二元一次方程组解应用题3
- 格式:doc
- 大小:95.00 KB
- 文档页数:5
二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。
已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。
为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。
因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。
根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。
二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。
求甲、乙两人的速度。
解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。
根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。
因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。
将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。
二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。
假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。
已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。
求出流水池的容积和通过自来水管道流出的水量之间的关系。
解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。
根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。
2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。
已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。
求出每本书的原始价格。
解题思路:设第一本书的价格为y元,第二本书的价格为z元。
根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。
3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。
已知数学成绩平均分为80分,英语成绩平均分为85分。
学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。
求出数学和英语成绩中,既高于平均分,又相等的学生人数。
解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。
根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
二元一次方程组应用题二元一次方程组应用题1. 问题背景小明和小红一起出去旅行,他们租用了一辆汽车,行驶了一段距离后,发现行李箱中的一件物品忘记带了。
为了尽快找到这件物品,他们决定通过手机定位找到物品遗失的地点。
手机定位的原理是根据手机信号塔之间的距离进行计算的。
小明和小红的手机都连接在不同的信号塔上,他们想知道这件物品遗失的具体位置,于是想到利用两个信号塔之间的距离差来确定。
2. 方程建立设小明所连接的信号塔位置为(x1, y1),小红所连接的信号塔位置为(x2, y2),两个信号塔之间的距离差为d,则有:√[(x-x1)^2 + (y-y1)^2] - √[(x-x2)^2 + (y-y2)^2] = d 其中x和y分别表示物品遗失的位置。
3. 方程求解将方程进行平方去根的处理,得到[(x-x1)^2 + (y-y1)^2] - [(x-x2)^2 + (y-y2)^2] = d^2 展开化简后得到x^2 - 2x(x1-x2) + (x1^2 - x2^2) + y^2 - 2y(y1-y2) + (y1^2 - y2^2) = d^2将方程整理为二元一次方程组的标准形式,得到2(x2-x1)x + 2(y2-y1)y + x1^2 - x2^2 + y1^2 - y2^2 =d^2 - x1^2 + x2^2 - y1^2 + y2^2通过求解上述方程组,可以得到物品遗失的具体位置(x,y)。
4. 一个具体的例子假设小明连接的信号塔位置为(2, 4),小红连接的信号塔位置为(6, 8),两个信号塔之间的距离差为5。
将各个参数代入方程组中,得到:2(x2-2)x + 2(y2-4)y + 4^2 - 2^2 + 8^2 - 4^2 = 5^2 -4^2 + 6^2 - 8^2化简后得到:4x + 8y = 20通过求解上述方程组,可以得到物品遗失的具体位置。
二元一次方程组应用题1. 问题背景小明和小红是一对好朋友,他们经常一起做数学作业。
