数列通项公式求解及用放缩法和数学归纳法证明数列不等式
- 格式:docx
- 大小:112.56 KB
- 文档页数:7
证明数列不等式之放缩技巧以及不等式缩放在数列中应用大全证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时,(2)12nn n +<. 证法一:令)6(2)2(≥+=n n n c nn ,则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==< 于是当6n ≥时,2(2)1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k k k k k k k k k k k k k k++++++++=⨯<<++g 由(1)、(2)所述,当n ≥6时,2(1)12n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明:()23111123n n N a a a *++++<∈L . 证明:nn n n n a a 121121212211211111⋅=-⋅=-<-=+++Θ, ∴32])21(1[321)21(...12111112122132<-⋅=⋅++⋅+<+++=-+n n n a a a a a a S Λ. 例3. 已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1) 试比较n a 与54的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。
用放缩法证明数列中的不等式数列的放缩法是一种通过递推关系以及寻找合适的不等式对数列进行估计的方法。
该方法在不失一般性的情况下,常常可以将原数列与一个已知数列进行比较,从而推导得出数列的性质。
本文将通过数学归纳法,对给定的数列进行放缩法证明,并给出详细推导过程。
假设我们有一个数列${a_n}$,其中$n \geq 1$。
我们要证明数列中的不等式,即要证明对于任意的$n \geq 1$,有$a_n \leq b_n$,其中${b_n}$是一个已知的数列。
我们将使用数学归纳法来证明这个结论。
首先,我们对$n=1$进行证明,即证明$a_1 \leq b_1$。
因为$n=1$是最小的情况,所以我们直接检验$a_1$和$b_1$的大小关系即可。
接下来,我们假设当$n=k$时,不等式$a_k \leq b_k$成立,即数列前$k$项满足不等式。
然后,我们要证明当$n=k+1$时,不等式$a_{k+1} \leq b_{k+1}$也成立。
根据数列的递推关系,我们可以推导出数列前$k+1$项的关系式:$$a_{k+1}=f(a_k)$$其中$f(x)$是一个函数,表示数列的递推关系。
由于我们已经假设在$n=k$时$a_k \leq b_k$成立,因此我们可以得到:$$a_{k+1} = f(a_k) \leq f(b_k)$$这是因为$f$是一个单调递增的函数,所以不等式保持不变。
根据已知数列${b_n}$的性质,我们可以得到:$$f(b_k) \leq b_{k+1}$$这里的不等式是基于对已知数列的假设,即已知数列${b_n}$满足这个不等式。
综合以上的不等式关系$$a_{k+1} \leq f(b_k) \leq b_{k+1}$$因此,当$n=k+1$时不等式$a_{k+1} \leq b_{k+1}$也成立。
根据数学归纳法原理,我们可以得出结论:对于任意的$n \geq 1$,数列${a_n}$满足不等式$a_n \leq b_n$。
放缩法在数列不等式中的应用数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。
而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。
现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。
1. 直接放缩,消项求解例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈,(Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。
(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。
(Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭ (111111562216412)n ⎛⎫=+-<+= ⎪+⎝⎭,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。
再用裂项的方法求解。
另外,熟悉一些常用的放缩方法, 如:),,2,1(11121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈; (Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; 分析:(Ⅰ)数学归纳法证明(Ⅱ)结论可变形为1)3(1-≤-n n c a ,即不等式右边为一等比数列通项形式,化归思路为对 n a -1用放缩法构造等比型递推数列,即)1(3)1)(1(112111-----≤++-=-n n n n n a c a a a c a解:(Ⅰ)解略。
高三数学数列不等式证明——裂项相消与放缩法总结一、裂项相消法通项特征:通项一般是分式,分母为偶数个因式相乘,且满足a是常数,a-=原分子分母大的因式分母小的因式2.解题思路类型①⎪⎭⎫⎝⎛+-=+knnkknn111)(1类型②()nknknkn-+=++11类型③⎪⎭⎫⎝⎛+--=-121121211412nnn类型④()()⎪⎭⎫⎝⎛++--=--121121114412nnnn nn类型⑤kkkk nnnnn+-+=++++112121)2)(2(2类型⑥kakakakaaannnnn+-+=++⎪⎭⎫⎝⎛-++1111))((11二、错位相减法错位相消法三种思维求法:以下三种思维,但还是建议练熟第一种。
如果第一种都掌握不了的学生,基本上也记不住第二和第三种方法。
