(8)石墨烯量子点的红色,黄色和蓝色发光:合成,机理和细胞成像 001
- 格式:pdf
- 大小:3.64 MB
- 文档页数:16
发光石墨烯量子点的应用及未来展望摘要作为石墨烯家族的最新成员,石墨烯量子点(graphene quantum dots,GQDs)除了具有石墨烯优异的性能之外,还因其明显的量子限域效应和尺寸效应而展现出一系列新颖的特性,吸引了各领域科学家们的广泛关注。
在这篇论文中,我们主要综述了石墨烯量子点的制备方法以及潜在应用,此外还说明了石墨烯量子点的发光机制以及对于其的展望。
关键词:石墨烯量子点,发光材料,应用1 引言碳是地球上储量最丰富的元素之一,一次又一次得带给我们各种明星材料。
1985年,克罗托、科尔和斯莫利三位科学家发现了富勒稀(C60)。
1996年获得诺贝尔化学奖,这是零维碳材料的首次出现。
而1991年碳纳米管的发现则成了一维碳材料的代表。
1947年就开始了石墨烯的理论研究,用来描述碳基材料的性质,迄今有60多年历史。
直到2004年,Novoselov和Geim (英国曼彻斯特大学教授)利用微机械剥离法使用胶带剥离石墨片,首次制得了目前最薄的二维碳材料—石墨稀,仅有一个原子厚度,2010年他们获得了诺贝尔物理奖,从此石墨稀成了物理学和材料学的热门研究对象。
石墨烯量子点(GQDs),一种新型的量子点,当GQDs尺寸小于100 nm时,就会拥有很强的量子限制效应和边缘效应,当尺寸减小到l0nm时,这两个效应就更加显著,会产生很多有趣的现象,这也引发了广大科学家的研究兴趣。
GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。
GQDs的粒径大多在10 nm左右,厚度只有0.5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。
GQDs的合成方法不同,尺寸和含氧量不同,使紫外可见吸收峰位置不同。
不同的合成方法使GQDs的光致发光性质不同,光致发光依赖于尺寸、激发波长、pH以及溶剂等。
有些GQDs 还表现了明显的上转换发光特性,GQDs不仅拥有光致发光性质还有优越的电致化学发光性能。
《石墨烯量子点合成与表征》实验综述报告何月珍;孙健【摘要】A new comprehensive experiment - synthesis and characterization of graphene quantum dots was recommended, and its goals, principles, instruments and agents, procedures, and the issues that need to pay attention to in the experiments were studied. The experiment was basedon the focus of chemistry, material science, and biology, and covered many experimental skills that college students learned in basic chemistry experiment, such as preparation of compounds, component analysis, and characterization by instrumentals. This experiment had a easily synthetic method, all-round characterization method, modular contents, and flexible scheduling, so it can be as the comprehensive experiment course for the students in chemistry and chemical engineering major.%介绍一个综合化学实验———石墨烯量子点的制备及其表征,阐述了其实验目的、实验原理、仪器和试剂、实验步骤和注意事项。
石墨烯量子点是准零维的纳米材料,其内部电子在各方向上的运动都受到局限,所以量子局限效应特别显著,具有许多独特的性质。
这或将为电子学、光电学和电磁学领域带来革命性的变化。
应用于太阳能电池、电子设备、光学染料、生物标记和复合微粒系统等方面。
石墨烯量子点在生物、医学、材料、新型半导体器件等领域具有重要潜在应用。
能实现单分子传感器,也可能催生超小型晶体管或是利用半导体激光器所进行的芯片上通讯用来制作化学传感器、太阳能电池、医疗成像装置或是纳米级电路等等。
大小不同的量子点结构,其中大的量子点也被称为单电子晶体管(SET),被用作探测器读出旁边小量子点内的电荷状态。
单电子晶体管多栅极调控的石墨烯串联双量子点器件,通过低温输运,双点的耦合强度可以从弱到强的调节。
从而引起遂穿耦合能变化,表明这种高度可控的系统非常有望成为将来无核自旋的量子信息器件。
科学家还测量了栅极调控的双层石墨烯并联双量子点,通过背栅和侧栅电极的调控可以将并联双点调节到不同的耦合区间.从双点耦合的蜂窝图抽取出了相关的耦合电容、耦合能等参数的高灵敏度,清楚地探测到量子点内的库仑阻塞信号和激发态能谱,甚至传统输运测量不到的微弱库仑充电信号也能被探测到。
石墨烯量子点(GQD)为基础的材料,可能会使OLED显示器和太阳能电池的生产成本更低。
新的GQD不使用任何有毒金属(如:镉、铅等)。
使用GQD为基础的材料,可能使未来OLED面板更轻、更灵活、成本更低。
在生物医药领域,石墨烯量子点极具应用前景。
在生物成像方面,在理论和实验上都已证实,量子限制效应和边效应可诱导石墨烯量子点发出荧光。
在生物医学研究领域中,常用荧光标记来标定研究对象,却会因为过长的激发时间使得荧光失效被称为光漂白(photo bleaching)使得一般荧光剂在生物医学上的应用受到限制。
石墨烯量子点拥有稳定的荧光光源,石墨烯量子点在制作时产生的缺陷,当氮原子在石墨烯量子点生产中占据原先碳原子的位置后又脱离,使其位置有一氮空缺(NitrogenVacancy, NV),而该缺陷在接受可见光激发后就会发出荧光。
