带式输送机传动装置1-B
- 格式:docx
- 大小:1.28 MB
- 文档页数:24
机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。
机械设计课程练习第一部分:机械设计课程设计概述一,课程设计的目的《机械设计》是一门专业基础课,旨在培养学生的机械设计能力。
课程设计是机械设计最后一个重要的实践教学环节,也是机电专业学生第一次综合性的机械设计训练。
其目的是:(1)通过课程设计,培养学生综合应用机械设计等先修课程的理论知识,解决实际工程问题。
通过实际的设计训练,可以巩固和提高理论知识。
(2)通过课程设计的实践,使学生掌握一般机械设计的基本方法和步骤,培养学生的独立设计能力。
(3)机械设计基本技能的培训,包括培训、计算、绘图能力、计算机辅助设计能力,以及对设计资料(手册、图集、标准、规则等)的熟悉和应用。
).二、课程设计的内容和任务1、课程设计的能力本课程设计选择齿轮减速器作为设计题目,设计的主要内容包括以下几个方面:(1)拟定和分析传动装置的运动和动力参数;(2)选择电机,计算传动装置的运动和功率参数;(3)设计计算传动部件,检查轴、轴承、联轴器、键等。
(4)绘制减速器的装配图和典型零件图,并用AutoCAD绘制;(5)编写设计计算说明书。
2.课程设计的任务本课程设计要求在两周内完成以下任务:(1)绘制减速器装配图1(A1图);(2)零件工作图2(轴和齿轮图A3);(3)设计计算说明书一份。
三、课程设计的步骤课程设计是一项综合性、系统性的机械设计训练,因此应遵循机械设计过程的一般规律,一般遵循以下步骤:(1)设计准备:认真研究设计任务书,明确设计要求和条件,认真阅读减速器参考图,拆卸减速器,熟悉设计对象。
(2)传动装置的总体设计。
根据设计要求,制定传动装置的总体布局,选择原动机,计算传动装置的运动和动力参数。
(3)传动件装配图设计计算前,计算各级传动件的参数,确定其尺寸,选择联轴器的类型和规格。
一般先算外部传动部分,再算传动部分。
(4)设计计算装配图,选择配套零件,绘制装配草图,完成装配图。
(5)零件施工图设计。
零件的工作图纸应包括制造和检验零件的所有要求。
机械设计基础课程设计设计计算说明书题目:带式输送机传动装置设计 设计者:设计者:___ ________ ___ ________ 学号:号:__ _______ __ _______班 级:级:级: _ __ _ _ __ _ 学 院:院:院:______航空科学与工程学院航空科学与工程学院 指导教师:指导教师:___ ___ _ ___ ___ _ 起止时间:起止时间: 2012.2.24 2012.2.24 2012.2.24~~4.10 成 绩:绩:绩:____________________ ____________________录目 录目录错误!未定义书签。
目 录 (1)1、 课程设计任务课程设计任务 (2)2、 电动机的选择电动机的选择 (3)3、 计算总传动比及分配各级传动比 (4)4、 传动装置的运动和动力参数计算 (4)5、 传动零件之带传动的设计计算传动零件之带传动的设计计算 (6)6、 传动零件之齿轮传动的设计计算 (8)7、 减速器低速轴的设计计算减速器低速轴的设计计算 (13)8、 减速器低速轴的校核 (15)9、 减速器低速轴轴承的选择及校核 (18)10、 低速轴键联接的选择 (19)11、 联轴器的选择联轴器的选择 (19)12、 润滑与密封润滑与密封 (20)13、 减速器箱体及附件选择减速器箱体及附件选择 (21)14、 参考文献参考文献 (22)1、 课程设计任务1.1 1.1 传动装置简图传动装置简图传动装置简图如图所示:传动装置简图如图所示:7F v654321带式输送机传动装置1—电动机—电动机 2—传动带—传动带 3—圆柱齿轮减速器—圆柱齿轮减速器 4—联轴器—联轴器 5—滚筒—滚筒 6—轴承—轴承 7—输送胶带—输送胶带1.2 1.2 已知条件已知条件1) 工作情况:两班工作制,单向连续运转,载荷较平稳。
作情况:两班工作制,单向连续运转,载荷较平稳。
