2016届高一数学第一章测验(集合与函数)
- 格式:doc
- 大小:249.01 KB
- 文档页数:4
新课标数学必修1第一章集合与函数概念测试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.用描述法表示一元二次方程的全体,应是 ( )A .{x |ax 2+bx +c =0,a ,b ,c ∈R }B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0}C .{ax 2+bx +c =0|a ,b ,c ∈R }D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 2.图中阴影部分所表示的集合是( )A.B ∩[C U (A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(C U B)D.[C U (A ∩C)]∪B 3.设集合P={立方后等于自身的数},那么集合P 的真子集个数是( ) A .3 B .4 C .7 D .8 4.设P={质数},Q={偶数},则P ∩Q 等于( )A .B .2C .{2}D .N 5.设函数xy 111+=的定义域为M ,值域为N ,那么 ( )A .M={x |x ≠0},N={y |y ≠0}B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1}C .M={x |x ≠0},N={y |y ∈R }D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0}6.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( ) A .x =60t B .x =60t +50tC .x =⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .x =⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t7.已知g (x )=1-2x ,f [g (x )]=)0(122≠-x xx ,则f (21)等于 ( )A .1B .3C .15D .308.函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题(1)f(x)=x x -+-12有意义; (2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是 ( )A .1B .2C .3D .4 10.设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则( )A .f (a )>f (2a )B .f (a 2)<f (a)C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .12.函数f (x )的定义域为[a ,b ],且b >-a >0,则F (x )= f (x)-f (-x)的定义域是 . 13.若函数 f (x )=(K-2)x 2+(K-1)x +3是偶函数,则f (x )的递减区间是 . 14.已知x ∈[0,1],则函数y =x x --+12的值域是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知,全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A , C U B ,(C U A)∩(C U B),(C U A)∪(C U B),C U (A ∩B),C U (A ∪B),并指出其中相关的集合.16.(12分)集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },又A φ≠⋂B ,求实数m 的取值范围.17.(12分)已知f (x )=⎪⎩⎪⎨⎧+++-333322xx x x ),1()1,(+∞∈-∞∈x x ,求f [f (0)]的值.18.(12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ), 并写出它的定义域.19.(14分)已知f (x)是R 上的偶函数,且在(0,+ ∞)上单调递增,并且f (x)<0对一切Rx ∈成立,试判断)(1x f -在(-∞,0)上的单调性,并证明你的结论.20.(14分)指出函数xx x f 1)(+=在(][)0,1,1,--∞-上的单调性,并证明之参考答案(5)一、DACCB DCBA D 二、11.{211≤≤-k k}; 12.[a ,-a ]; 13.[0,+∞]; 14.[3,12-] ; 三、15. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};(C U A)∩(C U B)= {x |1≤x ≤3};(C U A)∪(C U B)= {x |-5≤x ≤3}=U ; C U (A ∩B)=U ;C U (A ∪B)= {x |1≤x ≤3}.相等集合有(C U A)∩(C U B)= C U (A ∪B);(C U A)∪(C U B)= C U (A ∩B).16. 解:由A ⋂B φ≠知方程组,,2001202y x y x y mx x 消去内有解在≤≤⎩⎨⎧=+-+-+得x 2+(m -1)x =0 在0≤x 2≤内有解,04)1(2≥--=∆m 即m ≥3或m ≤-1.若m ≥3,则x 1+x 2=1-m <0,x 1x 2=1,所以方程只有负根.若m ≤-1,x 1+x 2=1-m >0,x 1x 2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内.因此{m ∞-<m ≤-1}.17.解: ∵ 0∈(-1,∞), ∴f (0)=32,又 32>1,∴ f (32)=(32)3+(32)-3=2+21=25,即f [f (0)]=25. 18.解:AB=2x ,CD =πx ,于是AD=221x x π--, 因此,y =2x · 221x x π--+22xπ,即y =-lx x ++224π.由⎪⎩⎪⎨⎧>-->022102x x x π,得0<x <,21+π 函数的定义域为(0,21+π).19.解:设x 1<x 2<0, 则 - x 1 > - x 2 >0, ∴f (-x 1)>f (-x 2), ∵f (x )为偶函数, ∴f (x 1)>f (x 2)又0)()()()()(1)(1)(x f 1(x) f 11221122>-=-=⎥⎦⎤⎢⎣⎡---x f x f x f x f x f x f(∵f (x 1)<0,f (x 2)<0)∴,)(x f 1)(x f 121->-∴(x)f 1-是(∞,0)上的单调递减函数. 20.解:任取x 1,x 2∈(]1,-∞- 且x 1<x 22112112212121111)()(x x x x x x x x x x x f x f -=-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=--由x 1<x 2≤—1知x 1x 2>1, ∴01121>-x x , 即)()(12x f x f >∴f(x)在(]1,-∞-上是增函数;当1≤x 1< x 2<0时,有0< x 1x 2<1,得01121<-x x ∴)()(21x f x f >∴f(x)在[)0,1-上是减函数.再利用奇偶性,给出),1(],1,0(+∞单调性,证明略.。
第一章 集合与函数概念单元检测卷(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .sin 30,tan 45,cos 60︒︒︒2. 设集合M 是由不小于23的数组成的集合,a =11,则下列关系中正确的是( )A .a ∈M B .a ∉MC .a =MD .a ≠M3.下列图形中,不能确定y 是x 的函数的是( )4..A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}5.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( )A .f (x )=x 2+6x B .f (x )=x 2+8x +7C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -106.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,m 2x x m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M7.已知121,2(x)1(x 1)1,x 2x x f f ⎧-<⎪⎪=⎨⎪-+≥⎪⎩,则f(14)+f(76)=( )A.-16B.16C.56D.-568.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( )A .2 B .-2 C .2或-2 D .09.已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3 C .4D .510.已知函数25,1(x),1x ax x f ax x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( )A .[-3,0) B .(-∞,-2]C .[-3,-2]D .(-∞,0)11.下列函数中,不满足f (2018x )=2018f (x )的是( )A .f (x )=|x | B .f (x )=x -|x |C .f (x )=x +2D .f (x )=-2x12.已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列各组函数:①f (x )=x 2-xx ,g (x )=x -1;②f (x )=xx ,g (x )=x x ;③f (x )=(x +3)2,g (x )=x +3;④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).14.已知f (x )=x 5+ax 3+bx -8,若f (-3)=10,则f (3)=________.15.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.16.若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x≤1或x>2}.求A∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).18.(本小题满分12分)设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.19.(本小题满分12分)定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m).求实数m 的取值范围.20.(本小题满分12分)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B.求实数a 的取值范围.21.(本小题满分12分)已知函数222,0(x)0,0,0x x x f x x mx x ⎧-+>⎪==⎨⎪+<⎩,是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.22.(本小题满分12分)已知函数f(x)=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.第一章集合与函数概念单元检测卷(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列能构成集合的是( )A.中央电视台著名节目主持人B.我市跑得快的汽车C.上海市所有的中学生︒︒︒D.sin30,tan45,cos60【答案】:C【解析】:A,B,D中研究的对象不确定,因此不能构成集合.2. 设集合M是由不小于23的数组成的集合,a=11,则下列关系中正确的是( )A.a∈M B.a∉M C.a=M D.a≠M【答案】:B【解析】:判断一个元素是否属于某个集合,关键是看这个元素是否具有这个集合中元素的特征,若具有就是,否则不是.∵11<23,∴a∉M.3.下列图形中,不能确定y是x的函数的是( )【答案】:D【解析】:任作一条垂直于x轴的直线x=a,移动直线,根据函数的定义可知此直线与函数图象至多有一个交点.结合选项可知D不满足要求,因此不表示函数关系.4..A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}5.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( )A .f (x )=x 2+6x B .f (x )=x 2+8x +7C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10【答案:】A【解析】:法一 设t =x -1,则x =t +1,∵f (x -1)=x 2+4x -5,∴f (t )=(t +1)2+4(t +1)-5=t 2+6t ,f (x )的表达式是f (x )=x 2+6x ;法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x ;∴f (x )的表达式是f (x )=x 2+6x .故选A .6.集合M =}|1,2nx x n Z ⎧=+∈⎨⎩,N =}1|,m 2x x m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M【答案】:D【解析】:由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.7.已知121,2(x)1(x 1)1,x 2x x f f ⎧-<⎪⎪=⎨⎪-+≥⎪⎩,则f(14)+f(76)=( )A.-16B.16C.56D.-56【答案】:A【解析】:f(14)=2×14-1=-12,f(76)=f(76-1)+1=f(16)+1=2×16-1+1=13,∴f(14)+f(76)=-16,故选A.8.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( )A .2 B .-2 C .2或-2 D .0【答案】:C【解析】:由题意a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2,综上知a =±2.9.