石墨烯量子点简介石墨烯量子点简介1、石墨烯量子点定义量子点(QuantumDot)是由有限数目的原子构成,属于准零维材料,即在三个维度上尺寸均呈现纳米级别。
外观恰似球形物或者类球形,其内部电子在各个方向的运动均会受到限制,因此量子限域效应非常明显。
石墨烯量子点(Graphene Quantum Dots)一般是横向尺寸在100nm以下,纵向尺寸可以在几个纳米以下,具有一层、两层或者几层的石墨烯结构,也就是特殊的非常小的石墨烯碎片。
它的特性来源于石墨烯以及碳点,表现出生物低毒性、优异的水溶性、化学惰性、稳定的光致发光、良好的表面修饰。
2、石墨烯量子点制备石墨烯量子点的合成可以看做是对碳纳米晶体合成方法的延伸和补充,仍旧分为:自上而下和自下而上的制备。
自上而下的方法是指通过物理或化学方法将大尺寸的石墨烯薄片切割成小尺寸的GQDs,包括水热法、电化学法和化学剥离碳纤维法等;自下而上的制备法则是指以小分子作前驱体通过一系列化学反应制备GQDs,主要是溶液化学法、超声波和微波法等。
3、石墨烯量子点发光机理荧光是种光致冷发光的现象,当某种常温物质经某种波长的入射光(通常是紫外线或x-ray)照射,吸收光能后进入激发态,且立即退激发并发出出射光,而荧光可在吸光激发后约10^-8秒内发光,其能量小于吸光的能量。
通常,若是把材料制成量子点大小,则电子容易受到激发而改变能阶,与电洞(空穴)结合后就会放出光。
石墨烯量子点由于边缘效应和量子尺寸效应,可表现出独特的光化学特质。
石墨烯除了具有碳量子点所具有的优点外,其荧光具有激发波长依赖性。
当激发波长从310nm 变成380nm时,荧光发射峰位置的相应从450nm移至510nm,光致发光强度迅速降低。
氧化石墨烯表现出宽谱的红光发射,取决于其含有的含氧官能团,而氧化石墨烯被还原之后由于含氧官能团减少以及结构的改变,主要呈现蓝光(第一性原理模拟推测其由碳空位缺陷引发)。
修饰类石墨烯具有相似的规律,发光光谱主要由两部分组成:蓝光发光峰位(不移动)、长波长发光(峰位移动),相对于没有经过修饰的石墨烯,其长波长发光显著增强。
石墨烯调研报告(石墨烯量子点)零维的石墨烯量子点(grapheme quantum dots, GQDs),由于其尺寸在10nm以下,同二维的石墨烯纳米片和一维的石墨烯纳米带相比,表现出更强的量子限域效应和边界效应,因此,在许多领域如太阳能光电器件,生物医药,发光二极管和传感器等有着更加诱人的应用前景。
GQDs的制备GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。
GQDs的粒径大多在10 nm左右,厚度只有0。
5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。
GQDs的制备方法有自上而下法(top—down)与自下而上法(bottom-up)两种。
top-down 法指将大片的石墨烯母体氧化切割成尺寸较小的石墨烯纳米片,经进一步剪切成GODs,主要有水热法、电化学法和化学剥离碳纤维法.水热法是制备GQDs最为常见的一种方法,先将氧化石墨烯在氮气保护下热还原为GNSs,接着将GNSs置于混酸(混酸体积比 VH2SO4/VHNO3=1:3)中超声氧化,再将氧化的GNSs置于高压反应釜中200℃热切割.反应机理如图3所示, Pan等采用该方法化学切割石墨烯制备GQDs,其径主要分布在5-14 nm,并发现量子点在紫外区有较强光学吸收,吸收峰尾部扩展到可见区。
光致发光光谱一般是宽峰并且与激发波长有关,当激发波长从300到407 nm变化,发射峰向长波方向移动,激发波长为60nm时,量子点发出明亮的蓝色光,此时发射峰最强。
图3. 水热法制备GQDs反应机理Fig。
3 mechanism for the preparation of GQDs by hydrothermal methodJin等采用两步法,先用水热法制备出GQDs,再将聚乙二醇二胺修饰到GQDs 上。
该法制备的胺功能化的石墨烯量子点可通过功能化物的迁移效应有效地调节石墨烯量子点的光致发光性能。
石墨烯量子点一文了解石墨烯量子点性能、合成及应用量子点 = 非常小的颗粒。
量子← 因为太小了显示出了量子效应点← 颗粒,不是丝,不是片发布日期:2019/10/17 10:37:53石墨烯量子点(GQDs)是指石墨烯片层尺寸在100nm以内,片层层数在10层以下的一种新兴碳质荧光材料。
通常来讲,石墨烯量子点包含了石墨烯量子点、氧化石墨烯量子点、部分还原的氧化石墨烯量子点的一大类结构类似性能相同的碳质荧光材料及其衍生物的总称。
石墨烯量子点的性能石墨烯量子点的紫外吸收性能由于石墨烯量子点中的C=C双键结构,能够发生π-π跃迁,因此它能够在短波长范围内大量吸收光子。
通常来说,会在紫外吸收谱260-320nm范围内显示出较强的吸收峰,并伴随延伸至可见光范围的拖尾。
同时,由于n-π跃迁的影响,石墨烯量子点还有可能在270-390nm范围内出现肩峰。
并且,由于表面修饰官能团和表面钝化的影响,紫外吸收峰的位置和峰形均会受到影响。
石墨烯量子点的光致发光性能石墨烯量子点的发光性能是其最重要的性能,也是被研究人员研究最广泛和最贴近实际应用的性能。
相比于球状的碳量子点来说,片层状结构的石墨烯量子点具有更加规整的晶状结构,因而会有更高的荧光量子产率。
石墨烯量子点的合成石墨烯量子点的制备有自上而下和自下而上两种方法。
自上而下合成自上而下的方法是指经过物理或化学方法将大尺寸的物质刻蚀成纳米尺寸的石墨烯量子点,有溶剂热法、电化学和化学剥离等制备路径。
溶剂热法是制备石墨烯量子点中许多方法中的一种方法,其工艺可以分三步:首先将氧化石墨烯在真空状态下通过高温还原成石墨烯纳米片;在浓硫酸和浓硝酸中氧化并切割石墨烯纳米片;最后将氧化后的石墨烯纳米片在溶剂热环境下还原并形成石墨烯量子点。
电化学法制备石墨烯量子点工艺的工艺过程可总结为三个阶段:第一阶段是石墨即将剥落形成石墨烯的诱导期,电解液的颜色开始从无色到黄色再到暗棕色的变化过程;第二阶段是阳极的石墨发生明显膨胀;第三阶段是石墨片已经从阳极剥落,与电解液一起形成黑色的溶液。