1.思维结构结构图示如下2.公式型记忆:1(),n S=n+)q,,11n nn nC a n b q A B ca b AB C Bq q-=⋅++-==---则其前项和(其中A=3.可可裂项为如下11(),q1),[(1))](),((())k=pq-pp tb=pqnnn n nn n n na knb qa p n t q pn t q C C C pn t qtq t++=+≠=++-+=-=+⎧⎨+-⎩(则其中可通过方程组计算出、值:11=a()n=a[( )( )( )...( )]n=1 n=2 n=3 n=n-++++=⇑⇑⇑⇑原式分母小的因式分母大的因式前项和化简放缩模型——平方型与指数型证明下列不等式:1、、2、)(21......31211222*∈<++++Nnn3、)(471......31211222*∈<++++Nnn4、)(351......31211222*∈<++++Nnn)(21)12()12(1......751531311*∈<+⨯-++⨯+⨯+⨯NnnnnnS + + +...+n=1 n=2 n=3 n=nqS + + +...+q-=⇑⇑⇑⇑=①②①的基础上左右同时乘,即在①式中指数加1①②代入通项公式,等差数列当等比数列的系数在n-+k( )=+k( )=-S=--n得(1q)S①中的第一项指数函数相加②的最后一项①中的第一项等比求和公式②的最后一项化简两边同时除以(1q)即得平方型:分母是两项积可放缩到裂项相消模型指数型:可放缩为等比模型5、)(45)12(1......51311222*∈<-++++N n n6、),2(32121......121121121432*∈≥<-++-+-+-N n n n7、)(23231......231231231332211*∈<-++-+-+-N n nn8、)(342 (3232221211)432*+∈<-++-+-+-N n n n n一、单选题1.已知数列{}n a 的首项是11a =,前n 项和为n S ,且()1231n n S S n n N *+=++∈,设()2log 3n n c a =+,若存在常数k ,使不等式()()116n nc k n N n c *-≥∈+恒成立,则k 的取值范围为( ) A .1,9⎡⎫+∞⎪⎢⎣⎭B .1,16⎡⎫+∞⎪⎢⎣⎭C .1,25⎡⎫+∞⎪⎢⎣⎭D .1,36⎡⎫+∞⎪⎢⎣⎭2.已知数列{}n a 的首项是11a =,前n 项和为n S ,且1231n n S S n +=++(*N n ∈),设()2log 3n n c a =+,若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为( )A .19B .116C .125D .136二、填空题3.已知数列{}n a 中,112a =,()1n n n n a a a +-=,*n ∈N ,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S .若对于任意的*n ∈N ,不等式n S t <恒成立,则实数t 的取值范围是________.4.已知首项为1的数列{}n a 的前n 项和为n S ,且()12n n nS n S +=+,数列2112n n n n a a a +++⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若()110n n T λ++-⋅>,且λ∈Z ,则λ=___________.三、解答题5.已知数列{}n a 中11a =,)2n a n =≥.(1)求{}n a 的通项公式;(2)若21n n c a -=,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:21211n n n a T a +--<≤.6.已知数列{}n a 满足1222n n a a a a =-,*n N ∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记12n n T a a a =,*n N ∈,22212n n S T T T =++.证明:当*n N ∈时,11243n n S a +>-.7.已知函数()()3log 1(0)1x f x x x +=>+的图像上有一点列()()*,n n n P x y n N ∈,点n P 在x 轴上的射影是(),0n n Q x ,且(1322n n x x n -=+≥,且)*1,2n N x ∈=.(1)求证:{}1n x +是等比数列,并求数列{}n x 的通项公式;(2)对任意的正整数n ,当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,求实数t 的取值范围;(3)设四边形11n n n n P Q Q P ++的面积是n T ,求证:1211132nT T nT +++<.8.已知正项数列{}n a 的首项11a =,前n 项和nS 满足)2n a n ≥. (1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的*N n ∈,不等式24n T a a <-恒成立,求实数a 的取值范围.9.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n nT n >>+.10.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+. (1)求n a ;(2)求证:121112111n a a a +++<+++.11.已知数列{}n a 的前n 项和为n S ,13a =,24a =,()112322n n n S S S n +-+=-≥. (1)证明:数列{}2n a -是等比数列,并求数列{}n a 的通项公式;(2)记112n n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:11123n T≤<.12.证明:135212462n n -⨯⨯⨯⋯⨯13.已知数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >,且3q a =,2213b a a =.