人教版七年级数学下册第八章《二元一次方程组》实际应用单元解答专项(三)1.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆)总量(吨)第一次 4 5 31第二次 3 6 30(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?2.“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?3.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电15台.(1)若用8辆汽车装运甲、乙两种家电共150台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(列二元一次方程组解应用题)(2)如果每台甲种家电的利润是100元,每台乙种家电的利润是200元,那么该公司售完这150台家电后的总利润是多少?4.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.5.小敏和小强参加社会实践,要用白板纸做长方体包装盒,准备把所有白板纸分成两部分,一部分做盒身,另一部分做盒底,已知每张白板纸可以做盒身2个,或者做盒底3个,且一个盒身和两个盒底恰好做成一个包装盒.(1)现有12张白板纸,问能否使做成的盒身与盒底正好配套,为什么?(2)在(1)条件下,小敏和小强经过尝试发现,将一张白板纸经过适当套裁就可以裁出一个盒身和一个盒底,请把这种套裁方式综合考虑,探究能否使裁出的盒身与盒底正好配套,若能,请求出最多可做包装盒的个数;否则说明理由.6.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措.小明家先后两次在同一电商平台以相同的单价免邮购买了A、B两种型号的口罩.第一次购买20个A型口罩,30个B型口罩,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元.(1)求A、B两种型号口罩的单价;(2)“五一”期间,该电商平台举行促销活动,小明发现同样花费160元购买B型口罩,以活动价购买可以比原价多买8个,求“五一”期间B型口罩的活动价.7.为保护环境的需要,电动汽车已经成为未来汽车生产和销售的大趋势,市场上各种品牌的电动汽车如雨后春笋般涌现出来.某电动汽车经销商负责销售某种品牌的A型和B型电动汽车,今年9月份共售出该品牌汽车的A型和B型电动汽车共413台,受国庆黄金周的影响,10月份该经销商售出这两种型号的汽车达到510台,其中A型和B型汽车的销量分别比9月份增长25%和20%.(1)今年10月份,该经销商销售的A型和B型汽车分别是多少台?(2)该品牌电动汽车生产厂家为了占领市场提高销量,决定对该经销商采取销售奖励活动,若A型电动汽车每台售价为10万元,B型电动汽车每台售价为12万元,奖励办法是:每销售一台A型电动汽车按每台汽车售价的a%给予奖励,每销售一台B型汽车按每台汽车售价的(a+0.2)%给予奖励,奖励办法出台后的11月份,A型汽车的销量比10月份增加了10a%,而B型汽车受到某问题零件召回的影响,销售量比10月份减少了20a%,如果11月份该经销商共获得奖励金额为355680元,求a的值.【参考学习:我们以后会学到这样的运算:①a(b+c)=ab+ac,即单项式乘以多项式就是用单项式乘以多项式的每一项,再把所得结果相加;②(a+b)(m+n)=am+an+bm+bn,即多项式乘以多项式就是用一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.此题在解方程时要用到这样的运算哦!】8.由于武汉“新冠病毒疫情”严重,医疗物资紧缺,乐山市某公司决定捐赠A、B两种型号的医疗物品,这两种医疗物品的体积和质量如表所示:体积(m3/件)质量(吨/件)A型医疗物品0.8 0.5B型医疗物品 2 1(1)已知医疗物品A、B,体积一共是20m3,质量一共是10.5吨,求A、B两种型号的医疗物品各有多少件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元;要将(1)中的物品一次或分批运输到武汉,该公司应如何选择运送、付费方式,才能使运费最少?并求出该方式下的运费.9.某景点的门票价格如下表:购票人数(人)1~50 51~99 100以上(含100)门票单价(元)48 45 42(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?10.有一片牧场原有的草量为akg,草每天都匀速地生长,这片牧场每天牧草的生长量都为mkg.若在其上放牧24头牛,则6天吃完牧草.若放牧21头牛,则8天吃完牧草.若每头牛每天吃草的量也都是相等的,设每头牛每天吃草的量为xkg.问:(1)放牧24头牛,6天所吃的牧草量用含a,m的代数式表示为kg;放牧21头牛,8天所吃的牧草量用含a,m的代数式表示为kg;(2)试用x表示a,m;(3)若放牧16头牛,则几天可以吃完牧草?11.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)12.丹东的草莓久负盛名,当下正是草莓的销售旺季,某日,我市一水果店以3650元购进两种不同品种的草莓,若按标价出售可获毛利润1600元(毛利润=售价﹣进价),这两种草莓的进价、标价如下表所示:价格/品种A品种B品种进价(元/千克)35 45标价(元/千克)50 65求这两个品种的草莓各购进多少千克.13.若买3根跳绳和6个毽子共72元;买1根跳绳和5个毽子共36元.(1)跳绳、毽子的单价各是多少元?(2)元旦促销期间,所有商品按同样的折数打折销售,买10根跳绳和10个毽子只需180元,问商品按原价的几折销售?14.甲、乙两个拖拉机厂,按计划每月共生产拖拉机460台,由于两厂都改进了技术,本月甲厂完成计划的110%,乙厂本月完成计划的115%,两厂共生产拖拉机519台,本月两厂各超额生产拖拉机多少台?15.“元旦”期间,某校组织开展“班级歌咏比赛”,甲、乙班共有学生102人(其中甲班人数多于乙班人数,且甲班人数不够100人)报名统一购买服装参加演出.下面是某服装厂给出的演出服装的价格表购买服装的套数1~50 51~100 ≥101每套服装的价格/元70 60 50如果两班分别单独购买服装,总共要付款6580元(1)如果甲、乙两班联合起来购买服装,那么比各自购买服装总共可以节省多少钱?(2)甲、乙班各有多少学生报名参加比赛?(3)如果甲班有5名学生因特殊情况不能参加演出,请你为两班设计一种省钱的购买服装方案.。