石墨烯量子点组装纳米管:高效的拉曼增强的一个新平台摘要石墨烯量子点,单一或少层石墨带的尺寸只有几个纳米,是一种具有独特性能的新量子点(GDS),在几何上有良好定义的量子点的组件提供了控制单个量子点间的光学和电子耦合的机会,因此也提供了凭借整体特征的价值来发挥组装量子点全部潜力的可能。
在目前的研究中,我们提出了将有序组装(0D)的零维功能的石墨烯量子点组装为一维纳米管(NT)阵列和证实他们作为一种高效的表面增强拉曼散射(SERS)应用的自由金属新平台,有着非凡的潜力。
用纳米多孔氧化铝模板的电泳沉积法已经制备出了0D GQDs的分级多孔1D纳米管结构,在GQDs的独特的多孔纳米管结构的基础上,石墨烯纳米管可以确保目标分子和GQDs之间有更高效的电荷转移,从而产生比在平坦的石墨烯片上更强的SERS效应。
一维纳米管0图形询问与设计系统独特的架构提供了一个新的和制造的SERS基底设计观点,0维石墨烯量子点的一维碳纳米管的独特结构用于设计和制造的SERS基底提供了一个新的观点。
关键词:石墨烯量子点,纳米管,组装,表面增强拉曼散射,模板正如通过石墨烯纳米带和含氮石墨烯所证明的那样,石墨烯纳米结构的几何和化学性质在确定其性质上起着重要作用[1-3]。
石墨烯量子点(GQDs)代表一种新型量子点(量子点),单个或数层石墨只有几个纳米微粒的大小,由于量子限制效应和边缘效应[4-12],石墨烯量子点表现出独特的性能,如光致发光[4][8][13]和缓慢的热载流子弛豫[14],这些都使它们不同于那些传统的石墨烯片。
除了稳定的光致发光,石墨烯量子点还具有较低的细胞毒性和良好的生物相容性[15],他们也可以克服溶解度极差和石墨烯片有强烈的聚集倾向这些问题[12],结果是石墨烯量子点具有制造/设计有特殊应用的新设备的前途。
石墨烯量子点从成像到光电器件这些重要的应用都是可以预期的,到目前为止,已经发展了包括水/溶剂热法[4][15],溶液化学法[5][6][8][21][22],在钌表面转化C60,酸处理和化学剥脱碳纤维等各种方法来控制具有特殊性质和功能的量子点的合成。
(完整)石墨烯量子点制备与应用编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)石墨烯量子点制备与应用)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)石墨烯量子点制备与应用的全部内容。
石墨烯量子点的概述1。
1。
1 石墨烯量子点的性质GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显著,因此具有许多独特的物理和化学性质。
其与传统的半导体量子点(QDs)相比,GQDs具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求.GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。
目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显著变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小.GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。
石墨烯量子点发光机理
石墨烯量子点(GQDs)是一种直径小于10纳米的碳基材料。
GQDs在
紫外光和可见光范围内发出可调节的荧光,并且具有高量子产率和生物相
容性。
GQDs的发光机理主要涉及有限的π电子能级和表面缺陷态。
GQDs的发光过程可以被描述为碳原子上的π电荷向表面缺陷态的转移,从而形成激子。
这个激子可以通过非辐射耗散机制通过表面缺陷态释
放出能量并转化为带边缘发光的荧光。
GQDs的辐射为由表面缺陷态形成
的能带边缘,其能带随着GQDs大小的变化而变化。
较小的GQDs带隙更大,发射波长更短,而较大的GQDs带隙更小,发射波长更长。
此外,GQDs的荧光还受到表面化学修饰的影响。
例如,通过引入化
学基团可以改变GQDs的表面性质,进而调节荧光性质。
通过调节GQDs的
表面缺陷态和表面化学修饰,可以实现精确的荧光发射调节,该特性使得GQDs在生物医学成像和传感、量子电子学、光电器件等领域有着广泛的
应用前景。
Supporting InformationRed, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular ImagingTian Gao†, Xi Wang†, Li-Yun Yang†, Huan He†, Xiao-Xu Ba†, Jie Zhao†, Feng-Lei Jiang*,†, Yi Liu*,†,‡,§†State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences,Wuhan University, Wuhan 430072, P. R. China‡ School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.§ College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, P. R. China.