地铁车站工程监控量测施工安全
- 格式:doc
- 大小:23.00 KB
- 文档页数:1
监控量测在地铁明挖车站围护结构施工应用摘要:随着社会的发展和科技的进步人类对地下空间的开发越来越重视,尤其城市地铁得到了空前的发展,如何保证地铁施工安全,如何在施工过程中能够随时掌握结构变形,成为一项重要施工技术措施,监控量测作为一个重要的控制工序在我国得到了突飞猛进的发展。
本文以北京地铁奥运支线土建工程监控量测为例,主要介绍地铁明挖车站监控量测的测量原理、目的及方法、数据分析。
关键词:监控量测、基坑、数据、反馈北京地铁奥运支线起于北中轴路的熊猫环岛,沿北中轴路向北延伸,穿越北土城路、民族园南路和北四环路后进入奥林匹克公园中心地区,穿过国家体育场和国家游泳馆之间的广场,沿中轴线广场继续向北,经成府路、中一路、大屯路、北一路、辛店村路后,止于森林公园内规划奥运湖南岸。
奥运支线全部为地下线,全长4.398公里,由南向北设奥体中心站、奥林匹克公园站、森林公园站3座车站,施工工法均采用明挖法施工,围护结构均采用围护桩+钢支撑的内支撑体系。
1.监控量测目的地下工程施工要考虑对城市环境的影响。
施工的力学响应可以通过施工监测实现,并及时预测地层变形的发展,反馈施工,控制地下工程施工对环境的影响程度。
因此,施工监测在施工中有着及其重要的作用,其监测的目的包括:1)保证施工安全。
通过及时、准确的现场监测结果判断地铁结构的安全及周边环境的安全,并及时反馈施工,调整设计、施工参数,减小结构及周边环境的变形,保证施工安全。
2)预测施工引起的地表变形。
根据地表变形的发展趋势决定是否采取保护措施,并为确定经济、合理的保护措施提供依据。
3)控制各项监测指标。
根据已有的经验及规范要求,检查施工中的各项环境控制指标是否超过允许范围,并在发生环境事故时提供仲裁依据。
4)验证支护结构设计,指导施工。
地下结构设计中采用的设计原理与现场实测的结构受力、变形情况往往有一定的差异,因此,施工中及时的监测信息反馈对于设计方案的完善和修正有很大的帮助。
地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。
1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。
同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。
2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。
将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。
将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。
测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。
3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。
监测方法是在地表埋设测点,用水准仪进行下沉的量测。
根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。
(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。
(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策: 当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。
地铁施工监测规范篇一:地铁工程监控量测技术规程地铁工程监控量测技术规程第一章定义、术语1.1 定义1.1 监控量测地铁工程施工中对围岩、地表、支护结构及周边环境的动态进行的经常性观察和量测工作。
1.2 施工监控量测土建承包商按施工合同有关要求在满足监测技术规程的要求下,自行组织对地铁工程实施的监控量测工作。
1.3 第三方监控量测由业主通过招标或委托形式引入的有关资质的单位对其签订的承包合同范围实施的监控量测工作。
1.2 术语2.1 地铁在城市中修建的快速、大运量、用电力牵引并位于隧道内或地铁转到地面和高架桥上的轨道交通。
2.2 应测项目保证地铁周边环境和围岩的稳定以及施工安全应进行的日常监测项目。
2.3 选测项目相对于应测项目而言,为了设计和施工的特殊需要,由设计文件规定的在局部地段进行的检测项目。