带式输送机传动装置设计带式输送机是一种连续输送物料的设备,其工作原理是:由电动机提供动力,经减速器减速后驱动滚筒旋转,使带式输送机在滚筒上输送物料,同时,在滚筒与托辊之间的皮带上输送物料。
带式输送机广泛应用于矿山、冶金、电力、煤炭、化工等部门,是一种长距离连续运输设备。
带式输送机在煤矿中使用最多,也是煤矿生产中的重要设备之一。
它可与采煤工作面的运输系统相结合,组成连续输送带式输送机系统,完成物料的提升和输送任务。
带式输送机输送物料的方式有两种:一种是沿机身长度方向上进行纵向输送,另一种是在机身长度方向上进行横向输送。
两种输送方式对输送带的强度、刚度、弯曲强度和抗扭转强度都有不同的要求。
当输送机采用纵向输送时,所选用的输送带要满足承载能力大、强度高和允许横向位移大等要求。
带式输送机传动装置主要由驱动装置、中间传动装置、制动装置和卸载装置组成。
在传动装置中驱动装置又分为软启动和硬启动两种:软启动是指传动系统在启动初期(软启动)时,由电动机带动滚筒作一定的转速运转,使传动系统获得一个比较大的起动转矩;主要内容及完成情况本课题涉及一种带式输送机传动装置,包括驱动装置、中间传动装置、制动装置和卸载装置,其中驱动装置包括电动机和减速器;中间传动装置包括滚筒、托辊和导向槽;制动装置包括制动机构和卸载器;卸载装置包括托辊、导向槽和卸载器。
该设计结构简单,易于实现,能够满足煤矿井下带式输送机的运行要求,适用于煤矿井下带式输送机的传动系统设计。
1、通过查阅有关技术资料,确定本课题所研究的主要内容为:设计带式输送机传动装置的设计;传动机构的设计;以及电气控制系统的设计。
2、根据带式输送机传动系统中所采用的机械传动原理、机械传动方式以及各种不同类型传动结构方式,确定带式输送机传动系统所采用的机械部件或电子部件的功能。
包括:(1)确定输送带在机槽中运动时所受摩擦阻力及摩擦力,以及在机槽中运行时所受拉力,并确定其作用力方向;(2)确定驱动电机及减速器的型号、功率和参数,确定其技术性能和技术指标;(3)确定托辊、滚筒及其导向槽的结构型式和尺寸;(4)根据所选机械部件或电子部件与输送机系统的连接方式,确定其连接方式;(5)根据输送机系统所需供电功率和总效率要求,选择合适的供电电源及供电方式;3、根据所研究机械部件或电子部件的功能和技术指标,确定各机械部件或电子部件之间相互位置关系,并进行三维实体建模。
带式输送机传动1. 简介带式输送机是一种常见的物料运输设备,广泛应用于煤矿、冶金、建筑材料、化工和粮食等行业。
带式输送机通过搬运带式运行,将物料从一处运送到另一处,起到高效的物流作用。
而带式输送机的传动系统则是实现其运行的关键组成部分。
2. 传动方式带式输送机的传动方式有多种,常见的传动方式主要包括机械传动和电动传动。
2.1 机械传动机械传动是带式输送机传动的一种常见方式。
其主要由电动机、减速机和带式输送机的滚筒组成。
电动机将动力传递给减速机,减速机再将动力传递给带式输送机的滚筒,从而带动输送带的运转。
机械传动方式结构简单,可靠性高,而且不受外界电力供应的限制。
但是机械传动方式的传动效率相对较低,需要频繁维护和检修。
2.2 电动传动电动传动是带式输送机传动的另一种常见方式。
其主要由电动机和带式输送机的滚筒组成。
电动机通过电力驱动带动输送带的运转。
电动传动方式传动效率高,速度可调,且对环境污染较小。
但是电动传动方式需要依赖外界电力供应,一旦停电可能导致带式输送机无法正常运行。
3. 传动装置带式输送机的传动装置直接关系到其传动效果和工作稳定性。
常见的传动装置包括轮式传动、链轮传动和齿轮传动。
3.1 轮式传动轮式传动是带式输送机传动的一种常见装置。
其主要由电动机和输送带滚筒的链轮组成。
电动机通过链条传递动力给滚筒的链轮,从而驱动输送带的运转。
轮式传动方式结构简单,适用于短距离和中小型输送机,但对于长距离和大型输送机来说,其传动效率较低。
3.2 链轮传动链轮传动是带式输送机传动的另一种常见装置。
其主要由电动机、链轮和输送带滚筒的链轮组成。
电动机通过链条传递动力给链轮,链轮再传递动力给输送带滚筒的链轮,从而驱动输送带的运转。
链轮传动方式结构紧凑、传动效率较高,适用于长距离和大型输送机。