*Corresponding author: yiliuchem@ (Y. Liu);fljiang@ (F. L. Jiang)1.Syntheses process of polyethyleneimine (PEI)-coated graphene quantum dots (GQDs)Simple and normal low temperature heating methods are adopted to synthesis PEI-coated GQDs. (Figure S1) At beginning, yellow photoluminescent (PL) GQDs are prepared from carbon black by acid assisted oxidation exfoliation with a serials of purification methods. To synthesis PEI-coated GQDs (PEI1800 GQDs and PEI600 GQDs), yellow GQDs and PEI were mixed together in ultrapure water, and the solution was heated to boiling temperature. After the gel formed, 10 mL ultrapure water was added in drop by drop to prevent it from drying and scorching. Then after adding about 3 times of ultrapure water, the PEI-coated GQDs were successfully prepared. By using PEI with different molecular weight, both blue and red PL PEI-coated GQDs can be obtained.Figure S1. Synthesis of PEI-coated GQDs with different PL emission colors.parison the powders of three different kinds of GQDs.Figure S2. Photos of GQDs and PEI-coated GQDs powder: (a) Uncoated GQDs; (b) PEI1800 GQDs; (c) PEI600 GQDs. All of them are pure and fluffy.3.Excitation dependent PL property of the Red light-emitting PEI600-coated GQDs and emission spectra of bare GQDs and PEI-coated GQDs under 365 nm After normalizing the PL intensity of the emission peaks under different excitation wavelength, it is clearly that the emission peaks red shifted (Figure S3a) with the increasing of excitation wavelength in a large scale. As shown in Figure S3b, the PL peaks under 365 nm of bare GQDs and PEI-coated GQDs located at different color region.Figure S3. (a) Excitation-dependent PL property of PEI600 GQDs (PL intensity normalized); (b) emission spectra of bare GQDs and PEI-coated GQDs under 360 nm (PL intensity normalized).4.XPS spectra of bare GQDs and PEI-coated GQDsAs shown in Figure S4a, b and c, apparently strong O 1s, N 1s and C 1s peaks can be seen both in the survey spectra of PEI1800 GQDs and PEI600 GQDs, while there is no obvious N 1s peak in that of bare GQDs. Figure S4d, e and f exhibit the C 1s high-resolution spectra, Figure S4g, h and I demonstrate the N 1s high-resolution XPS (HRXPS) spectra and Figure S4j, k and l show the O 1s high-resolution spectra of blue emitting PEI1800 GQDs, yellow emitting bare GQDs, and red emitting PEI600 GQDs, respectively. In the XPS data analyses, peak de-convolutions were performed by using a Gaussian-Lorentzian peak shape after a Shirley background subtraction. From C 1s spectra, it is evidently that there is a –COOH peak at 288.5 eV in the spectrum of bare GQDs. However, in the spectra of PEI1800 GQDs and PEI600 GQDs, there are no –COOH existed, but new –C-N peaks appear at 285.8 eV and –C=O peaks at 287.6 eV. Furthermore, it is easily to find that the N 1s spectrum of bare GQDs does not show apparent N 1s peaks, but which of both PEI1800 GQDs andPEI600 GQDs possess apparent N 1s peaks for –CH2NH2 (around 398.3 eV) and –CONHR (around 399.6 eV). Thus, take both C 1s and N 1s spectra into account, it can prove that carboxyl function groups (-COOH) changed to amide function groups (-CONH-) during the coating reactions. The results are consistent with the observation from FTIR spectra of the bare GQDs and PEI-coated GQDs.Figure S4. XPS spectra and C 1s, N 1s, and O 1s high-resolution XPS (HRXPS) spectra of GQDs and PEI-coated GQDs. (a), (b), and (c) are survey XPS spectra of PEI1800 GQDs, bare GQDs, and PEI600 GQDs, respectively. C 1s HRXPS spectra of PEI1800 GQDs (d), bare GQDs (e), and PEI600 GQDs (f) reveal that the carboxyl function group changed to amide bond during the coating reaction. From N 1s HRXPS spectra of PEI1800 GQDs (g), bare GQDs (h), and PEI600 GQDs (i), it is foundthat –NH2 and C-N bond only exist in PEI-coated GQDs. In additon, O 1s HRXPS of PEI1800 GQDs (j), bare GQDs (k), and PEI600 GQDs (l) are presented.5.Elemental content analyses of GQDs and PEI-coated GQDs by elemental atomic ratio from XPSTable S1 exhibits the (N 1s)/(C 1s) and (O 1s)/(C 1s) atomic ratios of GQDs and PEI-coated GQDs. For yellow-emitting bare GQDs, there were little nitrogen element and rich of oxygen function groups. However, after coating reaction, both of blue-emitting PEI1800 GQDs and red-emitting PEI600 GQDs possess a high nitrogen/carbon ratio and lower oxygen/carbon ration because of the carboxyl function group transformed into amide function groups during the reaction. For PEI, the (N 1s)/(C 1s) ratio is about 2, while in bare GQDs, the ratio is 0.038, so when the PEI linked to the surface of GQDs, the (N 1s)/(C 1s) would increase a lot. At the same time, the (O1s)/(C 1s) atomic ratio decreases, because there is no oxygen in PEI, and during the reaction, -COOH changed to –CONHR, which lost an oxygen atom in every amidation. Comparing the ratios between blue-emitting PEI1800 GQDs and red-emitting PEI600 GQDs, we can find that the red-emitting GQDs have a higher nitrogen/carbon ratio but lower oxygen/carbon ratio, which means that more short-chain PEI600 molecules were coated on the same amount bare GQDs than that of long-chain PEI1800 molecules. Moreover, it can further confirm that the structure of PEI600 GQDs is like a big cage that contains more PEI units.Table S1. (N 1s)/(C 1s) and (O 1s)/(C 1s) atomic ratios determined from the full-range XPS spectra of bare PEI1800 GQDs, GQDs, and PEI600 GQDsN 1s / C 1s ratio O 1s / C 1s ratio PEI1800 GQDs 19.6% 24.7%Bare GQDs 3.8% 59.5%PEI600 GQDs 21.1% 16.1%6.XRD spectra of GQDsAs exhibited in Figure S5, It is apparently to find the XRD peaks for both bare