2.4 浅埋暗挖法在浅埋软质地层的隧道中,基于喷锚技术而发展的一种矿山工法。
2.5 盾构法使用盾构机械进行开挖并采用管片作为衬砌而修建隧道的施工方法。
2.6 明挖法由地面开挖的基坑中修筑地铁构筑物的方法。
2.7 隧道周边收敛位移隧道周边任意两点间距离的变化。
2.8 水平位移监测测定变形体沿水平方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.9 垂直位移监测测试那个变形体沿垂直方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.10 拱顶沉降隧道拱顶内壁的绝对沉降(量)。
2.11 地表沉降地铁工程施工中地层的(应力)扰动区延伸至地表而引起的沉降。
2.12 隧道围岩隧道周围一定范围内对洞身产生影响的岩土体。
2.13 围岩压力开挖隧道时围岩变形或松散等原因而作用而支护、衬砌上的压力。
2.14 初期支护隧道开挖后即行施作的支护结构。
2.15 二次衬砌初期支护完成后施作的衬砌。
2.16 衬砌沿着隧道洞身周边修建的永久性支护结构。
2.17 管片是一种在工厂制作的圆弧形板肋状并由钢筋混凝土、钢、铸铁或其它材料制作的预制构件。
地铁监控施工方案1. 引言地铁作为现代城市交通体系的重要组成部分,拥有庞大的乘客流动量和密集的车站网络。
为了确保地铁运行的安全性和便捷性,监控系统在地铁车站和车厢内起着重要作用。
地铁监控施工方案旨在提供一个全面而有效的监控解决方案,确保乘客和地铁设施的安全。
2. 设备与系统安装2.1. 摄像机安装在地铁车站和车厢内设置摄像机以实现全方位监控。
选择高清摄像机并根据车站和车厢的特点确定最佳安装位置。
保证覆盖面积广泛且视野清晰,并避免遗漏监控盲区。
2.2. 视频录像系统为了记录监控画面,必须安装视频录像系统。
该系统应具备高性能的硬盘存储设备,能够长时间存储大量的监控数据。
录像系统还应支持远程访问和备份功能,以便管理人员可以随时查看和管理监控录像。
2.3. 视频监控中心视频监控中心是地铁监控系统的核心。
它使用高性能监控服务器和显示设备,将各个摄像机的视频信号集中显示在一个控制室内。
监控中心还应具备报警功能,以便能够实时监测和响应紧急事件。
3. 网络系统规划地铁监控系统需要一个安全可靠的网络基础设施来传输视频数据和控制信号。
以下是网络系统规划的关键考虑因素:3.1. 网络拓扑采用分布式网络拓扑结构,在各个车站和车厢之间建立局域网,并通过广域网连接到监控中心。
使用可靠的网络设备,如交换机和路由器,确保数据传输的稳定性和安全性。
3.2. 网络带宽根据监控系统的需求和预计的数据流量,规划适当的网络带宽。
考虑到地铁车站和车厢人流量大的情况,应优先提供高带宽网络以确保实时图像传输和监控数据的快速访问。
3.3. 网络安全地铁监控系统存储着大量的敏感信息,所以网络安全性是至关重要的。
采用防火墙系统、入侵检测系统和访问控制策略,确保监控数据的保密性和完整性。
4. 集成与管理4.1. 数据集成地铁监控系统的数据应与其他安全系统集成,如消防系统和门禁系统,以实现全面的安全监控。
集成可以通过网络接口和协议实现,确保各个系统之间的信息共享和联动响应。
谈地铁施工中监测的两个问题摘要:近年来,发生的一系列地下工程事故的教训是惨重的。
从地铁的测量、施工全程入手,在建设工程中搞好安全责任,做好详细的安全管理,尤为必要。
关键词:地下工程;地铁施工;监控量测中图分类号:u231+.3 文献标识号:a 文章编号:2306-1499(2013)06-(页码)-页数1.地铁施工事故及分析近年来,我国正处于轨道交通的建设高潮,工程项目管理和营运管理经验相对不足,工程风险和安全隐患不同程度的存在,发生的一系列地下工程事故的教训是惨重的。
因此,从地铁的施工全程入手,并结合安全生产有关法律法规,在建设工程中搞好安全责任,做好详细的安全管理,尤为必要。
地下工程发生施工事故,主要原因包括:(1)对大规模、高速度、跨越式、超常规地铁工程建设发展,管理队伍上存在漏洞、疏忽。
(2)对基坑较深、规模较大、施工环境条件困难、不断出现的新情况等问题的工程,相应的管理人员管理跟不上。
(3)对轨道交通地下工程管理手段不了解,不知如何去适应。
(4)对轨道交通这一高风险工程的管理质量安全控制方式不匹配。
所以,在面对地铁施工中的监测问题时,要认识到:(1)施工监测是地下工程的关键;(2)要建立第三方委托监测制度;(3)要明确监测单位报警的职责。