已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3 C .4D .5【答案】:C【解析】:A ={x ∈N|(x +3)(x -1)≤0}={x ∈N|-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.10.已知函数25,1(x),1x ax x f ax x ⎧---≤⎪=⎨>⎪⎩,是R 上的增函数,则实数a 的取值范围是( )A .[-3,0) B .(-∞,-2]C .[-3,-2] D .(-∞,0)【答案】:C【解析】:若f (x )是R 上的增函数,则应满足21201151a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得-3≤a ≤-2.11.下列函数中,不满足f (2018x )=2018f (x )的是( )A .f (x )=|x | B .f (x )=x -|x |C .f (x )=x +2 D .f (x )=-2x【答案】:C【解析】: 若f (x )=|x |,则f (2018x )=|2018x |=2018|x |=2018f (x );若f (x )=x -|x |,则f (2018x )=2018x -|2018x |=2018(x -|x |)=2018f (x );若f (x )=x +2,则f (2018x )=2018x +2,而2018f (x )=2018x +2018×2,故f (x )=x +2不满足f (2018x )=2018f (x );若f (x )=-2x ,则f (2018x )=-2×2018x =2018×(-2x )=2018f (x ).故选C.12.已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21【答案】:D【解析】:由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B }所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去), 3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B中的所有元素数字之和为21.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列各组函数:①f (x )=x 2-x x ,g (x )=x -1;②f (x )=xx ,g (x )=x x ;③f (x )=(x +3)2,g (x )=x +3;④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).【答案】:⑤【解析】: ①f (x )与g (x )的定义域不同,不是同一函数;②f (x )与g (x )的解析式不同,不是同一函数;③f (x )=|x +3|,与g (x )的解析式不同,不是同一函数;④f (x )与g (x )的定义域不同,不是同一函数;⑤f (x )与g (x )的定义域、值域、对应关系皆相同,故是同一函数.14.已知f (x )=x 5+ax 3+bx -8,若f (-3)=10,则f (3)=________.【答案】:-26【解析】:法一 由f (x )=x 5+ax 3+bx -8,得f (x )+8=x 5+ax 3+bx .令G (x )=x 5+ax 3+bx =f (x )+8,∵G (-x )=(-x )5+a (-x )3+b (-x )=-(x 5+ax 3+bx )=-G (x ),∴G (x )是奇函数,∴G (-3)=-G (3),即f (-3)+8=-f (3)-8.又f (-3)=10,∴f (3)=-f (-3)-16=-10-16=-26.法二 由已知条件,得5353(3)(3)(3)(3)8,(3)3338f a b f a b ⎧-=-+-+--⎨=+⋅+⋅-⎩①②①+②得f (3)+f (-3)=-16,又f (-3)=10,∴f (3)=-26.15.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.【答案】:2【解析】:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组2331y x x y x ⎧=-+⎨=⎩,解得1313x y ⎧=⎪⎪⎨⎪=⎪⎩,或11x y =⎧⎨=⎩故A ∩B =()11,,1,133⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭,所以A ∩B 中含有2个元素.法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.16.若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.【答案】:-92【解析】:因为函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集所以不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以01212a b b a ⎧⎪<⎪+=-⎨⎪⎪⨯=⎩,解得323a b ⎧=-⎪⎨⎪=-⎩所以a +b =-32-3=-92.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x≤1或x>2}.求A∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).解:全集U ={x|x≥2或x≤1},∴A∩B =A ={x|x<1或x>3};A ∪B =B ={x|x≤1或x>2};(∁U A)∩(∁U B)=∁U (A ∪B)={2};(∁U A)∪(∁U B)=∁U (A∩B)={x|2≤x≤3或x =1}.18.(本小题满分12分)设全集U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}.易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,易知2<a <a +1<4,解得2<a <3.故实数a 的取值范围是(2,3).19.(本小题满分12分)定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数,若f(1-m)<f(m).求实数m 的取值范围.解:∵f(x)为偶函数,∴f(1-m)<f(m)可化为f(|1-m|)<f(|m|),又f(x)在[0,2]上是减函数,∴|1-m|>|m|,两边平方,得m<12,又f(x)定义域为[-2,2],∴{-2≤1-m ≤2,-2≤m ≤2,,解之得-1≤m≤2,综上得m ∈[-1,12).20.(本小题满分12分)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B.求实数a 的取值范围.解:因为A ∩B =B ,所以B ⊆A ,因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得2224(1)4(1)02(1)410a a a a ⎧∆=+-->⎪-+=-⎨⎪-=⎩解得a =1;②当B ≠∅且B A ≠⊂时,B ={0}或B ={-4},且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.21.(本小题满分12分)已知函数222,0(x)0,0,0x x x f x x mx x ⎧-+>⎪==⎨⎪+<⎩,是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,所以2121a a ->-⎧⎨-≤⎩,解得:1<a ≤3故实数a 的取值范围是(1,3].22.(本小题满分12分)已知函数f(x)=2x +1x +1.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[1,4]上的最大值与最小值.解:(1)f(x)在[1,+∞)上是增函数.证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,f(x 1)-f(x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1).∵x 1-x 2<0,(x 1+1)(x 2+1)>0,∴f(x 1)<f(x 2).∴函数f(x)在[1,+∞)上是增函数. (2)由(1)知函数f(x)在[1,4]上是增函数,∴最大值为f(4)=2×4+14+1=95,最小值为f(1)=2×1+11+1=32.高中11。
第一章 集合与函数的概念1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的数量y 与时间x 的关系如下表:x 1 2 3 … y 1 3 8 …则下面的函数关系式中,能表达这种关系的是( ) A .y =2x -1 B .y =x 2-1 C .y =2x -1 D .y =1.5x 2-2.5x +2解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了1.5小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③ C .②③ D .①②解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.4.长为4,宽为3的矩形,当长增加x ,且宽减少x2时面积最大,此时x =________,面积S =________.解析:依题意得:S =(4+x )(3-x 2)=-12x 2+x +12=-12(x -1)2+1212,∴当x =1时,S max =1212.答案:1 12121x 1 2 3 4 5 y 3 5 6.99 9.01 11( )A .指数函数B .反比例函数C .一次函数D .二次函数解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩 解析:选C.y =10000×(1+20%)3=17280.3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )A .增加7.84%B .减少7.84%C .减少9.5%D .不增不减 解析:选B.设该商品原价为a ,四年后价格为a (1+0.2)2·(1-0.2)2=0.9216a . 所以(1-0.9216)a =0.0784a =7.84%a , 即比原来减少了7.84%.4.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y =0.3x +800(0≤x ≤2000)B .y =0.3x +1600(0≤x ≤2000)C .y =-0.3x +800(0≤x ≤2000)D .y =-0.3x +1600(0≤x ≤2000)解析:选D.由题意知,变速车存车数为(2000-x )辆次, 则总收入y =0.5x +(2000-x )×0.8=0.5x +1600-0.8x =-0.3x +1600(0≤x ≤2000).5.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )解析:选C.设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴上方.故选C.6.小蜥蜴体长15 cm ,体重15 g ,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A .20 gB .25 gC .35 gD .40 g解析:选C.假设小蜥蜴从15 cm 长到20 cm ,体形是相似的.这时蜥蜴的体重正比于它的体积,而体积与体长的立方成正比.记体长为20 cm 的蜥蜴的体重为W 20,因此有W 20=W 15·203153≈35.6(g),合理的答案为35 g .故选C.7.现测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1;乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则应选用________作为拟合模型较好.解析:图象法,即描出已知的三个点的坐标并画出两个函数的图象(图略),比较发现选甲更好.答案:甲8.一根弹簧,挂重100 N 的重物时,伸长20 cm ,当挂重150 N 的重物时,弹簧伸长________.解析:由10020=150x,得x =30.答案:30 cm9.某工厂8年来某产品年产量y 与时间t 年的函数关系如图,则: ①前3年总产量增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变. 以上说法中正确的是________.解析:观察图中单位时间内产品产量y 变化量快慢可知①④. 答案:①④10.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y (件)与销售单价x (元)之间的关系可近似看作一次函数y =kx +b (k ≠0),函数图象如图所示.(1)根据图象,求一次函数y =kx +b (k ≠0)的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?解:(1)由图象知,当x =600时,y =400;当x =700时,y =300,代入y =kx +b (k ≠0)中,得⎩⎪⎨⎪⎧ 400=600k +b ,300=700k +b ,解得⎩⎪⎨⎪⎧k =-1,b =1000. 所以,y =-x +1000(500≤x ≤800). (2)销售总价=销售单价×销售量=xy , 成本总价=成本单价×销售量=500y , 代入求毛利润的公式,得S =xy -500y =x (-x +1000)-500(-x +1000) =-x 2+1500x -500000=-(x -750)2+62500(500≤x ≤800).所以,当销售单价定为750元时,可获得最大毛利润62500元,此时销售量为250件. 11.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·(12)th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到35 ℃时,需要多长时间?解:由题意知40-24=(88-24)·(12)20h ,即14=(12)20h . 解之,得h =10.故T -24=(88-24)·(12)t10.当T =35时,代入上式,得35-24=(88-24)·(12)t10,即(12)t 10=1164. 两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35 ℃.12.