GQDs and PEI-coated GQDs. For bare GQDs, there is a comparable narrow peak around 23.1° in the spectrum, which coincided with weak broad (002) facet of graphite structure.1-2 However, this peak moved to 20° when PEI coated on the surface of GQDs in PEI1800 GQDs and PEI600 GQDs systems. The decrease of the 2-θ degree indicated that the lattice parameter increased, resulted from the adding of disordered carbon and nitrogen atoms from PEI chain. That further manifested that stable core-shell structures formed after the coating reaction.Figure S5. XRD spectrum of GQDs. An obviously peak shift from 23.1° to 20° occurred after the coating reaction.7.Zeta potential of GQDsIt is clearly that the GQDs are electronegtive with -57.27 mV and the PEI-coatedGQDs are almost electroneutral.Figure S6. Zeta potential of GQDs and PEI-coated GQDs.8.Schematic diagram of the key reaction that affect the PL property most. Before coating reaction, there were numerous carboxyl function groups on the surface of GQDs, and the C=O part could conjugate with the inner graphene core. Thus, the electron can transfer between them freely. While, after amidation, the atoms in amide bond were in co-plane and blocked the electron transfer between inner core and the outside chain. Thus, the amidation reaction changed the conjugation modes of PEI-coated GQDs.Figure S7. Schematic diagram of the influence of function group change.9.Theoretical calculation of a serials of GQDsIt is quite difficult to study a single nanoparticle by traditional methods, so the theoretical calculation is an excellent method to understand the PL mechanism. As shown in Figure S8, the conjugation mode between the two functional groups and inner graphene core was calculated, respectively. By theoretical calculation with density functional theory (DFT) B3LYP/6-31G*, the molecular orbitals of amide-GQD G1 (C50H21NO) (Figure S8a), carboxyl-GQD G2 (C49H18O2) (Figure S8b) and G1-N (C53H28N2O) (Figure S8c) were obtained. G1 and G2 are different in the linking groups and G1-N simulates a real PEI branch chain. It is evident that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital(LUMO) play important roles in the chemical and PL properties of a compound. Compared with carboxyl-GQDs, amide-GQDs can induce a bigger energy gap. In reality, although there are always many functional groups linked to the grapheme core, in the theoretical calculation, only one functional group was taken into account for convenience. Therefore, the influence caused by amidation of carboxyl groups may be much more significant in real system. As a result, the changes of the energy gap of