(1)求{}n a ,{}n b 的通项公式; (2)设24log n n n b c a =,n *∈N ,求证:1212nc c c ++⋅⋅⋅+<.14.已知各项为正的数列{}n a 满足:113a =,()*134N n n n a a n a +=∈+. (1)设0a >,若数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列,求a 的值;(2)设数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明4543n S n ≤<+.参考答案:1、 通项公式为: ()()⎪⎭⎫⎝⎛+--=+-=1211212112121n n n n a n2、通项公式为: ()⎪⎭⎫ ⎝⎛--=-<=≥n n n n n a n n 111111,22 3、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<=≥111121111,222n n n n a n n 4、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<==≥1211212144441,2222n n n n n a n n 5、通项公式为: ()⎪⎭⎫⎝⎛--=-<+-=-=≥n n n n n n n a n n 111414411441121,2222 6、通项公式为:()11111123121211221221121,2---++⋅=≤≤=-=-<-=≥n n n n n n n a a a n 7、通项公式为:11313231231--=⋅-<-=n n n n n n a 8、通项公式为:nn n n n nn n n n a n 2222,21<-+=-=≥+ 1.C 【详解】由1231n n S S n +=++,则当2n ≥时,得123(1)1n n S S n -=+-+, 两式相减得123n n a a +=+,变形可得:132(3)n n a a ++=+,又134a +=,122123116a a S S +==+⨯+=,所以25a =,2132(3)a a +=+, ∴数列{}3n a +是以4为首项、2为公比的等比数列,故113422n n n a -++=⨯=,所以2log (3)1n n c a n =+=+,所以2111116(16)(16)(1)17168172517n n c n n n c n n n n n n -===≤=++++++++, 当且仅当4n =时等号成立,故125k ≥.故选:C. 2.C 【详解】当2n ≥ 时,由1231n n S S n +=++可得-123-2n n S S n =+,两式相减得:123n n a a +=+ ,即132(3)n n a a ++=+,而134a +=,2121224,5a a S S a +==+=, 故2132(3)a a +=+ ,所以{3}n a + 是以134a +=为首项,2q为公比的等比数列,则11342,23n n n n a a -++=⨯=- ,故()122log 3log 21n n n c a n +=+==+,所以()111616(16)(1)17n n c n n c n n n n -==+++++,而16N ,8n n n*∈+≥ ,当且仅当4n = 时取等号, 故()11116162517n n c n c n n-=≤+++,当且仅当4n = 时取等号, 所以若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为125,故选:C 3.[)4,+∞【详解】由()1n n n n a a a +-=得11n n a n a n++=,则有 312412321234112321n n n n a a a a a n n a a a a a n n ----⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯--,化简得1n a n a =,即2n n a =, 所以1114114()1(1)122n n n n a a n n n n +===-+⋅++⨯, 所以111114(1)4(11)4223341111111n S n n n n n ---=-+-+-+++=-++<, 所以不等式n S t <恒成立,则有4t ≥.故答案为:[)4,+∞ 4.0【详解】由()12n n nS n S +=+,得()1()2n n n n S a n S ++=+, 即12n n na S +=,当1n =时,2122a S ==,21021a a -=;可知当2n ≥时,12n n na S +=,()112n n n a S --=, 两式相减整理,得101n na a n n,所以n a n ⎧⎫⎨⎬⎩⎭是以1为首项,0为公差的等差数列,所以1na n=,n a n =,所以()()21111211221221n n n n n n n a n a a n n n n ++++++==-⋅⋅+⋅⋅+,所以()12231111111()()()21222223221n n n T n n +=-+-+⋅⋅⋅+-⨯⨯⨯⨯⋅⋅+()111221n n +=-⋅+, ()110n n T λ++-⋅>等价于()()11111212n n n λ++-⋅>-⋅+;当n 是正奇数时,()111212n n λ+>-⋅+,因为()12111132122228n n +-≤-⨯=-⋅+,所以38λ>-; 当n 是正偶数时,()111221n n λ+<-⋅+,因为()1311111122122324n n +-≥-=⋅+⨯,所以1124λ<; 综上所述,λ的取值范围为311824λ-<<,则整数λ的值为0.故答案为:0. 5.(1)n a =证明见解析【解析】(1)将)2n a n =≥两边同时平方,整理得()22112n n a a n --=≥, 所以数列{}2n a 是首项为211a =,公差为1的等差数列,所以()2111n a n n =+-⨯=.由题知0n a >,所以n a(2)因为n a =21n n c a -==1n c =. 