某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.(1)经过x 年后,该地区的廉价住房为y 万平方米,求y =f (x )的表达式,并求此函数的定义域.(2)作出函数y =f (x )的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?解:(1)经过1年后,廉价住房面积为 200+200×5%=200(1+5%); 经过2年后为200(1+5%)2; …经过x 年后,廉价住房面积为200(1+5%)x , ∴y =200(1+5%)x (x ∈N *).(2)作函数y =f (x )=200(1+5%)x (x ≥0)的图象,如图所示.作直线y =300,与函数y =200(1+5%)x的图象交于A 点,则A (x 0,300),A 点的横坐标x 0的值就是函数值y =300时所经过的时间x 的值.因为8<x 0<9,则取x 0=9,即经过9年后,该地区的廉价住房能达到300万平方米.1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N *,且s ≤5}解析:选D.A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.2.集合P ={x |x =2k ,k ∈Z },M ={x |x =2k +1,k ∈Z },S ={x |x =4k +1,k ∈Z },a ∈P ,b ∈M ,设c =a +b ,则有( )A .c ∈PB .c ∈MC .c ∈SD .以上都不对解析:选B.∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1,k 1∈Z ,b =2k 2+1,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1, 又k 1+k 2∈Z ,∴c ∈M .3.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0B .2C .3D .6解析:选D.∵z =xy ,x ∈A ,y ∈B ,∴z 的取值有:1×0=0,1×2=2,2×0=0,2×2=4, 故A *B ={0,2,4},∴集合A *B 的所有元素之和为:0+2+4=6.4.已知集合A ={1,2,3},B ={1,2},C ={(x ,y )|x ∈A ,y ∈B },则用列举法表示集合C =____________.解析:∵C ={(x ,y )|x ∈A ,y ∈B }, ∴满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∉M B .a ∈MC .{a }∈MD .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________.解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根, ∴a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.解:①a =0时,原方程为-3x +2=0,x =23,符合题意.②a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合①②,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *. A .1 B .2 C .3 D .4 解析:选B.①②正确,③④错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3. 由x 2-x -2=0,解得x =2或x =-1. 答案:31.若以正实数x ,y ,z ,w 四个元素构成集合A ,以A 中四个元素为边长构成的四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形 答案:A2.设集合A 只含一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉A C .a ∈A D .a =A 答案:C3.给出以下四个对象,其中能构成集合的有( ) ①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学; ③2010年广州亚运会的比赛项目; ④1,3,5.A .1个B .2个C .3个D .4个 解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M ={a ,b ,c },M 中元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选D.根据元素的互异性可知,a ≠b ,a ≠c ,b ≠c . 5.下列各组集合,表示相等集合的是( ) ①M ={(3,2)},N ={(2,3)}; ②M ={3,2},N ={2,3}; ③M ={(1,2)},N ={1,2}. A .① B .②C .③D .以上都不对解析:选B.①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M解析:选B.∅x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∉M .7.已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z .其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∉A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b=2;当a ·b <0时,|a |a +|b |b=0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∵12-3=2+3=2+3×1,而2,1∈Z ,∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有 ⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}. A .6个 B .5个C .4个D .3个及3个以下 解析:选C.①②⑤⑥正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∉B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∉B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A ={x |1<x <2},B ={x |x <a },若A B ,则a 的取值范围是( )A .a ≥2B .a ≤1C .a ≥1D .a ≤2解析:选A.A ={x |1<x <2},B ={x |x <a },要使A B ,则应有a ≥2. 4.集合M ={x |x 2-3x -a 2+2=0,a ∈R }的子集的个数为________.解析:∵Δ=9-4(2-a 2)=1+4a 2>0,∴M 恒有2个元素,所以子集有4个. 答案:41.如果A ={x |x >-1},那么( ) A .0⊆A B .{0}∈AC .∅∈AD .{0}⊆A解析:选D.A 、B 、C 的关系符号是错误的.2.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( ) A .A >B B .ABC .B AD .A ⊆B解析:选C.利用数轴(图略)可看出x ∈B ⇒x ∈A ,但x ∈A ⇒x ∈B 不成立.3.定义A -B ={x |x ∈A 且x ∉B },若A ={1,3,5,7,9},B ={2,3,5},则A -B 等于( ) A .A B .BC .{2}D .{1,7,9}解析:选D.从定义可看出,元素在A 中但是不能在B 中,所以只能是D. 4.以下共有6组集合.(1)A ={(-5,3)},B ={-5,3}; (2)M ={1,-3},N ={3,-1}; (3)M =∅,N ={0};(4)M ={π},N ={3.1415};(5)M ={x |x 是小数},N ={x |x 是实数};(6)M ={x |x 2-3x +2=0},N ={y |y 2-3y +2=0}. 其中表示相等的集合有( ) A .2组 B .3组 C .4组 D .5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A *B ={ω|ω=xy (x +y ),x ∈A ,y ∈B }.若集合A ={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( ) A .A ⊆B B .B ⊆A C .A ∈B D .B ∈A解析:选D.∵B 的子集为{1},{2},{1,2},∅, ∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx=1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故BA .答案:B A8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:①若⎩⎪⎨⎪⎧a +b =aca +2b =ac 2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同, ∴c =1舍去,即此时无解.②若⎩⎪⎨⎪⎧a +b =ac2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}.∵B A ,∴mx +1=0的解为-3或2或无解. 当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时,由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ⊆N B .N ⊆MC .M ∩N ={2,3}D .M ∪N ={1,4} 解析:选C.∵M ={1,2,3},N ={2,3,4}. ∴选项A 、B 显然不对.M ∪N ={1,2,3,4}, ∴选项D 错误.又M ∩N ={2,3},故选C.3.已知集合M ={y |y =x 2},N ={y |x =y 2},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .{y |y ≥0} D .{y |0≤y ≤1}解析:选C.M ={y |y ≥0},N =R ,∴M ∩N =M ={y |y ≥0}. 4.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.解析:A ∪B =A ,即B ⊆A ,∴m ≥2. 答案:m ≥21.下列关系Q ∩R =R ∩Q ;Z ∪N =N ;Q ∪R =R ∪Q ;Q ∩N =N 中,正确的个数是( )A .1B .2C .3D .4解析:选C.只有Z ∪N =N 是错误的,应是Z ∪N =Z .2.(2010年高考四川卷)设集合A ={3,5,6,8},集合B ={4,5,7,8},则A ∩B 等于( ) A .{3,4,5,6,7,8} B .{3,6} C .{4,7} D .{5,8}解析:选D.∵A ={3,5,6,8},B ={4,5,7,8},∴A ∩B ={5,8}.3.(2009年高考山东卷)集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:选D.根据元素特性,a ≠0,a ≠2,a ≠1. ∴a =4.4.已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于( ) A .{2} B .{1,2} C .{2,3} D .{1,2,3}解析:选A.Q ={x ∈R |x 2+x -6=0}={-3,2}. ∴P ∩Q ={2}.5.(2010年高考福建卷)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A .{x |2<x ≤3} B .{x |x ≥1} C .{x |2≤x <3} D .{x |x >2}解析:选A.∵A ={x |1≤x ≤3},B ={x |x >2}, ∴A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∪T =R , ∴⎩⎪⎨⎪⎧a +8>5,a <-1.∴-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∵A ∩B ={2,3},∴3∈B ,∴m =3. 答案:38.满足条件{1,3}∪M ={1,3,5}的集合M 的个数是________. 解析:∵{1,3}∪M ={1,3,5},∴M 中必须含有5, ∴M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∅; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∪B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∵A ∩B ={3},∴由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∪B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:①当a -3≤5,即a ≤8时, A ∪B ={x |x <a -3或x >5}. ②当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R }=R .综上可知当a ≤8时,A ∪B ={x |x <a -3或x >5}; 当a >8时,A ∪B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∅,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∁U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∁U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∵B ={x |x <1},∴∁R B ={x |x ≥1}, ∴A ∩∁R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A ={0,1},(∁U A )∩B 表示全集U 中不在集合A 中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0} B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.6.