2.地铁施工监控量测的必要性由于常见的各种施工方法涉及大量基坑开挖、暗挖、降水和爆破等工程,对地层易产生扰动,有可能引起地表、附近高大建筑物变形或塌陷,危及建筑物及人员的安全,同时,污水管和下水井管渗漏致使土质自稳能力丧失,造成施工艰难。
而监控量测在指导隧道施工上具有重要意义。
由于隧道设计过程中对围岩结构以及地下土层状况,包括地下水位和管网的不确定性,使得支护参数存在可变性,隧道施工过程中的监控量测主要是监测围岩与支护的变形和应力,了解隧道围岩与支护的变形特征与受力状态,判断围岩的稳定性、支护的合理性,对下一步的设计与施工提供指导,实现动态设计与施工。
南京地铁二号线汉中站基坑和区间隧道施工监测方案南京水利科学研究院二〇〇六年八月一、汉中门车站基坑施工监测方案1.1工程概况汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。
车站总长度为:161.50米,车站标准段宽度:20.90米。
顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。
车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。
车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。
车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。
汉中门站地形平坦,本场地南侧为汉中门广场。
车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。
根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。
车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。
地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。
东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。
围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。
1.2工程地质条件和周边环境情况1.2.1.地形、地貌、地质汉中门站拟建场区隶属于I级阶地地貌单元。
地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。
地铁工程监控量测管理制度一、总则为规范地铁工程的监控量测管理工作,保障地铁工程的质量和安全,特编制本制度。
二、监控量测管理机构1.地铁工程监控量测管理委员会(以下简称“委员会”)由地铁工程项目负责人、监理工程师、设计人员、施工单位代表等组成。
委员会负责地铁工程监控量测系统的建设与管理。
2.监控量测管理部门由监理工程师和专业技术人员组成,负责具体的监控量测管理工作,包括监控点设置、数据采集与分析、报告编制等。
三、监控点设置1.监控点应根据地铁工程的具体情况进行设置,包括地表沉降监测点、隧道收敛监测点、结构变位监测点等。
2.监控点的设置应符合相关标准和规范要求,保证监控数据的准确性和可靠性。
3.监控点的间距应根据地铁工程的规模和特点进行合理设置,确保监测覆盖全面。
四、数据采集与分析1.监控数据的采集应定期进行,采用专业的监测设备和软件进行数据处理。
2.监控数据的分析应由专业人员进行,及时发现和处理数据异常情况。
3.监控数据的分析结果应及时向相关部门汇报,并采取有效措施加以控制。
五、报告编制1.监控量测管理部门应定期编制监控报告,包括监测点设置情况、数据采集与分析结果、监测变化趋势等内容。
2.监控报告应由相关负责人审查批准后发布,确保报告的准确性和可靠性。
3.监控报告应及时与监理工程师、设计人员等部门交流,共同商讨解决措施。
六、监测数据的利用1.监控数据是评判地铁工程质量和安全的重要依据,应充分利用监控数据对工程进行评估。
2.监控数据的利用应根据具体情况建立相应的评价模型和指标体系,为工程质量和安全提供参考依据。
3.监测数据的利用应与其他相关部门协调配合,共同推动地铁工程的建设进展。
七、监控量测管理制度的落实1.各相关部门应按照本制度的要求,积极落实监控量测管理工作。
2.定期开展监控量测管理工作的培训和交流,加强监控量测管理部门与其他相关部门的沟通和合作。