先证21n n T a -≤:当1n =时,11a =,11T =,满足21n n T a -≤; 当2n ≥时,1n c ==所以)(21112n n T n a -<++++-==.故21n n T a -≤得证.再证211n n T a+>-:因为1nc ==>=所以)(211211n n T n a +>++++==-.故不等式21211nn n a Ta +--<≤成立.【点睛】关键的点睛:本题考查等差数列的证明,以及放缩法证明不等式,本题的第二问的难点是对通项公式的放缩,放缩后,再进行裂项相消法求和,1n c==<=1n c ==>= 6.(1)证明见解析;()*12n n a n N n +=∈+(2)证明见解析 【解析】(1)当1n =时,1122a a =-,123a =,当2n ≥时,1222n n a a a a =-;121122n n a a a a --=- 相除得11(2)1n n n a a n a --=≥-,整理为:1111(2)111n n n n a n a a a -==-≥---,即1111(2)11n n n a a --=≥--, 11n a ⎧⎫∴⎨⎬-⎩⎭为等差数列,公差1d =,首项为1131a =-;所以()13121n n n a =+-=+-,整理为:()*12n n a n N n +=∈+,经检验,符合要求. (2)由(1)得:()*12n n a n N n +=∈+.1222n n T a a a n ==+, 2244114(2)(2)(3)23n T n n n n n ⎛⎫∴=>=- ⎪+++++⎝⎭,22212111112441342333n n S T T T n n n ⎛⎫⎛⎫∴=++>-++-=-- ⎪ ⎪+++⎝⎭⎝⎭,112224333n n n S a n ++∴>-=-+, 所以,当*n N ∈时,11243n n S a +>-.7.(1)证明见解析,31nn x =-(2)()(),22,∞∞--⋃+(3)证明见解析【解析】(1)因为2n ≥,且*1,32n n n N x x -∈=+,所以()1131n n x x -+=+,即1131n n x x -+=+(常数); 因为113x +=,所以{}1n x +是首项为3,公比为3的等比数列,所以11333n n n x -+=⨯=,即31n n x =-;数列{}n x 的通项公式为31n n x =-.(2)由题可知()()3*log 10,1n n nn x y xn N x +=>∈+,由(1)可得3log 3033n n n n n y ==>,所以1113n ny n y n ++=<,即1n n y y +<,数列{}n y 为单调递减数列.所以n y 最大值为113y =;因为当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,所以29180t mt ->恒成立.所以2291809180t t t t ⎧->⎨+>⎩,解得2t <-或2t >.所以t 的取值范围为()(),22,∞∞--⋃+.(3)四边形11n n n n P Q Q P ++的面积是()()114123n n n n n y y x x n T +++-+==.因为()()331134111n n n n n n ⎛⎫<=- ⎪+++⎝⎭,所以1211111111111313122233411n T T nT n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++<-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 因为*n ∈N,所以13313311n n ⎛⎫-=-< ⎪++⎝⎭;所以121113.2nT T nT +++<8.(1)21n a n =-;(2)1a ≤-或2a ≥.【解析】(1)当2n ≥时,n a=∴1nn S S --=1=1=, 所以数列是首项为1,公差为1n ,又由n a 121n n n =+-=-(2n ≥),当1n =时,11a =也适合,所以21n a n =-. (2)∴()()()111111221212121n n a a n n n n +==--+-+,∴11111111111233521212212n T n n n ⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪-++⎝⎭⎝⎭, 又∴对任意的*N n ∈,不等式24n T a a <-恒成立,,∴22a a ≤-,解得1a ≤-或2a ≥.即所求实数a 的范围是1a ≤-或2a ≥. 9.(1)21n nS n =+(2)证明见解析 【解析】(1)∴11n n a a n +-=+,∴212a a -=,323a a -=,…1n n a a n --= 由上述1n -个等式相加得12n a a n -=++,∴()1122n n n a a n +=+++=, ∴11121n a n n ⎛⎫=- ⎪+⎝⎭,11111122121223111n n S n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭.(2)令()()22221441112n n S b n n n n n ⎛⎫⎛⎫⎛⎫===>⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, ∴11111111244233412222n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫>-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 又因为()22221411441111n n S b n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫===<=- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,且11b =∴11111111414143323341211n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+-+-++-=+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,综上,232nn T n >>+,得证. 10.