第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。
列二元一次方程组专项练习50题(有答案)1、已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度.2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次租用这两种货车的情况如下表:现租用该公司3辆甲种货车及30元计算,则货主应付运费多少元?5、(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?7、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?8、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?9、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。
二元一次方程组应用题1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。
两人原来各有多少钱?书多少钱?2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?原价是10。
一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?全程的11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?16.张红抄写一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还要用几小时才能抄完?17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.化简.26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.这个班的男生和女生各有多少人..29.图书馆科技书与文艺书的比是4 :5,又购进300本文艺术后,科技书与文艺书的比是5 :7,文艺书比原来增加了百分之几?30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?31.五、六年级只有学生175人。
第五章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
二元一次方程组解应用题
(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?
解:设到甲工厂的人数为x人,到乙工厂的人数为y人
题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数
可列方程为:x-9=
2、抽5人后到甲工厂的人数=
可列方程为:
(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?
解;设共买x枚10分邮票,y枚20分邮票
题中的两个相等关系:
1、10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:
2、10分邮票的总价+ =全部邮票的总价
可列方程为:10X+ =
(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?
题中的两个相等关系:
1、做4个小狗的时间+ =3时42分
可列方程为:
2、+做6个小汽车的时间=3时37分
可列方程为:(行程问题)甲、乙二人相距6km,二人同向
而行,甲3小时可追上乙;相向而行,1小时相
遇。
二人的平均速度各是多少?
解:设甲每小时走x千米,乙每小时走y千米
题中的两个相等关系:
1、同向而行:甲的路程=乙的路程+
可列方程为:
2、相向而行:甲的路程+ =
可列方程为:
(倍数问题)某市现有42万人口,计划一年后
城镇人口增加0.8%,农村人口增加工厂1.1%,
这样全市人口将增加1%,求这个市现在的城镇
人口与农村人口?
解:这个市现在的城镇人口有x万人,农村人
口有y万人
题中的两个相等关系:
1、现在城镇人口+ =现在全市总人口
可列方程为:
2、明年增加后的城镇人口+
=明年全市总人口
可列方程为:(1+0.8%)x+ =
(分配问题)某幼儿园分萍果,若每人3个,
则剩2个,若每人4个,则有一个少1个,问
幼儿园有几个小朋友?
解:设幼儿园有x个小朋友,萍果有y个
题中的两个相等关系:
1、萍果总数=每人分3个+
可列方程为:
2、萍果总数=
可列方程为:
(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?
解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。
题中的两个相等关系:
1、含盐10%的盐水中盐的重量+含盐85%的盐水中盐的重量=
可列方程为:10%x+ =
2、含盐10%的盐水重量+含盐85%的盐水重量= 可列方程为:x+y=
(金融分配问题)需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克?解:设每千克售4.2元的糖果为x千克,每千克售3.4元的糖果为y千克
题中的两个相等关系:
1、每千克售4.2元的糖果销售总价+
=
可列方程为:
2、每千克售4.2元的糖果重量+
=
(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米
题中的两个相等关系:
1、小长方形的长+ =大长方形的宽
可列方程为:
2、小长方形的长=
可列方程为:(材料分配问题)一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?
