初二数学函数知识点积累总结
- 格式:docx
- 大小:19.76 KB
- 文档页数:5
初二函数知识点总结初二函数知识点总结篇一一。
定义1、全等形:形状大小相同,能完全重合的两个图形。
2、全等三角形:能够完全重合的两个三角形。
二。
重点1、平移,翻折,旋转前后的图形全等。
2、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。
3、全等三角形的判定:SSS三边对应相等的两个三角形全等[边边边]SAS两边和它们的夹角对应相等的两个三角形全等[边角边]ASA两角和它们的夹边对应相等的两个三角形全等[角边角]AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]4、角平分线的性质:角的平分线上的点到角的两边的距离相等。
5、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
初二函数知识点总结篇二一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的。
方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x 的一次函数(x为自变量,y为因变量)。
初二函数知识点总结函数在数学上的定义:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数.下面是店铺整理的关于初二函数知识点总结,欢迎大家参考!初二函数知识点总结1一、知识要点1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.2、一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.(3)当b=0,k≠0时,y=b仍是一次函数.(4)当b=0,k=0时,它不是一次函数.3、一次函数的图象(三步画图象)由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.4、一次函数y=kx+b(k,b为常数,k≠0)的性质(正比例函数的性质略)(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k<o时,y的值随x值的增大而减小.< p="">(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;5、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.6、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.7、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.8、本章思想方法(1)函数方法。
数学函数是数学中重要的概念之一,在八年级数学学习中也是一个重要的知识点。
本文将详细介绍八年级数学函数的相关知识。
一、函数的基本概念函数是一种数学关系,它把一个集合中的每个元素与另一个集合中的唯一元素对应起来。
函数常用字母y表示。
一个函数可以用一个数学式表示,例如y=2x+1,其中x是函数的自变量,y是函数的因变量。
1.函数的定义域和值域函数的定义域是使函数有意义的自变量的取值范围。
函数的值域是函数的因变量的取值范围。
例如,对于函数y=2x+1,其定义域可以是全体实数集,值域可以是全体实数集。
2.函数的图像函数的图像是自变量和因变量之间的对应关系在平面直角坐标系上的表示。
可以通过画出自变量和因变量的对应关系确定函数的图像。
3.幂函数幂函数是一种具有形式f(x) = ax^b的函数,其中a和b为常数,且b为有理数。
4.反函数若函数f(x)和g(x)满足f(g(x))=x,且g(f(x))=x,则称g(x)是f(x)的反函数,f(x)是g(x)的反函数。
反函数可以通过交换自变量和因变量得到。
二、一次函数一次函数是一种具有形式f(x) = kx + b的函数,其中k和b为常数。
1.斜率一次函数的斜率表示函数图像的倾斜程度,用字母k表示。
斜率为正表示函数图像呈上升趋势,斜率为负表示函数图像呈下降趋势。
2.常数项一次函数的常数项表示函数图像在y轴上与原点的距离,用字母b表示。
当b为正时,函数图像在y轴上的截距大于0,当b为负时,函数图像在y轴上的截距小于0。
3.函数图像的性质一次函数的图像是直线,斜率k决定了直线的倾斜程度,常数项b决定了直线与y轴的交点位置。
4.直线的性质两个平行的直线具有相同的斜率,两个垂直的直线的斜率乘积为-1三、二次函数二次函数是一种具有形式f(x) = ax^2 + bx + c的函数,其中a、b和c为常数,且a不等于0。
1.顶点二次函数的顶点是函数图像的最高点或最低点,即函数的极值点。