(1)()12n n a n -*=∈N (2)证明见解析【解析】(1)解:由214n n n S S a ++=+得24n n a a +=. 所以,当()21n k k *=-∈N 时,21214k k a a +-=,所以数列{}21k a -是首项为11a =,公比为4的等比数列, 故11211414k k k a a ---=⨯=⨯,即()211222122k k k a ----==. 当()2n k k *=∈N 时,则2224k k a a +=,所以,数列{}2k a 是首项为22a =,公比为4的等比数列,所以,1121224242k k k k a a ---=⨯=⨯=.所以()12n n a n -*=∈N .(2)证明:由(1)知11111212n n n a --⎛⎫=< ⎪+⎝⎭,所以0121121111111111221111122221122nn n a a a -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭+++<++++=<= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭--.故原不等式成立.11.(1)证明见解析,122n n a -=+(2)证明见解析【解析】(1)解:当2n ≥时,由11232n n n S S S +-+=-可变形为()1122n n n n S S S S +--=--, 即122n n a a +=-,即()1222n n a a +-=-,所以()12222n n a n a +-=≥-,又因为13a =,24a =,可得1221,22a a -=-=,所以21222a a -=-,所以数列{}2n a -是以1为首项,2为公比的等比数列,所以122n n a --=,所以数列{}n a 的通项公式为122n n a -=+.(2)解:由122n n a -=+,可得()()11111221122222222n n n n nn n n n b a a ----+===-++++, 所以123n n T b b b b =+++⋅⋅⋅+1111111111134466102222322n n n-=-+-+-+⋅⋅⋅+-=-+++,因为1022n >+,所以1113223n -<+,即13n T <,又因为()11322n f n =-+,n *∈N 单调递增, 所以()()111212212n T b ≥==++,所以11123n T ≤<. 12.证明见解析 【详解】证明:212221n n n n -<+,∴135212452246235721n nn n -⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯+.213521135212421()()()24622462352121n n n n n n n --∴⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯⨯⨯⨯⋯⨯=++.∴135212462n n -⨯⨯⨯⋯⨯()f x x x -,x ∈当4π,∴cos cos 4x π>∴()10f x x '->()f x x x ∴-在上递增,()(0)0f x f ∴>=x x >,=∴综上:135212462n n -⨯⨯⨯⋯⨯< 13.(1)1n a n =+ ,212n n b +=(2)证明见解析【解析】(1)由题意,数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >, 设{}n a 的公差为d ,由()()23833q d q d d =+⎧⎪⎨=-⋅+⎪⎩可得()()()28333d d d +=-+,∴3d =-或1d =±,33q d =+>,∴1d =,∴4q =可得:()()223211n a a n d n n =+-=+-⨯=+, 11211842n n n n b b q --+==⨯=.(2)()()()()2124443log 2212221111n n n n c n n n n +++==<=++++ 且()()()3112n n n n +>++∴()()()()()21112112n c n n n n n n n <=-+++++∴()()()121111111122323341122n c c c n n n n ++⋅⋅⋅+<-+-+⋅⋅⋅+-<⨯⨯⨯⨯+++,故不等式得证. 14.(1)2(2)证明见解析 【解析】(1)因为()*134N n n n a a n a +=∈+,所以111141n n a a +⎛⎫+=+ ⎪⎝⎭等式两边同时取以a 为底的对数可得111log 1log 1log 4a a a n n a a +⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭,()*N n ∈又数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列可知log 42a =,即2a =(2)由(1)可知数列11n a ⎧⎫+⎨⎬⎩⎭是公比为4的等比数列,可得11111414n n n a a -⎛⎫+=+= ⎪⎝⎭,可得数列{}n a 的通项公式为()*1N 14n n a n =∈- 记1n n n a b a +=可求得其通项公式为()1*4141N n n n b n +-=∈- 显然{}n b 为正项数列,因此()11*N 5n S S b n ≥==∈另一方面,构造数列{}n c 满足()*N 4n n c b n =-∈可得其通项公式为()*1N 34n n c n =∈- 注意到1113134414n n n n c ---⎛⎫=≤ ⎪⋅+-⎝⎭,记{}n c 的前n 项和为n T ,可得11441314n n T -≤<-, 而由于4n n c b =-,因此()*4N n n T S n n =-∈,从而443n S n <+,综上所述,4543n S n ≤<+.。