解:设有
题中的两个相等关系:
1、制作桌面的木材+ =
可列方程为:
2、所有桌面的总数:所有桌脚的总数=
可列方程为:
(和差倍问题)一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为y。
题中的两个相等关系:
1、个位数字= -5
可列方程为:
2、新两位数= 可列方程为:
(分配调运)一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?
解:设
题中的两个相等关系:
1、第一次:甲货车运的货物重量+ =36 可列方程为:
2、第二次:甲货车运的货物重量+ =26可列方程为:
1.某商场用2500元购进A、B两种新型节能台
灯共50盏,这两种台灯的进价、标价如下
表所示.
(2)若A型台灯按标价的9折出售,B型台
灯按标价的8折出售,那么这批台灯全
部售出后,商场共获利多少元?
2.某校校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠,”乙旅行社说:“包括校长在内全部按全票价的6折优惠(即按全票价的60%收费)”,若全票价为240元:(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费y乙,分别计算两家旅行社的收费(建立表达式);
(2)当学生数是多少时,两家旅行社的收费一样?3、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
4、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔
1
3
3
分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?
5、王平要从甲村走到乙村.如果他每小时走4千米,那么走到预定时间, 离乙村还有0.5千米;如果他每小时走5千米,那么比预定时间少用半小时就可到达乙村.求预定时间是多少小时,甲村到乙村的路程是多少千米。
6、袁峰家离学校1880米,其中一段为上坡路,其余为下坡路,他跑步去学校共用时16分钟,,已知他上坡的速度为4.8千米/小时,下坡的速度为12千米/小时,那么,袁峰上坡、下坡各用了多长时间。
7、小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15
分钟.请问小华家离学校多远?
8.已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和火车的速度。
9.某段工程拟在30天内(含30天)完成。
现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成。
请问:
(1)甲、乙两个工程队单独完成该工程各需多少天?
(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用是多少万元?
10.用一根长为10米的铁丝围成一个长方形. (1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?
(2)使得该长方形的长比宽多出0.8米,此时长方形的长、宽各为多少米?
它所围成的长方形与(1)中所围长方形相比,面积有什么变化?11.某水果批发市场香蕉的价格如下:购买香蕉数量不超过20千克时,每千克6元;购买的香蕉数量在20千克以上但不超过40千克时,每千克5元;购买香蕉数量在40千克以上时,每千克4元,小兰两次共买香蕉50千克(第二次多于第一次),共付款264元,请问小兰两次分别买香蕉多少千克?
※12.小张带了 5 角钱去买橡皮和铅笔,橡皮每块 3 分,铅笔每支 1 角 1 分,5 角钱刚好买几块橡皮和几只铅笔?
※13.公鸡一只值钱 5,母鸡一只值钱 3,小鸡三只值钱 1。
今有钱 100,买鸡 100 只,公鸡、母鸡、小鸡各几只?
※14.篮、排、足球放在一堆共 25 个,其中篮球的个数是足球的 7 倍,那么其中排球的个数是多少?
※15.1998 年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是多少岁?
※16.一个布袋中装有红、黄、蓝三种颜色的大小相同的小球,红球上标有数字 1,黄球上标有数字 2,蓝色球上标有数字 3,小明从布袋中摸出 10 个球,它们上面所有数字的和等于 21,则小明摸出的球中红球的个 数最多不超过多少个?
※17.甲组同学每人有 28 个核桃,乙组同学每人有
30 个核桃,丙组同学每人有 31 个核桃,三组的核桃总数是 365 个,则三组的同学人数的总和是多少?
解:设甲组学生a 人,乙组学生b 人,丙组学生c 人. 则由题意得
28a+30b+31c=365
∵28(a+b+c )<28a+30b+31c=365,得a+b+c <
∴a+b+c ≤13
31(a+b+c )>28a+30b+31c=365,得a+b+c >。