八年级函数知识点总结一、函数的概念函数是数学中的一个重要概念,它描述了两个变量之间的对应关系。
通常用f(x) 表示函数,其中 x 表示自变量,f(x) 表示因变量。
函数可以表示为一个关系:对于任意一个 x,函数f(x) 都有对应的唯一值。
函数可以用图像、表格或公式来表示。
在数学中,函数是一个非常重要的工具,它可以描述各种现象和问题,从而使得人们能够更好地理解和解决问题。
二、函数的表示函数可以通过图像、表格或公式来表示。
其中,图像表示是最直观的方式,可以通过画图来展示函数的变化规律。
表格表示则是将自变量和因变量的对应关系列成表格,方便进行计算和分析。
而公式表示则是将函数的规律用数学符号和运算符号来表示,方便进行推导和计算。
三、函数的性质1. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
通过分析函数的定义域和值域可以了解函数的变化规律和特点。
2. 奇偶性:函数的奇偶性是指函数在原点对称的性质。
奇函数的图像关于原点对称,而偶函数的图像关于 y 轴对称。
3. 单调性:函数的单调性是指函数在定义域上的增减规律。
如果在定义域内,对于任意的x1 和 x2,若 x1<x2,则 f(x1)<f(x2),则函数 f(x) 是增函数。
反之,如果 f(x1)>f(x2),则函数 f(x) 是减函数。
4. 周期性:周期函数是指对于任意的 x,若 x+a 属于定义域,则 f(x+a)=f(x)。
即函数在固定的周期内,具有相同的函数值。
四、函数的运算1. 函数的加减法:如果有两个函数 f(x) 和 g(x),则它们的和函数 h(x)=f(x)+g(x),差函数h(x)=f(x)-g(x)。
2. 函数的乘法:如果有两个函数 f(x) 和 g(x),则它们的乘积函数 h(x)=f(x)·g(x)。
3. 函数的复合:如果有两个函数 f(x) 和 g(x),则它们的复合函数 h(x)=f(g(x))。
八年级函数基础知识点总结一、函数的概念1. 什么是函数?函数是一种特殊的数学关系,它将每个自变量(输入值)映射到唯一的因变量(输出值)。
通俗地讲,函数就是一个“机器”,它能够将一个数映射成另一个数。
2. 函数的表示方法函数可以用各种不同的表示方法来表达,比如代数式、图形、表格、文字描述等。
3. 函数的符号表示用数学符号表示函数的一般形式为:f(x) = y。
其中,f(x)表示函数名,x表示自变量,y 表示因变量。
二、函数的图象1. 函数的图象函数的图象是函数在平面直角坐标系中的几何表现,通常用曲线来表示。
横坐标表示自变量,纵坐标表示因变量。
2. 函数的性质函数的图象具有一些特定的性质,比如单调性、奇偶性、周期性等。
这些性质可以通过函数的图象来进行判断和分析。
三、函数的运算1. 函数的四则运算函数之间可以进行加、减、乘、除等四则运算,这些运算的结果仍然是一个函数。
2. 复合函数复合函数是指将一个函数的输出作为另一个函数的输入,进行组合运算得到一个新的函数。
3. 反函数如果函数f将x映射为y,那么反函数f^(-1)将y映射为x。
反函数是原函数的逆运算。
四、函数的性质1. 函数的值域和定义域函数的值域是函数所有可能的输出值的集合,定义域是函数所有可能的输入值的集合。
2. 奇偶性函数f(x)的奇偶性是指当x为某个数时,函数f(-x)与f(x)的关系。
如果f(-x) = f(x),则函数f(x)是偶函数;如果f(-x) = -f(x),则函数f(x)是奇函数。
3. 单调性如果函数在定义域上的任意两个数x1、x2,若有x1 < x2,则f(x1)与f(x2)的关系。
如果f(x1) < f(x2),则函数f(x)是增函数;如果f(x1) > f(x2),则函数f(x)是减函数。
4. 周期性函数f(x)的周期是一个正数T,如果对于任意x,f(x+T) = f(x)。
五、函数的应用1. 实际问题中的函数函数在各个行业和领域中有着广泛的应用,比如物理学中的运动学函数、经济学中的收益函数、生物学中的生长函数等。
初二数学函数知识点函数是初二数学中的重要内容,它为我们理解和解决各种数学问题提供了有力的工具。
下面让我们一起来深入了解初二数学中函数的相关知识点。
一、函数的定义在一个变化过程中,如果有两个变量 x 和 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与之对应,那么我们就说 x 是自变量,y 是 x 的函数。
例如,汽车以 60 千米/小时的速度匀速行驶,行驶时间为 x 小时,行驶路程为 y 千米。
我们可以得出 y = 60x,这里对于每一个确定的 x 值(时间),都有唯一确定的 y 值(路程)与之对应,所以路程 y 是时间 x 的函数。
二、函数的表示方法1、解析式法用数学式子表示两个变量之间的函数关系,如 y = 2x + 1。
2、列表法通过列出表格来表示两个变量之间的函数关系。