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅, ∴-m ≤-2,即m ≥2, ∴m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.解:∵B ∩(∁U A )={2}, ∴2∈B ,但2∉A .∵A ∩(∁U B )={4},∴4∈A ,但4∉B .∴⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∴a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求实数a 的取值范围. 解:∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. ①若A =∅,此时有2a -2≥a , ∴a ≥2.②若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( )A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∅ B .∅或{1} C .{1} D .∅或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∅或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________.解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =(x +1)03-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∪(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2,故函数值域为{-1,-2,2}. 答案:{-1,-2,2}10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值.解:(1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数).∵ax +1≥0,a <0,∴x ≤-1a ,即函数的定义域为(-∞,-1a].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a],∴-1a≥1,而a <0,∴-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x 1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x =1x 1+1x(x ≠0),∴f (t )=t1+t (t ≠0且t ≠-1),∴f (x )=x1+x(x ≠0且x ≠-1).3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∵2f (2)-3f (1)=5,2f (0)-f (-1)=1, ∴⎩⎪⎨⎪⎧ k -b =5k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2,∴f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x 非负数 非正数 y 1 -1B.x 奇数 0 偶数y 1 0-1 C.x 有理数 无理数 y 1 -1D.x 自然数 整数 有理数y 1 0 -1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4(t -1)2-1,∴f (12)=16-1=15. 法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∵g (x +2)=2x +3=2(x +2)-1, ∴g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1 解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∴f (0)=(0-1)2+c =0,∴c =-1,∴f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( )A .y =12x (x >0)B .y =24x (x >0)C .y =28x (x >0)D .y =216x (x >0)解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x .7.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于________.解析:由题意,f (3)=1,∴f [1f (3)]=f (1)=2.答案:2 9.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1.再令-b =x ,即得f (x )=x 2+x +1.11.已知f (x +1x )=x 2+1x 2+1x,求f (x ).解:∵x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∴f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x)+1.∴f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a, ∴a =1.∴f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是( ) A .24 B .21 C .18 D .16 解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 (x >0)x -1 (x <0),再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x, x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x<1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2 D .0,0或2 答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10; 当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 2(0≤x ≤3)x 2+6x (-2≤x ≤0)的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4.已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2(-1<x <2)2x (x ≥2),若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3 D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧(x +1)2 (x ≤-1),2(x +1) (-1<x <1),1x -1 (x ≥1),已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∪⎝⎛⎭⎫-12,1 D.⎝⎛⎭⎫-12,12∪(1,+∞) 解析:选C.f (a )>1⇔⎩⎪⎨⎪⎧ a ≤-1(a +1)2>1或⎩⎪⎨⎪⎧-1<a <12(a +1)>1或⎩⎪⎨⎪⎧a ≥11a-1>1⇔⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∪⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f (x -2), x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0.答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组 ⎩⎪⎨⎪⎧ x +2≥0x +(x +2)·1≤5或⎩⎪⎨⎪⎧x +2<0x +(x +2)·(-1)≤5, 解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 (-1≤x ≤1)1 (x >1或x <-1),(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∵260÷52=5(小时),260÷65=4(小时),∴s =⎩⎪⎨⎪⎧52t (0≤t ≤5),260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ①当点F 在BG 上时,。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M ∪N={-2,0,2}.答案 D2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=()A.{0} B.{2}C.{0,2} D.{-2,0}解析依题意,得B={0,2},∴A∩B={0,2}.答案 C3.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是() A.(3,-2) B.(3,2)C.(-3,-2) D.(2,-3)解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案 C6.设f(x)=x+3(x>10),f(x+5)(x≤10),则f(5)的值为()A.16 B.18C.21 D.24解析f(5)=f(5+5)=f(10)=f(15)=15+3=18.答案 B7.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a,b的值为()A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-1解析依题意可得方程组2a+1-3=0,2-1-b=0,⇒a=1,b=1.答案 C8.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析由-1<2x+1<0,解得-1<x<-12,故函数f(2x+1)的定义域为-1,-12.答案 B9.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.6个解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析由题设知,f(x)在(-∞,0]上是增函数,又f(x)为偶函数,∴f(x)在[0,+∞)上为减函数.∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11.函数f(x)是定义在R上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是()A.1个B.2个C.3个D.4个解析①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,则f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=()A.1006 B.2014C.2012 D.1007解析因为对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,由f(2)=f(1)•f(1),得f(2)f(1)=f(1)=2,由f(4)=f(3)•f(1),得f(4)f(3)=f(1)=2,……由f(2014)=f(2013)•f(1),得f(2014)f(2013)=f(1)=2,∴f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=1007×2=2014.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数y=x+1x的定义域为________.解析由x+1≥1,x≠0得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14.f(x)=x2+1(x≤0),-2x(x>0),若f(x)=10,则x=________.解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.∴f(x)=-2x2+4.答案-2x2+416.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析设一次函数y=ax+b(a≠0),把x=800,y=1000,和x=700,y=2000,代入求得a=-10,b=9000.∴y=-10x+9000,于是当y=400时,x=860.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁UA)∩B;(2)若A∩C≠∅,求a的取值范围.解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁UA={x|x<2,或x>8}.∴(∁UA)∩B={x|1<x<2}.(2)∵A∩C≠∅,∴a<8.18.(本小题满分12分)设函数f(x)=1+x21-x2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f1x+f(x)=0.解(1)由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.(2)由(1)知定义域关于原点对称,f(-x)=1+(-x)21-(-x)2=1+x21-x2=f(x).∴f(x)为偶函数.(3)证明:∵f1x=1+1x21-1x2=x2+1x2-1,f(x)=1+x21-x2,∴f1x+f(x)=x2+1x2-1+1+x21-x2=x2+1x2-1-x2+1x2-1=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.解(1)当x<0时,-x>0,∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,∴f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x(x≥0),x2+2x(x<0).作出f(x)的图象如图所示:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).20.(本小题满分12分)已知函数f(x)=2x+1x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=95,最小值f(1)=32.21.(本小题满分12分)已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x•y)=f(x)+f(y).(1)求证:fxy=f(x)-f(y);(2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.解(1)证明:∵f(x)=fxy•y=fxy+f(y),(y≠0)∴fxy=f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3•3)=f(3)+f(3)=2.∴f(a)>f(a-1)+2=f(a-1)+f(9)=f[9(a-1)].又f(x)在定义域(0,+∞)上为增函数,∴a>0,a-1>0,a>9(a-1),∴1<a<98.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则50k+b=0,45k+b=15,⇒k=-3,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N*).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