递推数列中不等式问题的解法蒋明斌(四川省蓬安中学,637800)递推数列与不等式相结合是近几年高考数列命题的一个新特点,本文介绍这类问题的解法.一、利用递推不等式证明递推数列中的不等式问题的有效方法是利用递推公式通过放缩构造一个递推不等式,再应用递推不等式使问题获证.例1(2002年全国高考题)设数列a n满足a n+1=a2n-na n+1,n=1,2,3,,,(1)当a1=2时,求a2,a3,a4,并由此猜想出an的一个通项公式;(2)当a1\3时,证明对所有的n\1,有(i)a n\n+2;(ii)11+a1+11+a2+,+11+a n[12.解(1)略.(2)(i)令b k=a k-(k+2),即a k=b k+ k+2,代入递推式,有b k+1+k+3=(b k+k+2)(b k+k+2-k)+1,即b k+1=b2k+(k+4)b k+k+2,_bk+1>b k,k=1,2,,,而b1=a1-3\0,_bn \b1\0,n=1,2,,,即an-(n+2)\0,_an\n+2.(ii)由递推式及(i)的结论知,当k\2时,有a k=a k-1(a k-1-k+1)+1\ak-1(k-1+2-k+1)+1=2a k-1+1,即ak\2ak-1+1._ak+1\2(a k-1+1)\22(a k-2+1)\,\2k-1(a1+1),11+a k[11+a1#12k-1,k=1,2,3,,._11+a1+11+a2+,+11+a n[11+a11+12+122+,+12n-1[21+a1[21+3=12.注本例解法的关键是构造递推不等式.例2(2003年江苏高考题)设a>0,如图1,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Q n(n\1)作直线平行于x轴,交直线l于点P n+1,再从点P n+1作直线平行于y轴,交曲线C于点Qn+1,Q n(n=1,2,3,,)的横坐标构成数列a n.(1)试求a n+1与a n的关系,并求a n的通项公式;(2)当a=1,a1[12时,证明E nk=1(a k-a k+1)a k+2<132;(3)当a=1时,证明E n k-1(a k-a k+1)a k+2<13.解(1)^Q n在C上,_Q n(a n,a2n),_Pn+11aa2n,a2n,Q n+11a a2n,1a2a4n._a n+1=1a a 2 n ,_a n=1a a 2n-1=1a1a a2n-22=1a 1+2a22n-2=1a 1+21aa2n-322=1a1+2+22a23n-3=,=1a1+2+,+2n-2a2n-11=1a2n-1-1a2n-11=a a1a2n-1.(2)由a=1,知a n+1=a2n,^0<a1[12,_a2[14,a3[116,0<a k+1<a k(k=1,2,,),_当k\1时,ak+2[a3[116._E n k=1(a k-a k+1)a k+2[116E nk=1(a k-a k+1)=116(a1-a n+1)<1 32.(3)^a=1,_0<a1<1, 0<a k+1<a k(k=1,2,,),_ak+2=13(a2k+1+a2k+1+a2k+1)<13(a2k+1+a k+1a k+a2k)(k=1,2,,), _E nk=1(a k-a k+1)a k+2<13E nk=1[(a k-a k+1)(a2k+1+a k+1a k+a2k)]=13E nk=1(a3k-a3k+1)=13(a31-a3n+1)<13.注本例中已求出了通项公式,若用通项公式证明反而更麻烦,而通过构造递推不等式,应用放缩法可达到简化证明的目的.例3(2001年中国西部数学奥林匹克竞赛题)设数列x n满足:x1=12,x n+1=x n+1n2x2n,求证:a2001<1001.证明递推式变形为1x n+1=n2x n(x n+n2)=1x n-1x n+n2,即1x n-1x n+1=1x n+n2.又由递推式易得xn>0,x2=34,于是1x n-1x n+1=1x n+n2<1n2<1n(n-1)=1n-1-1n,即1x n-1x n+1<1n-1-1n,n=2,3,,._E n i=2(1xi-1x i+1)<E ni=2(1i-1-1i),即1x2-1x n+1<11-1n,_xn+1<3nn+3.当n=2000时,x2001<60002003<1001.例4(1984年全国高考题)设A>2,给定数列{xn}满足x1=A,x n+1=x2n2(x n-1)(n=1,2,,)求证:(1)x n>2,且x n+1x n<1(n=1,2,,);(2)如果A[3,那么x n<2+(12)n-1(n=1,2,,);证明(1)由xn+1-2=(x n-2)22(x n-1),及x1>2递推可得x n>2.^xn+1-x n=x n(2-x n)2(x n-1)<0,_0<x n+1<x n,_x n+1x n<1.(2)^x k+1-2=(x k-2)2 2(x k-1),_x k+1-2x k-2=12#x k-2x k-1<12,_xk+1-2<12(x k-2),k=1,2,,._xn -2<12(x n-1-2)<(12)2(x n-2-2)<,<(12)n-1(x1-2)<(12)n-1,_xn <2+(12)n-1.二、运用数学归纳法例5(1986年全国高考题)已知x1>0,x1X1且x n+1=x n(x2n+3)3x n+1,n I N*.证明:数列x n或者对任意正整数n都满足xn< x n+1;或者对任意正整数n都满足x n>x n+1.证明xn+1-x n=x3n+3x n3x2n+1-x n=2x n(1-x 2 n )3x2n+1.由于x1>0,由数列x n的定义可知x n >0(n=1,2,,),所以x n+1-x n与1-x2n的符号相同.(i)若0<x1<1,下面用数学归纳法证明1-x2n>0,n I N*.当n=1时,1-x21>0,假设n=k时,1-x2k>0,那么当n=k +1时,1-x2k+1=1-x3k+3x k3x2k+12=1-x2k3x2k+12(1-x2k)>0.因此对一切自然数n,都有1-x2n>0.而对一切自然数n都有xn+1>x n.(ii)若x1>1,同理可证对一切自然数n 都有xn+1<x n.三、利用证明不等式的一般方法证明递推数列中的不等式常用到证明不等式的一般方法,如比较法、基本不等式法、放缩法等等.