3.定期对监控量测管理工作进行评估,及时总结经验,完善管理制度,提升工作水平。
成都市地铁2号线XXXXXXXXXXXXXX XXX地铁车站施工监控量测方案中铁XXX集团有限公司XXX项目经理部二○一X年X月目录第一章绪论 (3)第二章车站工程监控量测的内容 (4)2.1 项目概况 (4)2.2 施工监测的目的 (4)2.3 施工监测的内容 (4)第三章施工监测施作方法 (6)3.1 周边环境监测 (7)3.2. 车站结构监测 (10)3.3. 数据分析 (13)第四章监控成果 (16)参考文献 (17)第一章绪论随着我国的经济发民,各大城市大规模的修建城市轨道交通,轨道交通的优势显现,是现代化城市交通网建设的重要组成部分。
城市地下铁道作为城市轨道交通的重要组成部分,更是受到了广泛的认可。
地铁土建施工中,又分为明挖法施工、暗挖法施工、盖挖法施工,而监控量测作为必要的手段存在于各个施工过程。
明挖法施工过程中,监控量测更是成为了施工中重要的组成部分。
地铁迅速发展的同时,但也涌现了大量的岩土工程技术问题,如城市地下工程引起的地表沉降可能危及周边建筑物、地下管线安全的问题,地下工程本身的安全问题。
如何解决这些问题,是地下工程施工的关键。
针对地下工程的特点: 地质条件差、周边环境复杂、结构埋深较大、围岩稳定性难以判断,地铁在地下工程施工中,建立起一套地铁监测信息系统,保证了监测数据反馈指导设计与施工的畅通,为解决地下工程施工中的技术问题提供了必要的条件。
监控量测是施工不可缺少的一个环节,是监视支护稳定性的重要手段和判断设计、施工是否正确合理的主要依据,是实现隧道信息化施工的基础。
通过现场监控量测,掌握洞内的施工动态,依靠反馈信息修正设计参数和施工顺序,保证施工的顺利进行本文以XXXXX为例,详细介绍了车站施工监控量测的目的、内容、及施作的效果,并对周边环境监测(包括:地表沉降监测、周边建筑物变形监测、建筑物倾斜监测、建筑物裂缝监测、地下管线监测);车站结构监测(包括:桩顶水平位移监测及沉降监测、钢支撑轴力监测、地下水位监测、桩体变形监测、基底回弹监测、孔隙水压力量测)作了详细介绍。
长春地铁1号线一期工程人民广场站~解放大路站车站及区间工程项目监控量测施工方案一、编制说明1.1编制依据1、长春市地铁1号线一期工程施工设计;2、长春市地铁1号线施工合同文件;3、地铁施工有关的施工技术规范、规程、标准:《地下铁道工程施工质量验收规范》(GB50299-1999)(2003版)《建筑结构荷载规范》(GB50009—2001)(2006版)《建筑工程施工质量验收统一标准》(GB50300-2001)《城市轨道交通工程测量规范》(GB50308—2008)《建筑基坑支护技术规程》(JGJ120—99)《城市测量规范》(CJJ8-99)《建筑变形测量规范》(JGJ8—2007)现场调查资料、场地影响范围内建、构筑物调查报告;4、我单位多年从事铁路、地铁、市政等工程的施工经验;1.2编制原则1、严格执行国家及长春市政府所制订有关地铁施工的法律、法规和各项管理条例,并做到模范守法、文明施工.2、确保工程质量及合同工期。
3、遵循经济、有效、可行的原则。
二、工程概况长春地铁1号线一期工程人民广场站~解放大路站车站及区间工程项目包含:解放大路站、人民广场站~解放大路站区间。
2。
1 解放大路站解放大路站位于人民大街与解放大路十字路口交汇处,沿南北向跨路口设置,与规划地铁2号线呈“十"字换乘,车站为地铁1号线和2号线换乘车站,在区间配有联络线和单渡线.1号线车站主体为岛式站台,有效站台宽14。
5米,为标准双层、三跨拱顶直墙结构,采用一次扣拱暗挖逆作法施工,暗挖主体车站总长235.6米,净宽21.8米,车站由南向北设2‰的下坡,车站覆土为8。
8~9.8米,车站底板埋深为24.77~25。
77米,车站北端接暗挖区间,单洞单线标准断面,南端接盾构区间,为盾构双接收端.2号线车站主体为侧式站台,有效站台宽6.8米,为标准双层、双跨拱顶直墙结构,采用6导洞PBA工法施工.暗挖车站主体长206。
7米,净宽21.6米,车站由西向东设2‰的下坡,车站覆土7.5~9.5米,底板埋深25。
第三章施工监控量测3.1监测原则及要求3.1.1监测原则坚持“安全可靠、多层次系统监测、重点监测、方便实用及经济合理”的原则。
3.1.2监测项目本工程土建施工包括三个盾构区间:北京东路站~上海路站、上海路站~青山湖大道站、青山湖大道站~高新大道站;三个地下车站:上海路站、青山湖大道站、高新大道站。