第一章(上) 集合[基础训练A 组] 一、选择题1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()AC B C B .()()A B A C C .()()A B B CD .()A B C4.下面有四个命题:其中正确命题的个数为( )(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; A .0个 B .1个 C .2个 D .3个5.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个二、填空题1.用符号“∈”或“∉”填空 (1)0______N , 5______N , 16______N(2)1______,_______,______2R Q Q e C Q π-(e 是个无理数) (3{}|,,x x a a Q b Q =∈∈ 2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =,则C 的非空子集的个数为 。
3.若集合{}|37A x x =≤<,{}|210B x x =<<,则AB =_____________.4.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 。
高一数学集合与函数概念一.选择题(共30小题)1.已知f(x)=lnx﹣+2,若对∀x1∈(0,1],∀x2∈[﹣1,1],都有f(x1)≥g(x2),则a的取值范围为()A.(﹣∞,2﹣e]B.(﹣2,2﹣e]C.D.2.已知集合,若B⊆A,则实数m的取值范围为()A.(4,+∞)B.[4,+∞)C.(2,+∞)D.[2,+∞)3.已知函数,对任意的x∈R恒有,且在区间上有且只有一个x0使得f(x0)=3,则ω的最大值为()A.B.8C.D.4.已知f(x)=32x﹣(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,2﹣1)C.(﹣1,2﹣1)D.(﹣2﹣1,2﹣1)5.已知f(x)=x2+px+q和是定义在上的函数,对任意的x∈A,存在常数x0∈A,使f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则f(x)在A上的最大值为()A.B.C.5D.6.已知f(x)为奇函数,当x∈[0,1]时,f(x)=1﹣2|x﹣|,当x∈(﹣∞,﹣1],f(x)=1﹣e﹣1﹣x,若关于x的不等式f(x+m)>f(x)有解,则实数m的取值范围为()A.(﹣1,0)∪(0,+∞)B.(﹣2,0)∪(0,+∞)C.(﹣﹣ln2,﹣1)∪(0,+∞)D.(﹣﹣ln2,0)∪(0,+∞)7.我们把形如的函数因其图象类似于汉字“囧”字,故生动地称为“囧函数”,并把其与y 轴的交点关于原点的对称点称为“囧点”,以“囧点”为圆心凡是与“囧函数”有公共点的圆,皆称之为“囧圆”,则当a=1,b=1时,所有的“囧圆”中,面积的最小值为()A.2πB.3πC.4πD.12π8.在下列四个函数中,当x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是()A.f(x)=B.f(x)=x2 C.f(x)=2x D.f(x)=9.集合M={x|x∈Z且},则M的非空真子集的个数是()A.30个B.32个C.62个D.64个10.设集合P={3,4,5},Q={4,5,6,7},定义P⊕Q={(a,b)|a∈P,b∈Q},则P⊕Q的真子集个数()A.23﹣1B.27﹣1C.212D.212﹣111.已知定义在R上的函数f(x)=﹣(x﹣1)3,则不等式f(2x+3)+f(x﹣2)≥0的解集为()A.(﹣∞,]B.(0,]C.(﹣∞,3]D.(0,3]12.已知函数f(x)=x2﹣2(a+1)x+a2,g(x)=﹣x2+2(a﹣1)x﹣a2+2,记H1(x)=,H2(x)=,则H1(x)的最大值与H2(x)的最小值的差为()A.﹣4B.4C.a2﹣a+4D.a2+a+813.若关于x的不等式e2x﹣alnx≥a恒成立,则实数a的取值范围是()A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]14.设函数f(x)的定义域为R,满足2f(x)=f(x+2),且当x∈[﹣2,0)时,f(x)=﹣x(x+2).若对任意x∈(﹣∞,m],都有f(x)≤3,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.[,+∞)D.[,+∞)15.已知函数f(x)=,若|f(x)|≥mx恒成立,则实数m的取值范围为()A.[2﹣2,2]B.[2﹣2,1]C.[2﹣2,e]D.[2﹣2,e]16.设集合S={1,2,3,…,2020},设集合A是集合S的非空子集,A中的最大元素和最小元素之差称为集合A的直径.那么集合S所有直径为71的子集的元素个数之和为()A.71•1949B.270•1949C.270•37•1949D.270•72•194917.已知k∈R,设函数,若关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为()A.[0,e2]B.[2,e2]C.[0,4]D.[0,3]18.已知函数若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.[0,2]D.19.已知若f[(m﹣1)f(x)]﹣2≤0在定义域上恒成立,则m的取值范围是()A.(0,+∞)B.[1,2)C.[1,+∞)D.(0,1)20.设函数f(x)的定义域为R,满足f(x+2)=2f(x),且当x∈(0,2]时,f(x)=﹣x(x﹣2).若对任意x∈(﹣∞,m],都有,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,7]D.(﹣∞,]21.已知函数,g(x)=ax2+2x+a﹣1.若对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,则实数a的取值范围为()A.B.C.D.22.已知函数f(x)=ax2﹣bx+c(a<b<c)有两个零点﹣1和m,若存在实数x0,使得f(x0)>0,则实数m的值可能是()A.x0﹣2B.C.D.x0+323.设函数f(x)=﹣x(x﹣a)2(x∈R),当a>3时,不等式f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,则θ的可能取值是()A.﹣B.C.﹣D.24.已知函数,若对任意,都有f(x+m)≥3f(x),则实数m的取值范围是()A.[4,+∞)B.C.[3,+∞)D.25.若关于x的不等式≤1在区间(1,2]上恒成立,则实数a的取值范围为()A.(0,ln2]B.(﹣∞,ln2]C.(ln2,+∞)D.(﹣∞,1]26.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时的值域为[ka,kb](k>0),则称y=f(x)为k倍值函数.若f(x)=e x+2x是k倍值函数,则实数k的取值范围是()A.(e+1,+∞)B.(e+2,+∞)C.(e+,+∞)D.(e+,+∞)27.已知函数f(x)=(x>2),若f(x)恒成立,则整数k的最大值为()A.2B.3C.4D.528.若存在,使得不等式2xlnx+x2﹣mx+3≥0成立,则实数m的最大值为()A.B.C.4D.e2﹣129.设|AB|=10,若平面上点P满足对任意的λ∈R,恒有,则一定正确的是()A.B.C.D.∠APB≤90°30.已知函数y=f(x)为定义域R上的奇函数,且在R上是单调递增函数,函数g(x)=f(x﹣5)+x,数列{a n}为等差数列,且公差不为0,若g(a1)+g(a2)+…+g(a9)=45,则a1+a2+…+a9=()A.45B.15C.10D.0二.填空题(共5小题)31.设a为实数,对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,则a的最大值是.32.已知实数x,y>0,则的最大值为.33.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),且当0≤x≤1时,f(x)=log2(x+a),若对于x属于[0,1]都有3,则实数t的取值范围为34.已知二次函数f(x)=ax2+bx+c,且4c>9a,若不等式f(x)>0恒成立,则的取值范围是.35.已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.三.解答题(共5小题)36.已知定义在R上的函数f(x)满足:①对任意实数x,y,都有f(x+y)=f(x)•f(y);②对任意x>0,都有f (x)>1.(1)求f(0),并证明f(x)是R上的单调增函数;(2)若|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)对x∈R恒成立,求实数a的取值范围;(3)已知g(x)=,方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)有三个根x1<x2<x3,若x3﹣x2=2(x2﹣x1),求实数m.37.设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.38.已知集合A={x|2x2﹣5x﹣12≥0},B={y|y=3x+1(x>0)}.(1)求集合A∩B,(∁R A)∪B;(2)若集合C={x|m﹣2≤x≤2m}且(∁R A)∩C=C,求m的取值范围.39.已知a∈R,函数f(x)=(﹣x2+ax)•e x.(1)a=2时,求函数f(x)的单调区间;(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.40.已知函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.参考答案与试题解析一.选择题(共30小题)1.【解答】解:g′(x)=x(x﹣2),∴﹣1<x<0时,g′(x)>0,0<x<1时,g′(x)<0,g(x)max=g(0)=2,∴f(x)=lnx﹣+ex≥2在(0,1]恒成立,即a≤xlnx+ex2﹣2x在(0,1]恒成立,令h(x)=xlnx+ex2﹣2x(0<x≤1),h′(x)=lnx+2ex﹣1,h″=+2e≥恒成立,∴h′(x)在x∈(0,1]单调递增,又x→0时,h(x)→﹣∞,h(1)=e﹣2>0,故存在x0∈(0,1],使得0<x<x0,h′(x)<0,x0<x<1,h′(x)>0,即h′(x0)=lnx0+2ex0﹣1=0,解得x0=,∴h(x)min=h()=﹣+e•()2﹣2•=﹣,∴a≤﹣,故选:D.2.【解答】解:由题得A={x|x>2或x<﹣2},∵m>0,∴B={x|m<x<2m}且B≠∅,∵B⊆A,∴m≥2或2m≤﹣2,解得m≥2,即m∈[2,+∞),故选:D.3.【解答】解:由题意知,k1,k2∈Z,则,k,k'∈Z,其中k=k2﹣k1,k'=k1+k2=k+2k1,故k与k'同为奇数或同为偶数.f(x)在上有且只有一个最大值,且要求ω最大,则区间包含的周期应该最多,所以,得0<ω≤8,即≤8,所以k≤4当k=4时,ω=,k'为偶数,φ=,此时x+∈(,),当x1+=0.5π或2.5π或6.5π时,f(x0)=3都成立,舍去;当k=3时,ω=,k'为奇数,φ=,此时x+∈(,),当且仅当x+=2.5π时,f(x0)=3成立.故ω的最大值为,故选:C.4.【解答】解:令3x=t(t>0),则g(t)=t2﹣(k+1)t+2,若x∈R时,f(x)恒为正值,则g(t)=t2﹣(k+1)t+2>0对t>0恒成立.∴①或②解①得:﹣1<k<﹣1+;解②得:k≤﹣1.综上,实数k的取值范围是(﹣∞,2﹣1).故选:B.5.【解答】解:由已知函数f(x)=x2+px+q和g(x)=x+在区间[1,]上都有最小值f(x0),g(x0),又因为g(x)=x+在区间[1,]上的最小值为g(2)=4,f(x)min=f(2)=g(2)=4,所以得:,即:,所以得:f(x)=x2﹣4x+8≤f(1)=5.故选:C.6.【解答】解:若x∈[﹣1,0],则﹣x∈[0,1],则f(﹣x)=1﹣2|﹣x﹣|=1﹣2|x+|,∵f(x)是奇函数,∴f(﹣x)=1﹣2|x+|=﹣f(x),则f(x)=2|x+|﹣1,x∈[﹣1,0],若x∈[1,+∞),则﹣x∈(﹣∞,﹣1],则f(﹣x)=1﹣e﹣1+x=﹣f(x),则f(x)=e﹣1+x﹣1,x∈[1,+∞),作出函数f(x)的图象如图:当m>0时,f(x+m)的图象向左平移,此时f(x+m)>f(x)有解,满足条件.当m<0时,f(x+m)的图象向右平移,当f(x+m)的图象与f(x)在x>1相切时,f′(x)=e x﹣1,此时对应直线斜率k=2,由e x﹣1=2,即x﹣1=ln2,得x=ln2+1.此时y=e x﹣1﹣1=e ln2+1﹣1﹣1=2﹣1=1,即切点坐标为(1+ln2,1),设直线方程为y=2(x﹣a)此时1=2(1+ln2﹣a),即=1+ln2﹣a,得a=+ln2,0<﹣m<+ln2,得﹣﹣ln2<m<0,综上﹣﹣ln2<m<0或m>0综上m的取值范围是(﹣﹣ln2,0)∪(0,+∞),故选:D.7.