例6(2002年北京市高考题)数列{xn}由下列条件确定:x1=a>0,且x n+1=12x n+ax n,n I N*.(1)证明:对n\2,总有x n\a;(2)证明:对n\2,总有x n\x n+1.证明(1)由x1>0及数列x n的递推关系可知xn>0,n=1,2,,._当n\2时,有x n=12x n-1+ax n-1\xn-1#ax n-1= a.(2)^当n\2时,由(1)得a[x2n,_x n+1=12x n+ax n[12x n+x2nx n=x n,即xn\xn+1,n=2,3,,.注也可以用比较法证明(2):^当n\2时,由(1)得x2n\a,_x n-x n+1=x n-12x n+ax n=12x n(x2n-a)\0,_xn>x n+1,n=2,3,,.四、先求通项,再利用通项求解例7(2003年高考题)设a为常数,且a n=3n-1-2a n-1(n I N*).(1)证明对任意n\1,a n=15[3n+ (-1)n-1#2n]+(-1)n#2n a0;(2)假设对任意n\1有a n>a n-1,求a0的取值范围.证明(1)可以用数学归纳法证明,也可以用换元法直接求通项:由递推公式,当n\ 1时,有a n3n-1=1-23#a n-13n-2,令b n=a n3n-1,则b n=1-23b n-1,_bn -35=-23b n-1-35.上式表明bn -35是公比为-23,首项为b0-35=3a0-35的等比数列,于是b n-35=3a0-35-23n,即a n3n-1=3a0-35-23n+35,_a n=3a0-35-23n+353n-1,_an=15[3n+(-1)n-1#2n]+(-1)n#2n a0.(2)由a n通项公式,得a n-a n-1=2@3n-1+(-1)n-1@3@2n-15+(-1)n@2n-1#3a._an>a n-1(n I N*)等价于(-1)n-1(5a0-1)<(32)n-2(n I N*).¹对任意正奇数n,¹式成立的充要条件为5a0-1<(32)1-2=23,即a0<13;而对任意正偶数n,¹式成立的充要条件为5a0-1>-(32)2-2=-1,即a0>0.故对任意n\1,a n>a n-1时a0的取值范围为0,13.例8(2002年高考题)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?解设2001年末汽车保有量为b1万辆,以后各年末汽车保有量依次为b2万辆,b3万辆,,,每年新增汽车x万辆,则b1=30,b2= b1@0.94+x.对于n>1,有b n+1=b n@0.94+x,_b n+1-x0.06=0.94b n-x0.06,_bn+1-x0.06=b1-x0.06@0.94n,即b n+1=x0.06+(30-x0.06)@0.94n.当30-x0.06\0,即x[1.8时,b n+1[b n[,[b1=30.当30-x0.06<0,即x>1.8时,limn y]b n=limn y]x0.06+30-x0.06@0.94n-1=x0.06,并且数列{b n}逐项增加,可以任意靠近x0.06.因此,如果要求汽车保有量不超过60万辆,即bn[60(n=1,2,3,,).则x0.06[60,即x[3.6(万辆).综上所述,每年新增汽车不应超过3.6万辆.#告作者#为适应我国基础教育信息化建设,扩大本刊及作者知识信息交流渠道,本刊已被/中国基础教育知识仓库(CFED)0收录,其作者著作权使用费与本刊稿酬一次性给付。
数列与不等式的综合1.数列与不等式的综合【知识点的知识】证明与数列求和有关的不等式基本方法:(1)直接将数列求和后放缩;(2)先将通项放缩后求和;(3)先将通项放缩后求和再放缩;(4)尝试用数学归纳法证明.常用的放缩方法有:2푛1 12푛―12푛2푛+12푛<,2푛+12푛2푛―1>,2푛+1<2푛,11푛3<푛(푛2―1)=112[푛(푛―1)―1푛(푛+1)]1푛―1푛+1=111푛(푛―1)=푛(푛+1)<푛2<1푛―1―1(n≥2),푛11푛2<푛2―1=11(푛―1―21)(n≥2),푛+11푛2=4414푛2<4푛2―1=2(2푛―1―4푛2―1=2(2푛―1―12푛+1),2(푛+1―푛)=2푛+1―푛<1푛=22푛<2푛+푛―1= 2(푛―푛―1).1푛+1+1푛+2+⋯+12푛≥12푛+12푛+⋯+12푛=푛2푛=12푛+(푛+1)푛(푛+1)<.2【解题方法点拨】证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:1/ 4(1)添加或舍去一些项,如: 푎2 + 1>|a |; 푛(푛 + 1)>n ;(2)将分子或分母放大(或缩小);푛 + (푛 + 1)(3)利用基本不等式; 푛(푛 + 1)<;2(4)二项式放缩;(5)利用常用结论;(6)利用函数单调性.(7)常见模型:①等差模型;②等比模型;③错位相减模型;④裂项相消模型;⑤二项式定理模型;⑥基本不等式模型.【典型例题分析】题型一:等比模型푎1 ― 1 典例 1:对于任意的 n ∈N *,数列{a n }满足 21 + 1 +푎2 ― 2 22 + 1 +⋯ + 푎푛 ― 푛 2푛 + 1 = n +1. (Ⅰ)求数列{a n }的通项公式;2 (Ⅱ)求证:对于 n ≥2, 푎2 +2 푎3 +⋯ + 2 푎푛+1<1 ― 1 2푛. 푎1 ― 1 解答:(Ⅰ)由 21 + 1 +푎2 ― 2 22 + 1 +⋯ + 푎푛 ― 푛 2푛 + 1 = 푛 + 1①, 푎1 ― 1 当 n ≥2 时,得 21 + 1 +푎2 ― 2 22 + 1 +⋯ + 푎푛―1 ― (푛 ― 1) 2푛―1 + 1 = 푛②, 푎푛― 푛 ①﹣②得2푛 + 1 = 1(푛 ≥ 2).∴푎푛= 2푛 +1 + 푛(푛 ≥ 2). 푎1 ― 1又 1=7 不适合上式.21 + 1 = 2,得 a综上得푎푛= {7 ,푛 = 12푛 + 1 + 푛,푛 ≥ 2;2 (Ⅱ)证明:当 n ≥2 时,푎푛 =2 2 2푛 + 1 + 푛< 2푛 = 1 2푛―1.2/ 42 ∴ 푎2 + 2 푎3 +⋯ + 2 1 2 + 푎푛+1< 1 22 +⋯ + 1 2푛 = 1 1 2 (1 ― 2푛 1 ― 1 2) = 1 ― 1 2푛. 2 ∴当 n ≥2 时,푎2 + 2 푎3 +⋯ + 2 푎푛+1<1 ―1 2푛. 