3.3 齿轮传动齿轮传动是带式输送机传动的一种较为复杂的装置。
其主要由电动机、齿轮和输送带滚筒的齿轮组成。
电动机通过齿轮传递动力给齿轮,齿轮再传递动力给输送带滚筒的齿轮,从而驱动输送带的运转。
学校:电子科技大学中山学院学院:机电工程学院专业:09机械C班
机电工程学院
机械设计课程设计
题目名称设计一带式输送机传动装置课程名称机械设计课程设计
学生姓名XXX
学号29100101062
班级09机械C班
指导教师XX
电子科技大学中山学院机电工程学院
2012年6月18日
学校:电子科技大学中山学院学院:机电工程学院专业:09机械C班
图1 带式输送机传动简图
图2 电动机
带式输送机的设计参数:
输送带的牵引力1.25kN;输送带的速度为:1.8m/s
图3
图4
根据轴上零件的定位、装拆方便的要,同时考虑到强度的原则,主动轴和从动轴均设计为阶梯轴。
①轴段①的确定:
图5主动轴
、同理可求得从动轴的二维图如图6(键槽大小还没确定)。
图6从动轴。
第二版DTII(A)B1600-B2000固定式带式输送机带式输送机的工作原理带式输送机又称胶带运输机,其主要部件是输送带,亦称为胶带,输送带兼作牵引机构和承载机构.带式输送机组成及工作原理如图1-1所示,它主要包括一下几个部分:输送带(通常称为胶带) 、托辊及中间架、滚筒拉紧装置、制动装置、清扫装置和卸料装置等.图2-1 带式输送机简图1——张紧装置2——装料装置3——犁形卸料器4——槽形托辊5——输送带6——机架7——传动滚筒8——卸料器9——清扫装置10——平行托辊11——空段清扫器12——减速器带式输送机毕业图纸设计毕业论文设计koukou774864685。
输送带5绕经传动滚筒7和机尾换向滚筒1形成一个无极的环形带.输送带的上、下两部分都支承在托辊上.拉紧装置给输送带以正常运转所需要的拉紧力.工作时,传动滚筒通过它和输送带之间的摩擦力带动输送带运行.物料从装载点装到输送带上,形成连续运动的物流,在卸载点卸载.一般物料是装载到上带(承载段)的上面,在机头滚筒(在此,即是传动滚筒)卸载,利用专门的卸载装置也可在中间卸载。
桐城皮带机(774864685)扣扣。
普通型带式输送机的机身的上带是用槽形托辊支撑,以增加物流断面积,下带为返回段(不承载的空带)一般下托辊为平托辊.带式输送机可用于水平、倾斜和垂直运输.对于普通型带式输送机倾斜向上运输,其倾斜角不超过18°,向下运输不超过15°桐城皮带机(774864685)扣扣。
带式输送机毕业图纸设计毕业论文设计koukou774864685,带式输送机专业设计师。
输送带是带式输送机部件中最昂贵和最易磨损的部件.当输送磨损性强的物料时,如铁矿石等,输送带的耐久性要显著降低。
提高传动装置的牵引力可以从以下三个方面考虑:S增加,(1)增大拉紧力。
增加初张力可使输送带在传动滚筒分离点的张力1S必须相应地增大输送带断面,这样导此法提高牵引力虽然是可行的。
带式输送机传动装置设计摘要本设计根据课程设计任务,对带式输送机传送装置的传动机构进行了选择电机进行了选择,然后拟定了总体传动方案。
该传动系统通过三级减速达到要求转速,分别为带传动和两级展开式圆柱斜齿轮减速器的减速,其中带传动有过载保护的作用,减速器能够保证精确的传动比。
接着依次对减速比进行了分配、对带轮、齿轮和轴进行了设计和校核、对轴承和键进行了选择和校核,均能满足工作要求。
最后对润滑和密封装置进行了设计,本说明书对箱体和其它零件的设计没有再做介绍。
关键词:带式输送机,设计,校核目录前言 (1)第1章产品简介与设计任务 (2)1.1 带式输送机传动装置简介 (2)1.2课程设计任务 (2)第2章机械系统总体设计 (4)2.1 机械系统运动方案拟定 (4)2.2 电动机选择 (4)2.2.1 选择电动机的类型 (4)2.2.2选择电动机功率 (4)2.3减速器设计方案拟定 (5)第3章传动装置总体设计 (6)3.1 总传动比及各级传动比分配 (6)3.2 传动装置的运动和动力参数 (6)第4章带轮设计计算 (8)4.1 带轮设计要求 (8)4.2 带轮设计计算 (8)4.3带轮设计参数汇总 (9)第5章齿轮设计 (11)5.1齿轮组1设计要求 (11)5.2 齿轮组1设计 (11)5.3齿轮组2设计 (15)5.4 齿轮参数汇总 (16)第六章轴设计与校核 (17)6.1轴的设计 (17)6.1.1初步确定各轴的最小直径 (17)6.1.2轴的尺寸设计 (18)6.2轴的校核 (21)6.2.1输入轴校核 (21)6.2.2中间轴校核 (23)6.2.3输出轴校核 (26)第七章轴上零件设计与校核 (30)7.1轴承校核 (30)7.2键设计校核 (31)第八章齿轮轴承的润滑与轴承密封 (33)8.1齿轮轴承润滑 (33)8.2轴承的密封 (33)结论 (34)谢辞 (35)参考文献 (36)前言通过本次设计意在加强自己对机械设计的总体认识和计算、绘图、设计能力。
课程设计带式运输机传动装置设计——单级圆柱齿轮减速器设计课程设计任务书机械工程学院(系、部)机械设计与制造专业班级课程名称:机械设计设计题目:带式运输机传动装置设计——单级圆柱齿轮减速器设计完成期限:指导教师(签字):年月日系(教研室)主任(签字):年月日机械设计设计说明书带式运输机传动装置设计——单级圆柱齿轮减速器设计任务书起止日期:学生姓名班级学号成绩指导教师(签字)机械工程学院机械设计课程设计——带式运输机上的单级圆柱齿轮减速器的设计一、传动装置简图:带式运输机的传动装置如图1图1 带式运输机的传动装置二、原始数据如表1表1 带式输送机传动装置原始数据三、工作条件三班制,使用年限10年,每年按365天计算,连续单向,载荷平稳,小批量生产,运输链速度允许误差为链速度的5 %。
四、传动方案如图2图2 传动方案五、设计任务设计计算说明书一份,零件图3张,装配图1张。
ηηII =联齿计算与说明3计算各轴的输入转矩电动机轴:9550/9550 2.08/143013.891d d T p n N m N m ==⨯=电动Ⅰ轴:9550/9550 1.9968/635.5630.00T p n N m N m I I I ==⨯=Ⅱ轴:9550/9550 1.918/158.89115.28T p n N m N m II II II ==⨯=Ⅲ轴:9550/9550 1.823/158.89106.586T p n N m N m III III III ==⨯=4将以上结果记入表3表3 运动和动力参数I 轴 II 轴 III 轴 转速(r/min ) 635.56 158.89 158.89 输入功率P (kw ) 1.9968 1.918 1.823 输入扭矩T(N m ) 30.00 115.28 106.586传动比(i ) 4 1 效率(η)0.960.95三:传动零件设计计算1皮带轮传动的设计计算(外传动)(1)选择普通V 带因为每天24 h >16 h ,且选用带式输送机,所以查参考文献[2]表8-11,选取工作系数 1.3A k = 所以 1.3 2.08 2.704ca A d p k P kw ==⨯=。
江西农业大学工学院机制104机械设计课程设计任务书专业班级姓名设计题号题目1: 设计带式运输机传动装置1—输送带鼓轮2—链传动3—减速器4—联轴器5—电动机题号 1 2** 3 4 5 6 F(kN) 2.1 2.2 2.4 2.7 2 2.3 v(m/s) 1.4 1.3 1.6 1.1 1.3 1.4 D(mm)450 390 480 370 420 480 题号7 8 9 10 11 12 F(kN) 2.5 2.6 2.2 2.5 2.7 2.4 v(m/s) 1.5 1.2 1.4 1.3 1.6 1.2 D(mm)450 390 460 400 500 400表中: F—输送带的牵引力 V—输送带速度D—鼓轮直径注: 1.带式输送机用以运送谷物、型砂、碎矿石、煤等。
2.输送机运转方向不变, 工作载荷稳定。
3.输送带鼓轮的传动效率取为0.97。
一、4、输送机每天工作16小时, 寿命为10年。
二、设计工作量:三、编写设计计算说明书1份。
二、绘制减速器装配图1张(1号图纸)。
三、绘制减速器低速轴上齿轮零件图1张(3号图纸)。
四、绘制减速器低速轴零件图1张(3号图纸)。