例如,某商店出售的某种商品,其价格为每件 5 元,我们可以列出购买数量 x 和总价 y 的关系表。
3、图象法用图象来表示两个变量之间的函数关系。
比如,画出一个正比例函数 y = x 的图象,是一条经过原点的直线。
三、函数的图象1、函数图象的意义把一个函数的自变量 x 与对应的因变量 y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
2、画函数图象的步骤(1)列表:列表给出自变量与函数的一些对应值。
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
四、正比例函数1、定义形如 y = kx(k 是常数,k ≠ 0)的函数叫做正比例函数,其中 k 叫做比例系数。
2、图象正比例函数的图象是一条经过原点的直线。
当 k > 0 时,直线经过第一、三象限,y 随 x 的增大而增大;当 k < 0 时,直线经过第二、四象限,y 随 x 的增大而减小。
3、性质(1)当 k > 0 时,图象从左到右上升,函数值 y 随自变量 x 的增大而增大。
八年级(人教版)函数知识点总结1. 函数的概念1.1 函数的定义- 函数是一种具有特定输入和输出的关系。
1.2 函数的表示方法- 显式函数表达式- 隐式函数表达式- 函数图像2. 函数的性质2.1 奇偶性- 如果对于任何$x$,都满足$f(-x) = f(x)$,则称函数为偶函数。
- 如果对于任何$x$,都满足$f(-x) = -f(x)$,则称函数为奇函数。
2.2 周期性- 如果对于任何$x$,都满足$f(x+T) = f(x)$,则称函数为周期函数。
2.3 单调性- 如果对于$x_1 < x_2$,都满足$f(x_1) < f(x_2)$,则称函数为单调递增。
- 如果对于$x_1 < x_2$,都满足$f(x_1) > f(x_2)$,则称函数为单调递减。
3. 函数的基本图像与简单变形3.1 常函数$f(x) = C$3.2 一次函数$f(x) = kx + b$3.3 二次函数$f(x) = ax^2 + bx + c$,其中$a\neq 0$ 3.4 绝对值函数$f(x) = |x|$3.5 倒数函数$f(x) = \frac{1}{x}$3.6 反比例函数$f(x) = \frac{k}{x}$,其中$k\neq 0$ 4. 函数的运算4.1 函数的和、差、积、商- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- 和函数:$(f+g)(x) = f(x)+g(x)$,$D_{f+g} = D_f \cap D_g$ - 差函数:$(f-g)(x) = f(x)-g(x)$,$D_{f-g} = D_f \cap D_g$- 积函数:$(f\times g)(x) = f(x)\times g(x)$,$D_{f\times g} = D_f \cap D_g$- 商函数:$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$,$D_{\frac{f}{g}} = \{x\in D_f \cap D_g|g(x)\neq 0\}$4.2 复合函数- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- $(f\circ g)(x) = f(g(x))$,$D_{f\circ g} = \{x\in D_g|g(x)\in D_f\}$5. 函数的应用5.1 解方程- 通过函数图像的交点来求解方程。
初二函数总结知识点归纳在初中数学教学中,函数是一个重要的概念。
学习和掌握函数的知识对于提高数学水平和解决实际问题具有重要意义。
本文将对初二阶段学习的函数知识点进行总结和归纳。
一、函数的定义和表示方法函数是一种特殊的数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
例如,y = f(x)表示因变量y是自变量x的函数。
二、函数的图象和性质1. 函数的图象是在直角坐标系中的表示形式。
对于定义域中的每个x值,都有对应的y值与之对应。
函数的图象可以用来观察函数的性质和变化规律。
2. 函数的单调性:函数的单调性表示函数在定义域上的增减规律。
如果对于任意的x1和x2(x1 < x2),有f(x1) < f(x2),则称函数在该区间上为递增函数;如果对于任意的x1和x2有f(x1) > f(x2),则称函数在该区间上为递减函数。
3. 函数的奇偶性:函数的奇偶性用来描述函数图象关于y轴对称性的特点。
如果对于定义域中的任何x值,有f(-x) = f(x),则函数为偶函数;如果对于定义域中的任何x值,有f(-x) = -f(x),则函数为奇函数。
三、常见的基本函数1. 常数函数:常数函数是指定义域上恒定输出的函数,可以表示为f(x) = a的形式,其中a为常数。