PEI-coated GQDs would be influenced cumulatively. In addition, the width of band gap is positively correlated with that of energy gap. Therefore, when the band gap was enlarged, the PL emission peak would be blue-shifted.Figure S8.Molecular orbitals of GQDs: (a) G1, amide-GQD; (b) G2, carboxyl-GQD; (c) G1-N, PEI chain-GQDs; (d) Comparison of the energy gaps of GQDs with different substituents.10.Energy gap information of GQDsTable S2. Energy gaps of a series of GQDs.GQDs G1 G1-2C G1-3C G1-4C G1-5C G1-N G2ΔE (eV) 1.21798 1.21825 1.21798 1.21825 1.21825 1.21771 1.21254 11.PL lifetime, chemical stability and optical stability of GQDsFigure S9. (a) PL lifetime of three kinds of GQDs. (b) Dependence of PL intensity on excitation times at maximum excitation wavelength for GQDs by fluorescence spectrophotometer. (c) Effect of ionic strengths on the PL intensity of three GQDs (ionic strengths were controlled by various concentrations of KCl). (d) Dependence ofPL intensity on excitation time for all these three GQDs under 365 nm UV lamp (24W).12.Biological stability and toxicity test of GQDs and PEI-coated GQDsTwo kinds of cell lines, human embryonic kidney cell line 293 (HEK-293) and human primary glioblastoma cell line 87 (U-87), are used to test the toxicity of GQDs. After 24 hours co-incubation, all of the GQDs showed quite low cytotoxicity when the cell lines exposed to GQDs with concentration from 0 to 200μg mL-1.Figure S10. Cell viability of the HEK-293 (a, c, e) and SGC-7901 (b, d, f) cells after 24 h incubation with the three kinds of GQDs: PEI1800 GQDs (a) and (b); uncoated GQDs (c) and (d); PEI600 GQDs (e) and (f). Mean ± SD, n=6.13.Quantum Yields (QYs) measurement of GQDs and PEI-coated GQDsIn order to valuate the luminescent properties of GQDs and PEI-coated GQDs, the QYs were measured by FL emission spectroscopy and UV-vis absorption spectroscopy by using reference method. Quinine sulfate (QS) in 0.1 M H2SO4was used as the reference for yellow-emitting bare GQDs and blue-emitting PEI1800GQDs, and Rhodamine B (RhB) was used as the reference for red-emitting PEI600 GQDs. All the QYs of GQDs and PEI-coated GQDs can be calculated according to the equation below:Q QIn the equation, Q represents the quantum yield, I stands for the measured integrated emission intensity, A is the UV-vis absorbance at PL excitation wavelength, and n is the refractive index, R means the reference.Because the solutions of QS, bare GQDs, and PEI1800 GQDs were prepared by 0.1 M H2SO4, the n1 were always 1.34 (400 - 550 nm at 20℃). And the solution of RhB and PEI600 GQDs were prepared by ultrapure water, the n2 were always 