目录1.设计目的 (2)2.设计方案 (3)3.电机选择 (5)4.装置运动动力参数计算 (7)5.带传动设计 (9)6.齿轮设计 (18)7.轴类零件设计 (28)8.轴承的寿命计算 (31)9.键连接的校核 (32)10.润滑及密封类型选择 (33)11.减速器附件设计 (33)12.心得体会 (34)13.参考文献 (35)1.设计目的机械设计课程是培养学生具有机械设计能力的技术基础课。
课程设计则是机械设计课程的实践性教学环节, 同时也是高等工科院校大多数专业学生第一次全面的设计能力训练, 其目的是:(1)通过课程设计实践, 树立正确的设计思想, 增强创新意识, 培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。
一、设计任务书 ................................ - 1二、传动方案拟定 .............................. - 1三、设计计算过程 .............................. - 2 (一)电动机的选择 ........................... - 2 -(二) 传动比分配 ............................. - 2 -(三) 传动系数设计 ........................... - 3 - (四) V带传动的设计计算 ..................... - 4 (五)圆柱齿轮传动设计 ....................... - 6 -(六)轴的设计 .............................. - 10 -(七)轴承的选择与计算 ...................... - 16 -(八)键连接的选择和计算 .................... - 18 -(九)联轴器的选择 .......................... - 19 -(十)箱体设计 .............................. - 20 -(十一)润滑和密封设计 ...................... - 21 -四、设计小结 .................................. - 21一、计任务书F=1.25kN;输送链的数度v=1.8m/s;输送带滚筒的直径D=250mm。
10年(每年300个工作300日)小批量生产,两班制工作,输送机工作轴转速允许误差为±5%。
链板式输送机的传动效率为0.9 。
二、传动方案拟定传动机实现减速后,通过联轴器输入工作机。
三、设计计算过程(一)电动机的选择1、工作机所需功率2、电动机工作时总效率3、所需电动机功率4、电动机选择:查表知,选用同步转速为1500r/min时,应选电动机额定功率Pm=3KW,电动机型号为Y100L2-4,满载速度Pm=1430r/min。
(二)传动比分配1、工作机转速总传动比圆柱齿轮单级荐用值取圆柱齿轮传动比则V带传动比传动比分配一般原则且Id<Ig,符合要求。
(三)传动系数设计1、各轴转速n (r/min)电机轴1转速:小齿轮轴2转速:大齿轮轴3转速:2、各轴输入功率P kw小锥齿轮轴输入功率:大锥齿轮轴输入功率:滚筒轴输入功率:3、各轴输入转矩T(N.m)电机轴输入转矩:小锥齿轮轴输入转矩:大锥齿轮轴输入转矩:滚筒轴轴输入转矩:(四)V带传动的设计计算1.确定设计功率6-6得工作情况系数:Ka=1.12.选择带的型号有Pd和n1,据图6-10选择A型普通V带。
3.传动比i=2.64.确定带轮基准直径5.验证带的速度:介于5-25之间,带速合适。
6.轴的实际转速7.初定中心距8.所需带的基准长度查表取9.确定实际轴间距:安装时所需最小轴间:张紧或补偿伸长所需最大轴间:10.验算小带轮包角:包角合适。
11.单根带传递基本额定功率:12.考虑传动比影响,额定功率增量P1,由表6-4(b)单根Z型V带的额定功率为12.V带根数Z型V带的根数:需取3根A型V带14.计算单根V带的初拉力Fo查表得A型V带q=0.105kg/m*m10、计算压轴力:11、带轮结构设计小带轮选用实心式结构,大带轮选用腹板式结构,均采用HT150铸造。