常数函数的图象是一条与x轴平行的直线。
2. 一次函数:一次函数是指其定义域上的每个x值与y值之间均满足y = ax + b的函数,其中a和b为常数,且a不为0。
一次函数的图象是一条斜率为a的直线。
3. 二次函数:二次函数是指其定义域上的每个x值与y值之间均满足y = ax^2 + bx + c的函数,其中a、b和c为常数,且a不为0。
二次函数的图象是抛物线。
四、函数的运算1. 函数的加法、减法和乘法:对于两个函数f(x)和g(x),它们的加法表示为(f + g)(x) = f(x) + g(x),减法表示为(f - g)(x) = f(x) - g(x),乘法表示为(f * g)(x) = f(x) * g(x)。
函数初二知识点总结一、函数的概念。
1. 变量与常量。
- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。
例如,在行程问题中,速度不变时,路程s = vt,v是常量,s和t是变量。
2. 函数的定义。
- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
例如,y = 2x+1,对于x的每一个值,都能通过这个式子算出唯一的y值。
3. 函数的表示方法。
- 解析法:用数学式子表示两个变量之间的函数关系,如y = 3x - 2。
- 列表法:通过列出自变量与函数的对应值来表示函数关系。
例如,某商店销售一种商品,记录不同销售量x(件)时的销售额y(元),如下表:x1 2 3 4.y5 10 15 20.- 图象法:用图象表示两个变量之间的函数关系。
如在平面直角坐标系中画出y = x^2的图象。
二、函数自变量的取值范围。
1. 整式型函数。
- 对于y = 2x+3这样的整式函数,自变量x的取值范围是全体实数。
2. 分式型函数。
- 对于y=(1)/(x),因为分母不能为0,所以x≠0。
3. 二次根式型函数。
- 对于y = √(x),被开方数x≥slant0。
如果是y=√(2x - 1),则2x - 1≥slant0,解得x≥slant(1)/(2)。
三、函数图象的画法。
1. 列表。
- 对于y = 2x+1,可以选取一些x的值,如x=-2,-1,0,1,2,然后分别计算出对应的y值:- 当x = - 2时,y=2×(-2)+1=-3;- 当x=-1时,y = 2×(-1)+1=-1;- 当x = 0时,y=2×0 + 1=1;- 当x = 1时,y=2×1+1 = 3;- 当x = 2时,y=2×2+1=5。
列出表格如下:x-2 -1 0 1 2.y-3 -1 1 3 5.2. 描点。
初二函数知识点一、函数基础知识1. 函数定义函数是指一个从集合A(称为定义域)到集合B(称为值域)的映射,记作f: A → B。
在初中数学中,函数通常指的是一种特殊的对应关系,即对于定义域内的每一个x值,都有唯一确定的y值与之对应。
2. 函数的表示方法- 表格法:通过表格列出几组对应值。
- 公式法:用数学公式表达,如y = f(x)。
- 图像法:在坐标系中画出函数的图像。
3. 函数的性质- 单值性:一个x值对应一个y值。
- 定义域和值域:定义域是函数中所有可能的x值的集合,值域是函数中所有可能的y值的集合。
- 函数图像:函数的图像是坐标系中所有满足函数关系的点的集合。
二、线性函数1. 线性函数定义线性函数是指函数关系式为y = kx + b的形式,其中k为斜率,b为截距。
2. 线性函数的性质- 斜率k表示函数的增减性,k > 0时,y随x的增大而增大;k < 0时,y随x的增大而减小。
- 截距b表示当x=0时,y的取值。
- 线性函数图像是一条直线。
3. 线性函数图像的绘制- 利用斜率和截距确定直线的位置和倾斜程度。
- 通常选择两个点(x, y),利用公式计算出y值,然后在坐标系中绘制这两个点,并通过这两个点画一条直线。
三、二次函数1. 二次函数定义二次函数是指函数关系式为y = ax^2 + bx + c的形式,其中a、b、c 为常数,且a ≠ 0。
2. 二次函数的性质- a的符号决定了抛物线的开口方向,a > 0时开口向上,a < 0时开口向下。
- b和c的值影响抛物线的位置和对称轴。
- 二次函数图像是一条抛物线。
3. 二次函数图像的绘制- 确定顶点、对称轴和与x轴的交点(根)。
- 利用顶点式或交点式绘制抛物线。
四、函数的应用1. 实际问题建模将实际问题转化为函数关系式,通过分析函数的性质来解决问题。
2. 函数的最值问题通过求导数或配方法来求解函数的最大值和最小值。
3. 函数的图像变换通过平移、伸缩等变换来研究函数图像的变化规律。
初二数学函数知识点积累总结
数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.下面是小编为大家整理的关于初二数学函数知识点总结,希望对您有所帮助!
初二上册数学一次函数知识点
