做成两个独立可拆分的部分,如下图:当由于空气预热器受到腐蚀而需要更换时,只需更换下部的预热器,材料的消耗和工作量均可大大减少。烟气和空气的流动方向相互交叉,通常空气和烟气作不大于4次交叉。一般,一级空气预热器可以加热空气温度达280~300℃。要使热空气的温度更高,应采用双级布置。第二级空气预热器的进口烟温不超过500~550℃。否则上管板会形成氧化皮,由于短管效应,产生管板翘曲及管子与管板脱离。热管作为一种热交换器,近年来我国有不少电厂开始研究,并且逐步应用在空气预热器上,制成热管式空气预热器。热管式空气预热器安装像管式预热器一样,在烟道内放置若干组管箱,管箱内放置若干只作为换热器的热管。下图是热管式空气预热器在烟道内的一种布置方案:单只热管的工作原理如下图所示:按较精确定义,热管应称之为“封闭两相传热系统”,即在一个封闭的体系内,依靠流体(传热工质)的相态变化来传递热量的装置。重力式钢水热管,由管壳和将管壳抽成真空并充入适量的水后密封而成。当热源(如烟气)对其一端加热时,水(工质)由于吸热而汽化,蒸汽在压差作用下高速流向另一端,并向冷源(如空气)放出潜热而凝结,凝结后的水在重力作用下从冷端(上端)流回热端(下端)重新被加热,如此重复下去,便可把热量不断地通过管壁从烟气侧传给空气而使空气变为热空气。用热管组装而成的热管式空气预热器,具有体积小、阻力小、防止低温腐蚀性能好、漏风几乎为零等优点。所以,检修和日常维护的工作量少,且使用寿命较长(一般为10~15年)。。
空气预热器的类型及特点
空气预热器按传热方式分可以分为传热式和蓄热式(再生式)两种。
前者是将热量连续通过传热面由烟气传给空气,烟气和空气有各自的通道。
后者是烟气和空气交替地通过受热面,热量由烟气传给受热面金属,被金属积蓄起来,然后空气通过受热面,将热量传给空气,依靠这样连续不断地循环加热。
随着电厂锅炉蒸汽参数和机组容量的加大,管式空气预热器由于受热面的加大而使体积和高度增加,给锅炉布置带来影响。
因此现在大机组都采用结构紧凑、重量轻的回转式空气预热器。
管式空预器和回转式空预器两者相比较各有以下特点:1)回转式空气预热器由于其受热面密度高达500m2,因而结构紧凑,占地小,体积为同容量管式预热器的1/10;
2)重量轻因管式预热器的管子壁厚1.5mm,而回转预热器的蓄热板厚度为0.5-1.25mm,布置相当紧凑,所以回转式预热器金属耗量约为同容量管式预热器的1/3;
3)回转式预热器布置灵活方便,在锅炉本体更容易得到合理的布置;
4)在相同的外界条件下,回转式空气预热器因受热面金属温度较高,低温腐蚀的危险较管式预热器轻些;
5)回转式空气预热器的漏风量比较大,一般管式预热
器不超过5%,而回转式预热器在状态好时为8%-10%,密封不良时可达20%-30%;
6)回转空气预热器的结构比较复杂,制造工艺要求高,运行维护工作多,检修也较复杂。
回转式空气预热器有两种布置形式:垂直轴和水平轴布置。
垂直轴布置的空气预热器又可分为受热面转动和风罩转动。
通常使用的受热面转动的是容克式回转空气预热器,而风罩转动的是罗特缪勒(Rothemuhle)式回转预热器。
这两种预热器均被采用,但较多的是受热面转动的回转式空气预热器。
按进风仓的数量分类,容克式空气预热器可以分为二分仓和三分仓两种,由圆筒形的转子和固定的圆筒形外壳、烟风道以及传动装置组成。
受热面装在可转动的转子上,转子被分成若干扇形仓格,每个仓格装满了由波浪形金属薄板制成的蓄热板。
圆筒形外壳的顶部和底部上下对应分隔成烟气流通区、空气流通区和密封区(过渡区)三部分(如图4-5-1)。
烟气流通区与烟道相连,空气流通区与风道相连,密封区中既不流通烟气,又不流通空气,所以烟气和空气不相混合。
装有受热面的转子由电机通过传动装置带动旋转,因此受热面不断地交替通过烟气和空气流通区,从而完成热交换。
每转动一周就完成一次热交换过程。
另外由于烟气的流通量比较大,故烟气的流通面积大约占转子总截面的50%左
右,空气流通面积占30%-40%左右,其余部分为密封区(图4-5-2)。
图4-5-1 空气预热器外观图
图4-5-2空气预热器密封区。