1.33. Hence, the (n2/n R2) ratio always equals to 1.In a typical measuring processs, more than 5 groups of samples with different intensity of UV absorbance (A), which should be less than 0.1, were prepared. (The wavelength of absorbance were 350 nm for QS, bare GQDs, and PEI1800 GQDs, and 495 nm forRhB and PEI600 GQDs.) And then these sampls were measured by FL specstropy and their intensity graphs were saved for integral operation, integrating all the effective peak area, to get the integrated emission intensity (I). Then, the I/A ratio could be abtained from the slope value which calculated by linear fitting to the data. At last, according to the known QYs of QS and RhB, the QYs of bare GQDs and PEI-coated GQDs could be calculated by the equation above.Figure S11. Integrated emission intensity (I) vs. absorbance (A) graph and I/A linear fitting of quinine sulfate (a), bare GQDs and PEI1800 GQDs (b), Rhodamine B (c), and PEI600 GQDs (d).Table S3. Calculation results of QYs of bare GQDs and PEI-coated GQDsSample Integrated emissionIntensity (I)Absorbance (A) Refractive index of solvent(n)Quantum yield(Q)Quinine Sulfate 835789 1.34 55.7% Bare GQDs 52349 1.34 3.5%PEI1800 GQDs 42545 1.34 2.8% Rhodamine B 1795200 1.33 31%PEI600 GQDs 97668 1.33 1.7%As shown in Figure S11, more than five groups of data were used to do the linear fitting for every sample. The slope of the linear line correlated to I/A ratio. Table S3 exhibited the data in details, according to former researches, the QY of QS is 55.7%,3 and the QY of RhB is 31% in water,4 so other QYs could be calculated. The QYs of bare GQDs, PEI1800 GQDs, and PEI600 GQDs are 3.5%, 2.8%, and 1.7%, respectively. The slightly decrease of QY of monocoated PEI1800 GQDs was of highly possibilities caused by the energy dissipation from the vibration of PEI chain. The QY decrease of PEI600 GQDs was from the self-absorption from their linking and stacking multicoated capsule-like structure. These QYs are comparable to the GQDs synthesized before by other groups and sufficient for applications, such as bioimaging in this paper.References:(1) Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. J. Am. Chem. Soc. 2012,134, 15-8.(2) Tang, L.; Ji, R.; Li, X.; Teng, K. S.; Lau, S. P. Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots. Part. Part. Syst. Charact. 2013,30, 523-531.(3) Eastman, J. W. Quantitative Spectrofluorimetry-the Fluorescence Quantum Yield of Quinine Sulfate. Photochem. Photobiol. 1967,6, 55-72.(4) Magde, D.; Rojas, G. E.; Seybold, P. G. Solvent Dependence of the Fluorescence Lifetimes of Xanthene Dyes. Photochem. Photobiol. 1999,70, 737-744.。