【解答】解:当a=1,b=1时,函数的定义域为{x|x≠±1,x∈R},且为偶函数,其图象如图所示.函数图象与y轴的交点为B(0,﹣1),其关于原点的对称点为C(0,1),所以“囧点”为(0,1),即“囧圆”的圆心为C(0,1).要求所有“囧圆”的面积的最小值,只需求所有“囧圆”的半径的最小值.由图知,“囧函数”有三部分组成,其图象关于y轴对称,故只需考虑y轴及y轴右侧的函数图象.当圆C过点B时,其半径为2,这是和x轴下方的函数图象有公共点的所有“囧圆”中,半径的最小值;当圆C和x轴上方且y轴右侧的函数图象有公共点A时,设A(m,),(其中m>1),则点A到圆心C的距离的平方为d2=m2+(﹣1)2,令=t,(t>0),则d2=(1+)2+(t﹣1)2=t2++﹣2t+2=(t﹣)2﹣2(t﹣)+4,再令t﹣=μ,(其中μ∈R),则d2=μ2﹣2μ+4=(μ﹣1)2+3≥3,所以当圆C和x轴上方且y轴右侧的函数图象有公共点时,最小半径为.又2>,综上可知,在所有的“囧圆”中,半径的最小值为.故所有的“囧圆”中,圆的面积的最小值为3π.故选:B.8.【解答】解:当x1>x2>1时,能使成立的函数是凸函数,其图象类似:所以选项正确;B,C,D都不正确.故选:A.9.【解答】解:由题意集合M={x|x∈Z且}={x|x=0,1,2,3,5,11},由对于含有n个元素的集合,利用公式2n﹣2计算出M的非空真子集个数,∴M的非空真子集的个数是26﹣2=62,故选:C.10.【解答】解:由所定义的运算可知,集合P⊕Q中元素(x,y)中的x取自3,4,5三个的一个,y取自4,5,6,7四个的一个,故根据乘法原理,P⊕Q中实数对的个数是:3×4=12,∴P⊕Q的所有真子集的个数为212﹣1.故选:D.11.【解答】解:令t=x﹣1,则f(t+1)=,则f(t+1)是奇函数,则当t≥0时,y==﹣t3=﹣t3=﹣t3=﹣1﹣t3,为减函数,∴当x≥1时,f(x)为减函数,即g(x)=f(x+1)是奇函数,则f(2x+3)+f(x﹣2)≥0等价为f(2x+2+1)+f(x﹣3+1)≥0,即g(2x+2)+g(x﹣3)≥0,则g(2x+2)≥﹣g(x﹣3)=g(3﹣x),则2x+2≤3﹣x,得3x≤1,x≤,即原不等式的解集为(﹣∞,],故选:A.12.【解答】解:f(x)﹣g(x)=2x2﹣4ax+2a2﹣2=2(x﹣a﹣1)(x﹣a+1).故当x≥a+1或x≤a﹣1时,f(x)≥g(x);当a﹣1<x<a+1时,f(x)<g(x).又H1(x)=,H2(x)=,,,∴,.设H1(x)的最大值为A,H2(x)的最小值为B.结合二次函数的性质可知,A=H1(a﹣1)=(a﹣1)2+2(a﹣1)(a﹣1)﹣a2+2=3﹣2a;B=H2(a+1)=(a+1)2﹣2(a+1)(a+1)+a2=﹣2a﹣1.故A﹣B=3﹣2a﹣(﹣2a﹣1)=4.∴H1(x)的最大值与H2(x)的最小值的差为4.故选:B.13.【解答】解:当a<0时,f(x)=e2x﹣alnx为(0,+∞)的增函数,f(x)无最小值,不符合题意;当a=0时,e2x﹣alnx≥a即为e2x≥0显然成立;当a>0时,f(x)=e2x﹣alnx的导数为f′(x)=2e2x﹣,由于y=2e2x﹣在(0,+∞)递增,设f′(x)=0的根为m,即有a=2me2m,当0<x<m时,f′(x)<0,f(x)递减;当x>m时,f′(x)>0,f(x)递增,可得x=m处f(x)取得极小值,且为最小值e2m﹣alnm,由题意可得e2m﹣alnm≥a,即﹣alnm≥a,化为m+2mlnm≤1,设g(m)=m+2mlnm,g′(m)=1+2(1+lnm),当m=1时,g(1)=1,m>1时,g′(m)>0,g(m)递增,可得m+2mlnm≤1的解为0<m≤1,则a=2me2m∈(0,2e2],综上可得a∈[0,2e2],故选:C.14.【解答】解:函数f(x)的定义域为R,满足2f(x)=f(x+2),可得f(0)=2f(﹣2)=0,当x∈[﹣2,0)]时,函数f(x)在[﹣2,﹣1)上递增,在(﹣1,0)上递减,所以f(x)max=f(﹣1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈[﹣4,﹣2)时,f(x)max=f(﹣3)=,当x∈[0,2)时,f(x)max=f(1)=2,当x∈[2,4)时,f(x)max=f(3)=4,设x∈[2,4)时,x﹣4∈[﹣2,0),f(x﹣4)=﹣(x﹣4)(x﹣2)=f(x),即f(x)=﹣4(x﹣4)(x﹣2),x∈[2,4),由﹣4(x﹣4)(x﹣2)=3,解得x=或x=,根据题意,当m≤时,f(x)≤3恒成立,故选:A.15.【解答】解:作出函数|f(x)|的图象如图所示;当x≤0时;令x2+2x+2=mx,即x2+(2﹣m)x+2=0,令△=0,即(2﹣m)2﹣8=0,解得,结合图象可知,;当x>0时,令e2x﹣1=mx,则此时f(x)=e2x﹣1,h(x)=mx相切,设切点,则,解得m=2,观察可知,实数m的取值范围为.故选:A.16.【解答】解:设集合A中最大元素为a,最小元素为b,所以满足b﹣a=71的组合有2020﹣71=1949个,集合A中元素最多为72个,而集合A中包含a,b所有子集元素之和个数为2+3+4+ (72)设m=2+3+4+......+72,则m=72+71+70+ (2)所以2m=74+74+74+……+74=74×270,即m=37×270,因此,集合S所有直径为71的子集的元素个数之和为270•37•1949.故选:C.17.【解答】解:(1)当x≤1时,f(x)=x2﹣2kx+2k,∴f(x)的对称轴为x=k,开口向上.①当k<1时,f(x)在(﹣∞,k)递减,(k,1)递增,∴当x=k时,f(x)有最小值,即f(k)≥0,∴0≤k<1;②当k≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1,∴1≥0显然成立,此时k≥1.综上得,k≥0;(2)当x>1时,f(x)=(x﹣k﹣1)e x+e3,∴f'(x)=(x﹣k)e x,①′当k≤1时,f(x)在(1,+∞)上递增,∴f(x)>f(1)=﹣ke+e3≥0,∴k≤e2,∴此时k≤1;②′当k>1时,f(x)在(1,k)递减,(k,+∞)递增,∴f(x)≥f(k)=﹣e k+e3≥0,∴k≤3,∴此时1<k≤3.综上:0≤k≤3,∵关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为0≤k≤3,故选:D.18.【解答】解:(1)当x≤1时,f(x)=x2﹣2ax+2a,∴f(x)的对称轴为x=a,开口向上.①当a<1时,f(x)在(﹣∞,a)递减,(a,1)递增,∴当x=a时,f(x)有最小值,即f(a)=﹣a2+2a≥,解得0≤a<1;②当a≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1≥,∴1≤a≤2.综合①②得:当x≤1时,0≤a≤2;(2)当x>1时,f(x)=2x﹣alnx,∴f'(x)=2﹣=,①′当a≤0时,f'(x)>0,f(x)在(1,+∞)上递增,∴f(x)>f(1)=2≥,∴a≤4,∴此时a≤0;②′当0<≤1,即0<a≤2时,f(x)在(1,+∞)上递增,同理可得0<a≤2;③′当>1,即a>2时,f(x)在(1,)递减,(,+∞)递增,∴f(x)≥f()=a﹣aln≥,∴ln≤,解得2<a≤2.综合①′②′③′得:当x>1时,a≤2;∵关于x的不等式在R上恒成立,∴0≤a≤2,故选:C.19.【解答】解:∵,∴当﹣1<x<8时,log3(x+1)∈(﹣∞,2),|log3(x+1)|∈[0,2),x∈(﹣1,0)时,f(x)=|log3(x+1)|单调递减,x∈(0,8)时,f(x)单调递增,且当x=﹣时,f(x)=2①.当x≥8时,f(x)=单调递减且f(x)∈(0,2]②,其图象如下:若f[(m﹣1)f(x)]﹣2≤0,则f[(m﹣1)f(x)]≤2,∴(m﹣1)f(x)≥﹣,当f(x)=0时,m∈R;当f(x)>0时,m﹣1>,当f(x)→+∞时,→0,∴m﹣1≥0,解得:m≥1.故选:C.20.【解答】解:当x∈(0,2]时,函数f(x)在(0,1)上递增,在(1,2)上递减,所以f(x)max=f(1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈(﹣2,0]时,f(x)max=f(﹣1)=,当x∈(2,4]时,f(x)max=f(3)=2,当x∈(4,6]时,f(x)max=f(5)=4,设x∈(6,8]时,x﹣6∈(0,2],f(x﹣6)=﹣(x﹣6)(x﹣8)=f(x),即f(x)=﹣8(x﹣6)(x﹣8),x∈(6,8],由﹣8(x﹣6)(x﹣8)=,解得x=或x=,根据题意,当m≥时,f(x)≤恒成立,故选:B.21.【解答】解:由题意,函数f(x)图象如下:结合图象,可知函数f(x)的值域为(,+∞).∵对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,∴函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.①当a=0时,g(x)=2x﹣1,此时g(x)在区间[0,+∞)上值域为[﹣1,+∞),满足题意;②当a<0时,二次函数g(x)=ax2+2x+a﹣1开口朝下,很明显不符合题意;③当a>0时,对称轴x=﹣<0,g(0)=a﹣1,此时g(x)在区间[0,+∞)上值域为[a﹣1,+∞),则必须a﹣1≤,即a≤.即0<a≤满足函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.综上所述,可得实数a的取值范围为[0,].故选:A.22.【解答】解:∵﹣1是函数f(x)=ax2﹣bx+c的一个零点,∴a+b+c=0,∵a<b<c,则a<0,c>0,∵﹣1×m=<0,∴m>0.由a<b,a<0,得<1①,由0=a+b+c>a+b+b=a+2b,得﹣<,即>﹣②,由①②得:﹣<<1.函数f(x)=ax2﹣bx+c的图象是开口向下的抛物线,其对称轴方程为x=,则﹣<<.∴零点﹣1到对称轴的距离d∈(,),另一零点为m>0,∴m﹣(﹣1)=m+1=2d∈(,3),因为f(x0)>0,所以x0∈(﹣1,m),故0<m﹣x0<(2d)min,∴x0<m+x0,综合四个选项,实数m的值可能是+x0.故选:C.23.【解答】解:由f(x)=﹣x(x﹣a)2,得f'(x)=﹣(3x﹣a)(x﹣a).令f'(x)=0,得或x=a,当a>3时,,∴f(x)在区间,[a,+∞)上单调递减,在区间上单调递增;当a>3时,,则f(x)在区间(﹣∞,1]上为减函数,又k∈[﹣1,0],sinθ∈[﹣1,1],则﹣2≤﹣k﹣sinθ﹣1≤1,∴﹣1≤k2﹣sin2θ≤1.∵f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,∴对任意的k∈[﹣1,0]恒成立,∴恒成立,∴,即,∴θ的可能取值是.故选:D.24.【解答】解:∵f(﹣x)==﹣f(x),∴函数,为R上的奇函数,又x≥0时,f(x)=x2为增函数,∴f(x)为定义域R上的增函数.又f()=3,∴f(x+m)≥3f(x)=f(x),∵对任意,f(x+m)≥3f(x)=f(x),f(x)为定义域R上的增函数,∴m≥[(﹣1)x]max=(﹣1)(+3),即(1﹣)m=m≥3(﹣1),解得:m≥2.即实数m的取值范围是[2,+∞),故选:B.25.【解答】解:关于x的不等式不等式≤1在区间(1,2]上恒成立⇔关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.显然当a≤0时,关于x的不等式不等式≤1在区间(1,2]上恒成立当a>0时,在同一坐标系内分别作出y=a(x﹣1)2,y=lnx的图象,所以关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.⇔A点的位置不低于B点的位置⇔ln2≥a(2﹣1)2⇔0<a≤ln2.综上,实数a的取值范围为(﹣∞,ln2].故选:B.26.【解答】解:f(x)在定义域R内单调递增,∴f(a)=ka,f(b)=kb,即e a+2a=ka,e b+2b=kb,即a,b为方程e x+2x=kx的两个不同根,∴,设g(x)=,,∴0<x<1时,g′(x)<0;x>1时,g′(x)>0,∴x=1是g(x)的极小值点,∴g(x)的极小值为:g(1)=e+2,又x趋向0时,g(x)趋向+∞;x趋向+∞时,g(x)趋向+∞,∴k>e+2时,y=k和y=g(x)的图象有两个交点,方程有两个解,∴实数k的取值范围是(e+2,+∞).故选:B.27.【解答】解:当k=5,x=3时,f(x)=f(3)==1+ln2,==,∴f(x)<,故k =5不成立;当k=4,x=3时,f(x)=f(3)=1+ln2<=2,所以k=4也不成立;当k=3时,f(x)>(x>2)⇔1+ln(x﹣1)﹣(1﹣)×3>0,令g(x)=1+ln(x﹣1)﹣3+,x>2则g′(x)=﹣=,∴2<x<4时,g′(x)<0;x>4时,g′(x)>0,∴g(x)在(2,4)上递减,在(4,+∞)上递增,∴g(x)min=g(4)=ln3﹣1>0,∴k=3时,f(x)>在(2,+∞)上恒成立,符合题意.故整数k的最大值为3.故选:B.28.【解答】解:由存在,使得不等式2xlnx+x2﹣mx+3≥0成立,得:m≤2lnx+x+,x∈[,e]有解,令y=2lnx+x+,则y′=,故x∈(,1)时,y′<0,函数是减函数,x∈(1,e)时,y′>0,函数是增函数,故x=时,y=3e+﹣2,x=e时,y=2+e+,又(3e+﹣2)﹣(2+e+)=2e﹣4﹣>0,故函数y=2lnx+x+的最大值是3e+﹣2,m≤3e+﹣2,故选:A.29.【解答】解:以线段AB的中点为原点,以AB所在的直线为x轴,以其中垂线为y轴,建立直角坐标系,则A(﹣5,0)、B(5,0)、设点P(x,y),则,,则,即有(2x+10﹣10λ)2+4y2≥64,整理为以为元的一元二次不等式,即100λ2﹣(200+40x)λ+4x2+40x+4y2+36≥0,由于上述不等式对任意λ∈R恒成立,则△≤0必然成立,△=(200+40x)2﹣4×100×(4x2+40x+4y2+36)≤0,解得|y|≥4,即y≥4或者y≤﹣4,动点P位于直线y=4上或其上方部分,或者直线y=﹣4上或者其下方的区域内,用动态的观点看问题,我们让点P位于点(﹣5,4)处,则,故A错误;让点P位于点(0,4)处,则,故B错误;此时,|AB|=10,用余弦定理计算,∠APB>90°故D错误;我们进一步确定C选项的正确性,,,则,其中x∈R,y2≥16,故x2+y2﹣25≥x2+16﹣25≥﹣9,即,故C正确.故选:C.30.