根据《地下铁道工程施工及验收规范》(GB50299-2003)和《建筑基坑支护技术规范》(JGJ120-99)的规定,站体监测除了大幅度增加施工期间的监控量测内容,还把土体内部分层沉降和位移、孔隙水压力,钢格栅应力等多种规范列出的选测项目同样确定为本工程的必测项目,以便更好的指导施工。
3.1.2.1车站施工监测项目主要包括:地质及支护观察、地面沉降监测、地下水位监测、周边建筑物、管线裂缝沉降、桩顶水平位移及沉降监测、钢支撑轴力监测、桩后土体变形的监测、桩身应力监测、基底隆起竖井净空收敛、外侧土压力监测、土体分层竖向位移监测、及周围道路、建筑物、地下管线变形监测等。
3.1.2.2盾构区间隧道监测项目主要有:洞内洞外情况观察、洞周收敛、洞顶沉降、周边建筑物管线沉降、裂缝和倾斜、地层及支护情况观察、地表沉降、净空收敛、底部隆起等。
1、盾构区间段监控量测项目详见下表3.1-1。
2、地面沉降监测测点布置原则:测点布置在地面上,监测断面垂直于线路方向,在中线的两侧23米范围内布置测点,按照设计要求的在隧道的上方沿隧道方向布设1断面,10~30米,为了保证盾构施工时地面安全,采取加强地面建筑物监测、地表沉降情况联系地表建筑物监测的数据来分析,达到及时掌握地表变化。
3、盾构隧道收敛和拱顶下沉测点布置原则:共设置2个断面。
当洞内收敛和拱顶下沉过大,需要加大监测频率,必要时停工检查原因,采取加设支撑,处理地层的方式保证施工安全。
4、各项监测工作的监测频率应根据施工进度确定。
结构变形过大或场地情况变化时加密量测,必要时则需连续监测。
宁波地铁公司监控量测规定要求
一、宁波地铁公司的安全监控量测规定:
1、宁波地铁公司要求每辆列车上都要安装安全监控设备,以确保安
全行驶。
2、宁波地铁公司安全监控设备要求每15秒监控一次车辆的运行情况,以确保及时发现问题并报告有关部门,并根据监控的结果采取必要的措施。
3、宁波地铁公司要求安全监控设备实行全天候运行,以确保安全可
靠性;设备的日常维护也是监控安全的关键。
4、宁波地铁公司要求地铁线路上列车的安全监控设备要定期量测,
并定期核查设备的工作状态和功能,以确保行驶安全。
5、宁波地铁公司设备上的安全监控设备也要定期进行量测,并实施
正确的监控量测技术,以确保设备的准确性和可靠性。
6、宁波地铁公司要求安全监控设备要协助控制室运作,以管理列车
的运行情况,并与客运队伍协调有关事项,以确保行车安全。
7、宁波地铁公司要求监控量测结果的综合分析应当作为安全运行的
重要参考,并根据量测结果实施和完善宁波地铁公司的安全管理制度。
二、宁波地铁公司的安全文化:
1、宁波地铁公司要求所有客运队伍要以安全为重。
地铁车站工程监控量测施工安全
地铁车站工程监控量测施工安全
(1)监测方案根据本工程特点制定,且符合施工组织的总体计划安排。
(2)监测方案能够达到施工监测目的,采用先进的仪器、设备和监测技术。
(3)各监测项目能相互校验,以利数值计算、原因分析和状态研究。
(4)监测项目以位移监测为主,同时辅以应力、应变监测,各种监测数据应相互印证,确保监测结果的可靠性。
(5)观测点类型和数量的确定结合本工程性质、地质条件、设计要求、施工特点等因素综合考虑,并能全面反映被监测对象的工作状态。
(6)为验证设计数据而设的测点布置在设计中最不利位置和断面上,为结合施工而设的测点布置在相同工况下的最先施工部位,其目的是及时反馈信息、指导施工。
(7)表面变形测点的位置既要考虑反映监测对象的变形特征,又要便于应用仪器进行观察,还要有利于测点的保护。
(8)埋测点不能影响和妨碍结构的正常受力,不能削弱结构的刚度和强度。
(9)在实施多项内容测试时,各类测点的布置在时间和空间上应有机结合,力求使一个监测部位能同时反映不同的物理变化量,找出内在的联系和变化规律。
(10)根据监测方案预先布置好各监测点,以便监测工作开始时,监测元件进入稳定的工作状态。
(11)如果测点在施工过程中遭到破坏,应尽快在原来位置或尽量靠近原来位置补设测点,保证该点观测数据的连续性。
(12)健全监测设备管理制度,建立设备台帐,指定专人负责管理,确保监测设备完好。
(13)强制执行监测设备按法定周期鉴定制度,按期定时对监测设备进行送检。
到期未检的仪器设备不准投入使用,并追究管理人员责任。
(14)建立监测设备的使用,维修管理制度,对设备已损坏或认定精度达不到规范要求的,必须立即撤离工地,严禁再使用。
(15)加强监测文件、资料、原始记录的管理,并设专人负责。
感谢您的阅读!。