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
4、正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。
确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。
解这类问题的一般方法是待定系数法。
7、一次函数与一元一次方程的关系:
任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,•即kx+b=0就与一元一次方程完全相同.
结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.
从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
初二数学一次函数知识点
知识点1 一次函数和正比例函数的概念
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.
知识点2 函数的图象
由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。
.不必一定选取这两个特殊点.
画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.
知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质
(1)k的正负决定直线的倾斜方向;
①k>0时,y的值随x值的增大而增大;
②k﹤O时,y的值随x值的增大而减小.
(2)|k|大小决定直线的倾斜程度,即|k|越大
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);
②如图所示,当k>0,b
③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).
(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.
知识点4 正比例函数y=kx(k≠0)的性质
(1)正比例函数y=kx的图象必经过原点;
(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;
(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.
知识点5 点P(x0,y0)与直线y=kx+b的图象的关系
(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;
(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.
例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.
知识点6 确定正比例函数及一次函数表达式的条件
(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.
(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.
知识点7 待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.
知识点8 用待定系数法确定一次函数表达式一般步骤
(1)设函数表达式为y=kx+b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式.
思想方法小结 (1)函数方法.(2)数形结合法.
知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.
①当b>0时,直线与y轴的正半轴相交;
当b=0时,直线经过原点;
当b﹤0时,直线与y轴的负半轴相交.
②当k,b异号时,直线与x轴正半轴相交;
当b=0时,直线经过原点;
当k,b同号时,直线与x轴负半轴相交.
③当k>O,b>O时,图象经过第一、二、三象限;
当k>0,b=0时,图象经过第一、三象限;
一次函数知识点
一.知识框架
二.知识概念
1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4.已知两点坐标求函数解析式:待定系数法
一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。
在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。
培养学生良好的变化与对应意识,体会数形结合的思想。
在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。