【解答】解:根据题意,函数y=f(x)为定义域R上的奇函数,则有f(﹣x)+f(x)=0,设h(x)=g(x)﹣5=f(x﹣5)+(x﹣5),若g(a1)+g(a2)+…+g(a9)=45,即f(a1﹣5)+a1+f(a2﹣5)+a2+…+f(a9﹣5)+a9=45,变形可得f(a1﹣5)+(a1﹣5)+f(a2﹣5)+(a2﹣5)…+f(a9﹣5)+(a9﹣5)=0,即h(a1﹣5)+h(a2﹣5)+…+h(a9﹣5)=0,又由y=f(x)为定义域R上的奇函数,则h(x)=f(x﹣5)+(x﹣5)关于点(5,0)对称,而数列{a n}为等差数列,且公差不为0,则有a1+a9=10,变形有a5=5,则a1+a2+…+a9=9a5=45;故选:A.二.填空题(共5小题)31.【解答】解:对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,即f(x)=kx+9x﹣x2﹣a ﹣6lnx≥0恒成立,令g(k)=xk+9x﹣x2﹣a﹣6lnx,∵x∈(0,4],∴g(k)在k∈[﹣1,1]上单调递增,∴g(k)min=g(﹣1)≥0即可,g(k)≥g(k)min=g(﹣1)≥0,又∵g(﹣1)=﹣x+9x﹣x2﹣a﹣6lnx=﹣x2+8x﹣6lnx﹣a(x∈(0,4]),令ρ(x)=﹣x2+8x﹣6lnx﹣a,则ρ′(x)=﹣2x+8﹣==(﹣x2+4x﹣3)=﹣(x﹣3)(x﹣1),令ρ′(x)=0,得x=3或x=1,∴x∈(0,1)时,ρ′(x)<0,ρ(x)单调递减;x∈(1,3)时,ρ′(x)>0,ρ(x)单调递增;x∈((3,4)时,ρ′(x)<0,ρ(x)单调递减;ρ(1)=﹣1+8﹣a=7﹣a,ρ(4)=﹣16+32﹣6ln4﹣a=16﹣6ln4﹣a,∴解得a≤7,故答案为:7.32.【解答】解:=令分子等于0,△=0,即(10t2﹣1)y2+2(t﹣1)y+14t2+2t﹣1=0,再令△=0,t2(2t+1)(14t﹣5)=0解得t=0或t=﹣或t=,①﹣==≤0,当且仅当即时等号成立;②+==≥0,当且仅当即时等号成立;综上,最大值为,故答案为:33.【解答】解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,所以当0≤x≤1时,f(x)=log2(x+1),当x∈[﹣1,0]时,﹣x∈[0,1],此时f(x)=﹣f(﹣x)=﹣log2(﹣x+1),又知道f(x+2)=﹣f(x)=f(﹣x),所以f(x)以x=1为对称轴.且当x∈[﹣1,1]时f(x)单调递增,当x∈[1,3]时f(x)单调递减.当x∈[﹣1,3]时,令f(x)=1﹣log23,得x=﹣,或x=,所以在[﹣1,3]内当f(x)>1﹣log23时,x∈[﹣,].设g(x)=﹣,若对于x属于[0,1]都有,因为g(0)=∈[﹣,].,故g(x)∈[﹣,].①当<0时,g(x)在[0,1]上单调递减,故g(x)∈[t﹣,]⊆[﹣,].得t≥0,无解.②0≤t≤1时,,此时g(t)最大,g(1)最小,即g(x)∈[t﹣1,]⊆[﹣,].得t∈[0,1].③当1<t≤2时,即,此时g(0)最小,g(t)最大,即g(x)∈[,]⊆[﹣,].得t∈(1,2],④当t>2时,g(x)在[0,1]上单调递增,故g(x)∈[,t﹣]⊆[﹣,].解得,t∈(2,3],综上t∈[0,3].故填:[0,3].34.【解答】解:若不等式f(x)>0恒成立,则,又由4c>9a,∴设x=,y=,则,则==1+,令z=,则z表示区域内的点(x,y)与P(1,﹣2)连线的斜率,因为A(﹣3,),所以k P A==﹣,设直线PB:y=k(x﹣1)﹣2,联立得x2﹣4kx+4k+8=0,△=16k2﹣16k﹣32=0⇒k=﹣1,k=2,由图可知,z∈(﹣∞,﹣)∪(2,+∞),故答案为(﹣∞,﹣)∪(3,+∞).35.【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点左右位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,反之亦然.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,且射线互相平行,中间线段也对应平行,如图A点在左,F点在右,此时若B,C点在线段AD的上方,则只有一个交点;若BC线段位置在如图位置,则有三个交点,探究知,当a1,a2,a3的值依次是1、4、5,b1,b2,b3的值分别是2、3、6,可得到如图的图象,所以此两函数在本题条件下,最多有三个元素:故两函数图象最多有三个交点,即方程的解集是有限集时,最多有三个元素,故答案为:3.三.解答题(共5小题)36.【解答】解:(1)令x=0,y=1,则代入条件①,得:f(1)=f(0)•f(1)又f(1)≠0,则f(0)=1,设x1<x2,则f(x1)﹣f(x2)=f(x1)﹣f(x2﹣x1+x1)=f(x1)﹣f(x2﹣x1)•f(x1)=f(x1)[1﹣f(x2﹣x1)],因为任意x>0,都有f(x)>1,则1﹣f(x2﹣x1)<0,令y=﹣x,则f(0)=f(x)•f(﹣x)=1且x>0,都有f(x)>1>0,故f(﹣x)=>0,则对任意x∈R都有f(x)>0,则f(x1)>0,所以f(x1)﹣f(x2)<0,所以:f(x)是R上的单调增函数;(2)由条件|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)恒成立;可化为f(|x﹣a|+1)≥f(|x﹣2a+1|),即:|x﹣2a+1|≤|x﹣a|+1,即:|x﹣2a+1|﹣|x﹣a|≤1,对x∈R恒成立.因:|x﹣2a+1|﹣|x﹣a|≤|a﹣1|,故只需|a﹣1|≤1.解得0≤a≤2.(3)设G(x)=2,显然﹣1≤x≤1,∴max{g(x),G(x)}={g(x)+G(x)+|g(x)﹣G(x)|},方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)|等价于2max{g(x),G(x)}=2mx+4,即:max{g(x),G(x)}=mx+2,∵g(x)=,且G(x)可改写为:G(x)=,由﹣2x>2⇒﹣1≤x<﹣,又当x∈[0,1]时,x2﹣1≤2,∴max{g(x),G(x)}=,于是﹣2x=mx+2⇒x=﹣(﹣1≤x<﹣),∴0≤m<2﹣2,由2=mx+2⇒x=0或x=﹣,∵x1<x2<x3,∴x1=﹣,x2=﹣,x3=0,由已知条件x3﹣x2=2(x2﹣x1),∴2x1=3x2,即m2+3m﹣2=0⇒m=,又0≤m<2﹣2,∴m=.37.【解答】解:(1)若集合B含有2个元素,即B={a1,a2},则A=∅,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=∅,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(3分)(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n﹣1).(5分)若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为:+=+…+()2﹣(),(7分)又(x+1)n(x+1)n的展开式中x n的系数为+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以=+…+()2=,因为=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为﹣2n.(9分)所以当A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为:=.(10分)38.【解答】解:集合A={x|2x2﹣5x﹣12≥0}={x|x≤﹣或x≥4},B={y|y=3x+1(x>0)}={y|y>2}.(1)集合A∩B={x|x≥4},∁R A={x|﹣<x<4},∴(∁R A)∪B={x|x>﹣};(2)若集合C={x|m﹣2≤x≤2m},且(∁R A)∩C=C,∴C⊆∁R A,∴,解得<m<2;当C=∅时,m﹣2>2m,解得∴m<﹣2;综上,m的取值范围是m<﹣2或<m<2.39.【解答】解:(1)a=2时,f(x)=(﹣x2+2x)•e x的导数为f′(x)=e x(2﹣x2),由f′(x)>0,解得﹣<x<,由f′(x)<0,解得x<﹣或x>.即有函数f(x)的单调减区间为(﹣∞,﹣),(,+∞),单调增区间为(﹣,).(2)函数f(x)=(﹣x2+ax)•e x的导数为f′(x)=e x[a﹣x2+(a﹣2)x],由函数f(x)在(﹣1,1)上单调递增,则有f′(x)≥0在(﹣1,1)上恒成立,即为a﹣x2+(a﹣2)x≥0,即有x2﹣(a﹣2)x﹣a≤0,则有1+(a﹣2)﹣a≤0且1﹣(a﹣2)﹣a≤0,解得a≥.则有a的取值范围为[,+∞).40.【解答】解:(Ⅰ)函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.令t=log2x,∵x∈[,4],∴t∈[﹣3,2]则由已知,若f(x)存在大于1的零点,即g(t)在t∈(0,2]时有零点g(t)表示的二次函数开口向上,对称轴为t0=﹣2,所以若g(t)在t∈(0,2]时有零点,即⇒﹣12≤m<0即m的取值范围为[﹣12,0,(Ⅱ)若f(x)有两个相异的零点,即g(t)在t∈[﹣3,2]时有两个相异零点∴g(t)表示的二次函数开口向上,对称轴为t0=﹣2∴即m的取值范围为[3,4),此时,方程g(t)=t2+4t+m=0的两根t1+t2=﹣4即,第31页(共31页)。
第一章集合与函数概念单元检测卷(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合A 中的元素x 满足-5≤x ≤5,且x ∈N *,则必有()A .-1∈AB .0∈AC.3∈AD .1∈A2.下列各组集合中,表示同一集合的是()A .M ={(3,2)},N ={(2,3)}B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={3,2},N ={(3,2)}3.设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有()A .0个B .1个C .2个D .3个4.已知集合A ={x |-1≤x <3},B ={x |2<x ≤5},则A ∪B =()A .{x |2<x <3}B .{x |-1≤x ≤5}C .{x |-1<x <5}D .{x |-1<x ≤5}5.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则()A .a =3,b =2B .a =2,b =3C .a =-3,b =-2D .a =-2,b =-36.已知1(x 1)2x 52f -=-,且f (a )=6,则a 等于()A.74B .74-C.43D .43-7.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)8.若函数y =f (x )的定义域是[0,2020],则函数(x 1)(x)1f g x +=-的定义域是()A .[-1,2019]B .[-1,1)∪(1,2019]C .[0,2020]D .[-1,1)∪(1,2020]9.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为()A .mnB .m +nC .n -mD .m -n10.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13B.13C.12D .-1211.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于()A .-1B .1C .6D .1212.已知函数f (x )=x 2x -1,g (x )=x 2,则下列结论正确的是()A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列三个命题:①集合N 中最小的数是1;②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2.其中正确命题的个数是_________14.已知函数f (x ),g (x )分别由下表给出x 123f (x )211x 123g (x )321(1)f [g (1)]=__________;(2)若g [f (x )]=2,则x =__________.15.若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a 等于________16.已知具有性质:()1f f x x ⎛⎫=-⎪⎝⎭的函数,我们称为满足“倒负”变换的函数,下列函数:①f(x)=x-1x;②f(x)=x+1x;,01(x)0,11,1x xf xxx⎧⎪<<⎪==⎨⎪⎪->⎩③,其中满足“倒负”变换的函数是______三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|-1<x<3},B={x|-m<x<m},若B⊆A,求m 的取值范围.18.(本小题满分12分)已知集合A={1,2},B={x|x2+mx+1=0,x∈R},若B⊆A,求实数m的取值范围.19.(本小题满分12分)已知集合A={x|6x+1≥1,x∈R},B={x|x2-2x-m<0},(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|-1<x<4},求实数m的值.20.(本小题满分12分)已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.21.(本小题满分12分)已知函数f(x)=x2-ax+1,(1)求f(x)在[0,1]上的最大值;(2)当a=1时,求f(x)在闭区间[t,t+1](t∈R)上的最小值.22.(本小题满分12分)已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.(1)求证:f(x)是偶函数;(2)求证:f(x)在(0,+∞)上是增函数.第一章集合与函数概念单元检测卷(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合A中的元素x满足-5≤x≤5,且x∈N*,则必有()A.-1∈A B.0∈A C.3∈A D.1∈A【答案】:D【解析】:-5≤x≤5,且x∈N*,所以x=1,2,所以1∈A.2.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={3,2},N={(3,2)}【答案】:B【解析】:由于集合中的元素具有无序性,故{3,2}={2,3}.3.