题型二:裂项相消模型典例 2:数列{a n }的各项均为正数,S n 为其前 n 项和,对于任意 n ∈N *,总有 a n ,S n ,a n 2 成等差数列.(1)求数列{a n }的通项公式;(2)设푏푛 = 1 푛푎2푛,数列{b n }的前 n 项和为 T n ,求证:푇푛> 푛 + 1.分析:(1)根据 a n =S n ﹣S n ﹣1,整理得 a n ﹣a n ﹣1=1(n ≥2)进而可判断出数列{a n }是公差为 1 的等差数列,根 据等差数列的通项公式求得答案.(2)由(1)知푏푛 = 1 1 1 푛2,因为 푛(푛 + 1) = 푛2> 1 푛 ―1 1 ,所以푏푛> 푛 ―푛 + 11,从而得证. 푛 + 1 解答:(1)由已知:对于 n ∈N *,总有 2S n =a n +a n 2①成立∴2푆푛―1 = 푎푛―1 + 푎푛―12(n ≥2)②①﹣②得 2a n =a n +a n 2﹣a n ﹣1﹣a n ﹣12,∴a n +a n ﹣1=(a n +a n ﹣1)(a n ﹣a n ﹣1)∵a n ,a n ﹣1 均为正数,∴a n ﹣a n ﹣1=1(n ≥2)∴数列{a n }是公差为 1 的等差数列又 n =1 时,2S 1=a 1+a 12,解得 a 1=1,∴a n =n .(n ∈N *)(2)解:由(1)可知푏푛 = 1 1 1 푛2∵ 푛(푛 + 1) = 푛2>푛2∵ 푛(푛 + 1) =1 푛 ― 1 푛 + 1 ∴푇푛>(1 ― 1 1 2) + (2 ― 1 1 3) + +(푛 ―1 푛 + 1) = 푛 푛 + 1 【解题方法点拨】(1)放缩的方向要一致.(2)放与缩要适度.(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项).3/ 4(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象.所以对放缩法,只需要了解,不宜深入.4/ 4。
第10讲数列不等式的证明方法【知识要点】证明数列不等式常用的有数学归纳法、放缩法和分析法.一、数学归纳法一般地,证明一个与自然数有关的命题,有如下步骤:(1)证明当取第一个值时命题成立.对于一般数列取值为0或1,但也有特殊情况;(2)假设当(,为自然数)时命题成立,证明当时命题也成立.综合(1)(2),对一切自然数(),命题都成立.二、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法.放缩的技巧:①添加或舍去一些项,如:②将分子或分母放大或缩小,如:③利用基本不等式等,如:三、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法.用分析法证明时,要注意格式,一般格式是“要证明,只需证明……”.对于较难的题目,一般用分析法寻找思路,用综合法写出证明过程.【方法点评】【例1】用数学归纳法证明:【证明】(1)当时,,命题成立.(2)假设当时,成立当时,+当时命题成立. 所以对于任意都成立.【点评】(1)利用数学归纳法证明不等式时,关键在于第二步,证明这一步时,一定要利用前面的假设和已知条件. 否则是“伪数学归纳法”(2)利用数学归纳法证明时,为了利用前面的假设,所以在证明时,一般要配凑出时的结论,再运用.【反馈检测1】已知,(其中)(1)求及;(2)试比较与的大小,并说明理由.【例2】已知函数(1)当时,求函数在上的极值;(2)证明:当时,;(3)证明:.【解析】(1)当变化如下表极大值,(2)令则上为增函数.(3)由(2)知,令得,【点评】(1)本题就是利用放缩法证明不等式,是高考的难点和重点.(2)利用放缩法证明不等式,有时需要先放缩通项,得到一个不等式通项,再求和. 有时是需要先求和再放缩求和的结果,本题两种放缩都用上了.(3)放缩要得当,所以放的度很重要,有时需要把每一项都放缩,有时需要把前面两项不放缩,后面的都放缩,有时需要把后面的项不放缩,所以要灵活调整,以达到证明的目的【反馈检测2】已知数列满足.(1)求及通项公式;(2)求证:.【反馈检测3】将正整数按如图的规律排列,把第一行数1,2,5,10,17,记为数列,第一列数1,4,9,16,25,记为数列(1)写出数列,的通项公式;(2)若数列,的前n项和分别为,用数学归纳法证明:;(3)当时,证明:.【反馈检测4】已知函数(1)当时,比较与1的大小;(2)当时,如果函数仅有一个零点,求实数的取值范围;(3)求证:对于一切正整数,都有.【反馈检测5】已知函数.(1)讨论的单调性与极值点;(2)若,证明:当时,的图象恒在的图象上方;(3)证明:.【例3】已知函数是奇函数,且图像在点处的切线斜率为3(为自然对数的底数).(1)求实数、的值;(2)若,且对任意恒成立,求的最大值;(3)当时,证明:.【解析】(1)是奇函数,所以,即所以,从而此时,.依题意,所以.(2)当时,设,则设,则,在上是增函数(3)要证,即要证即证,。
常见数列通项的求法
数列的通项公式是数列的核心,它描述了数列中每一项与项数之间的规律。
求数列的通项公式是数列问题中的重要内容。
以下是几种常见的求数列通项公式的方法:
1.观察法:通过对数列的前几项进行观察,找出规律,从而得到
通项公式。
2.累加法:对于形如an=an−1+f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累加得到an。
3.累乘法:对于形如an=an−1×f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累乘得到an。
4.构造法:通过构造新数列,将原数列的递推关系式转化为新数
列的递推关系式,从而求出通项公式。
5.数学归纳法:对于一些与n有关的数列,通过数学归纳法证明
其通项公式。
6.等差数列通项公式:an=a1+(n−1)d,其中d是公差。
7.等比数列通项公式:an=a1×qn−1,其中q是公比。
8.裂项相消法:对于分式形式的递推关系,通过裂项相消法求出
通项公式。
9.特征根法:对于一些特定形式的递推关系,通过特征根法求出
通项公式。
以上是常见的求数列通项公式的方法,具体使用哪种方法需要根据题目给出的条件和递推关系式来确定。