设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N 的函数关系的有()A.0个B.1个C.2个D.3个【答案】:B【解析】:①错,x=2时,在N中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x=2时,对应元素y=3∉N,不满足任意性.④错,x=1时,在N中有两个元素与之对应,不满足唯一性.故选:B4.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B=()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5}D.{x|-1<x≤5}【答案】:B【解析】:∵集合A={x|-1≤x<3},B={x|2<x≤5},∴A∪B={x|-1≤x≤5},故选B.5.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则()A .a =3,b =2B .a =2,b =3C .a =-3,b =-2D .a =-2,b =-3【答案】:B【解析】:∵A ∩B ={(2,5)},∴5=2a +1,5=2+b ,解得a =2,b =3,故选B .6.已知1(x 1)2x 52f -=-,且f (a )=6,则a 等于()A.74B .-74C.43D .-43【答案】:A【解析】:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.7.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)【答案】:A【解析】:因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数.所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2).8.若函数y =f (x )的定义域是[0,2020],则函数(x 1)(x)1f g x +=-的定义域是()A .[-1,2019]B .[-1,1)∪(1,2019]C .[0,2020]D .[-1,1)∪(1,2020]【答案】:B【解析】:使函数f (x +1)有意义,则0≤x +1≤2020,解得-1≤x ≤2019,故函数f (x +1)的定义域为[-1,2019].所以函数g (x )有意义的条件是1201910x x -≤≤⎧⎨-≠⎩解得-1≤x <1或1<x ≤2019.故函数g (x )的定义域为[-1,1)∪(1,2019].9.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为()A .mnB .m +nC .n -mD .m -n【答案】:D【解析】:因为(∁U A )∪(∁U B )中有n 个元素,如图中阴影部分所示,又U =A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.10.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是()A .-13B.13C.12D .-12【答案】:B【解析】:∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.11.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于()A .-1B .1C .6D .12【答案】:C【解析】:由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.12.已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是()A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数【答案】:A【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0}.因为f (-x )+g (-x )=-x 2-x -1+-x 2=-x ·2x 1-2x -x 2=x1-2x -x 1-2x-x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.下列三个命题:①集合N 中最小的数是1;②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2.其中正确命题的个数是_________【答案】:0【解析】:根据自然数的特点,显然①③不正确.②中若a =32,则-a ∉N 且a ∉N ,显然②不正确.14.已知函数f (x ),g (x )分别由下表给出x 123f (x )211x 123g (x )321(1)f [g (1)]=__________;(2)若g [f (x )]=2,则x =__________.【答案】:(1)1(2)1【解析】:(1)由表知g (1)=3,∴f [g (1)]=f (3)=1;(2)由表知g (2)=2,又g [f (x )]=2,得f (x )=2,再由表知x =1.15.若集合A ={x ∈R|ax 2-3x +2=0}中只有一个元素,则a 等于________【答案】:0或98.【解析】:若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.16.已知具有性质:()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x;,01(x)0,11,1x x f x x x⎧⎪<<⎪==⎨⎪⎪->⎩③,其中满足“倒负”变换的函数是______【答案】:①③【解析】:对于①,f (x )=x -1x ,1f x ⎛⎫ ⎪⎝⎭=1x-x =-f (x ),满足题意;对于②,1f x ⎛⎫⎪⎝⎭=1x +x =f (x ),不满足题意;对于③,11,01110,11,1x x f x x x x ⎧<<⎪⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪->⎪⎩,即1,110,1,01x x f x x x x ⎧>⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-<<⎪⎩故1f x ⎛⎫ ⎪⎝⎭=-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,求m 的取值范围.解:当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |-1<x <3}.若B ⊆A ,在数轴上标出两集合,如图,所以13m m m m -≥-⎧⎪≤⎨⎪-<⎩,所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].18.(本小题满分12分)已知集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则Δ=m 2-4<0,解得-2<m <2;②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意;③若2∈B ,则22+2m +1=0,解得m =-52,此时B =12,2⎧⎫⎨⎬⎩⎭,不合题意.综上所述,实数m 的取值范围为[-2,2).19.(本小题满分12分)已知集合A ={x |6x +1≥1,x ∈R},B ={x |x 2-2x -m <0},(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解:由6x +1≥1,得x -5x +1≤0.∴-1<x ≤5,∴A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.20.(本小题满分12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知122113m mm m ->⎧⎪≤⎨⎪-≥⎩,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时:需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).21.(本小题满分12分)已知函数f (x )=x 2-ax +1,(1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R )上的最小值.解:(1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2>12,即a >1时,f (x )的最大值为f (0)=1.(2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12.①当t ≥12时,f (x )在[t ,t +1]上是增函数,∴f (x )min =f (t )=t 2-t +1;②当t +1≤12,即t ≤-12时,f (x )在上是减函数,∴f (x )min =f (t +1)=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在1,2t ⎡⎤⎢⎥⎣⎦上单调递减,在1,12t ⎡⎤+⎢⎥⎣⎦上单调递增,所以f (x )min =12f ⎛⎫⎪⎝⎭=34.22.(本小题满分12分)已知函数f (x )的定义域为{x |x ∈R ,且x ≠0},对定义域内的任意x 1、x 2,都有f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求证:f (x )是偶函数;(2)求证:f (x )在(0,+∞)上是增函数.证明:(1)因对定义域内的任意x 1、x 2都有f (x 1·x 2)=f (x 1)+f (x 2),令x =x 1,x 2=-1,则有f (-x )=f (x )+f (-1).高中高中又令x1=x2=-1,得2f(-1)=f(1)再令x1=x2=1,得f(1)=0,从而f(-1)=0于是有f(-x)=f(x),所以f(x)是偶函数.(2)设0<x1<x2,则f(x1)-f(x2)=f(x1)-f(x1·x2x1)=f(x1)-[f(x1)+f(x2x1)]=-f(x2x1),由于0<x1<x2,所以x2x1>1,从而f(x2x1)>0,故f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(0,+∞)上是增函数.。
柳州地区民族高中2016届高一数学测试题(一)
集合与函数概念
一、选择题(每小题5分,共l2小题,共60分,每小题只有一个选项是正确的)
1、若U={1,2,3,4,5},A={1,3,4},B={2,4,5},那么 (C U A) (C U B)=( )
A .φ
B .{4}
C .{1,3}
D .{2,5}
2、已知集合{}83,,A x N x n n N =∈=-∈则集合A 的真子集的个数有( )
A .9个
B .8个
C .7个
D .6个
3、方程组2321321x y x y +=⎧⎨-=-⎩
的解集是( ) A.{}3,5 B.
(){},3,5x y x y == C. ()3,5 D.{}3,5x y == 4、不等式组⎩
⎨⎧>+>0342a x x 的解集是{}2|>x x ,则实数a 的取值范围是( ) A.6-≤a B. 6-≥a C. 6≤a D. 6≥a
5、下列四组函数中表示同一个函数的是( )
A .2)()(x x g x x f ==与
B .10==y x y 与
C .1
112--=+=x x y x y 与 D .1212+-=-=x x y x y 与 6、若1(),x f x x
-=
则方程(4)f x x = 的根是( ) A. 2- B. 2 C. 12- D. 12 7、已知函数()f x 的定义域是[]11,
-,则(21)f x -的定义域是( ) A.[]10,
B.[]1,1-
C. []1,3-
D.[]0,1- 8、若(21)63,f x x +=+则()f x 等于( )
A.3
B.x 3
C. )12(3+x
D. 16+x
9、的单调增区间是函数245x x y --=( )
A.(]2-∞-,
B. []2,5--
C.[]12,-
D.[)∞+,1
10、函数11y x
=-在区间[)(]1,00,2- 上的值域是( ) A. ⎥⎦⎤⎢⎣⎡221, B. [)+∞,2 C. ⎥⎦⎤ ⎝⎛
∞-21, D. [)⎥⎦⎤ ⎝⎛∞-⋃+∞21,2,
11、如果0)2(22<+-+k kx kx 恒成立,则实数k 的取值范围是( )
A .{}01≤≤-k k
B .{}01<≤-k k
C .{}01≤<-k k
D .{}
00≥<k k k 或
12、已知函数23y x ax =++的定义域为[]1,1-,且当1x =-时,y 有最小值,当1x =时,y 有最大值,则实数a 的取值范围是( )
A.20≤<a
B. 2≤a
C. 0<a
D. 2≥a
二、填空题(每小题5分,共4小题,共20分)
13、设{}
4,12,2--=x x A ,{}9,1,5x x B --=,若{}9=⋂B A ,则x 的值为 . 14、若21(0)(),12(0)
x x f x x x ⎧+≤=⎨->⎩则[](3)f f = . 15、已知函数2
()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是 .
16、已知函数()y f x =是R 上的偶函数,且在(],0-∞上是减函数,若()(2)f a f ≥,则实数a 的取值范围是 .
三、解答题(共6小题,共70分)
17、(本小题满分10分)已知集合{}{}
223280,60,A x x x B x x x =--≤=-->求(),.R A B A C B
18、(本小题满分12分)求下列函数()f x 的定义域:
(1)152();111
x f x x +=+- (2)()0
26()523x f x x x x -=-++.
19、(本小题满分12分)设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A ,若B B A = ,求实数a 的取值范围.
20、(本小题满分12分)判断函数11
y x =
+在()1,-+∞上的单调性,并用定义证明你的结论.
21、(本小题满分12分)已知()f x 是定义在()1,1-上的奇函数,且()1,1x ∈-时()f x 为增函数,解关于x 的不等式1()()02
f x f x +-<
22、(本小题满分12分)已知函数[]2()22,5,5.f x x ax x =++∈- (1)当1a =-时,求函数()f x 的最大值和最小值;
(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.。