12、设计结论选A型普通V带3根,带长1550mm,中心距为502mm,中心距为502mm,设计带速v=6.7m/s,传动比i=2.78, 带轮基准直径(五)圆柱齿轮传动设计1、选定齿轮材料、齿数及齿宽系数8级精度。
1).选材料小锥齿轮材料:大锥齿轮材料:2).选齿数小齿轮齿数:Z1=25大齿轮齿数:Z2=Z1*i2=4*25=1003).由表8-4,选取齿宽系数选择螺旋角4).计算几何参数2、按齿面接触强度计算(1)、确定计算参数a、查表8.3可取载荷系数K=1.2b、计算转矩cd、区域系数e、计算f、计算寿命系数g、计算由表8.5取安全系数 Sh=1(2)计算齿轮参数3、按齿根弯曲疲劳强度计算(1)确定计算参数a、计算复合齿形系数计算当量齿轮查表8.3,并级线性插值求得b、计算螺旋角系数c、计算d、计算寿命系数e、计算寿命系数由表8.5取安全系数Sf=1.3(2)计算齿根弯曲疲劳强度a)判断大、小轮的弯曲疲劳强度比较,故取大齿轮计算弯曲疲劳强度b)由式8.14计算齿轮法面模数:4、确定模数综合考虑齿面接触疲劳强度与齿根弯曲疲劳强度,取标准模数m=2mm5、计算中心距圆整中心距a=130mm6、修正螺旋角7、计算齿轮几何尺寸8、计算节圆速度9、选择齿轮精度等级据表8.7和8.8选择8级精度齿轮。
10、设计结论齿轮材料:小齿轮40Cr,调质;大齿轮45钢,调质;齿轮精度:8级精度齿轮基本参数:齿轮主要尺寸:(六)轴的设计1、大齿轮所在轴的设计(1)a、输出轴上的转矩 T=192.09N·m作用在齿轮上的力圆周力径向力b、初定轴的最小直径选取制作轴的材料为45钢,调质处理,查表取Ao=112,此处取,轴的最小直径为安装联轴处轴的直径,则d1=32mm;对于采取腹板式的V带带轮L=2d=64mm,可取L1=70mm同时选择联轴器型号,轴的转矩变化较小,取按照计算转矩应小于联轴器公称转矩,查表选用LT6型弹性柱销联轴器,其工程转矩为250N·m。
半联轴器孔径d=32mm;半联轴器长度为L=82mm,半联轴器与轴配合的毂孔长度l=50mm。
C、由于,且齿轮所在的轴的长度以便应缩进2-3mm以便轴肩对齿轮进行定位,大带轮的定位轴肩,,。
d、由于d1=32mm,则位于三、六两段轴轴承可选用7208AC角接触球轴承,。
则三、六段轴颈d3=d5=40mm,轴长L3,L6,由于两轴承间靠套筒定位且装有甩油环,取L3=40mm;取L6=28mm。
e、依据设计要求,综合上述数据,轴2可设计为d2=36mm,L2=37mmf、输入轴参数总结设计图如下:(2)轴的强度校核a、大齿轮上力的分析b、将轴分成三段,段1:左周端至左轴承;段2:左轴承至右轴承;段3:右轴承至齿轮。
c、此段轴扭矩恒为,弯矩图为d、最大弯矩和扭的截面为右轴承所在轴段,需进行强度校核。
此处载荷值为轴单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力为已选轴承材料为45钢,调质处理,查表得,,故安全。
2、输人轴的设计(1)轴的设计a、轴分六段,由左到右依次命名轴1,轴2......b、初定轴的最小直径选取制作轴的材料为45钢,调质处理,查表取Ao=112,输入轴最小径处与V带大带轮直接相连,用A型平键进行周向定位,所以,故取。
对于采取腹板式的V带带轮L=2d=42mm,可取L1=50mm。
C、由于d1=21mm,大带轮用需用轴2进行轴肩定位,h=0.1d=2mm,d2=d1+2h=25mm。
d、选取型号为7017AC角接触球轴承,d*D*B=35*72*17, 根据工作要求可取d3=d6=35mm。
e、轴2处装配轴承端盖,根据选用轴承,端盖e=9.6mm,m=12mm用4个M8螺钉,,轴2长度。
轴3L3=17+8+2=27mm。
轴5处d5=56mm,L5=54mm4、6段轴为轴向定位,d4=d6=41mm轴3、7处需配合轴承,由于采用脂润滑,L3=L7=17=10=27mm。
f、参数设计总结设计图形如下:(2)轴的强度校核b、小齿轮上力的分析 T=50N·mb、将轴分成三段,段1:联轴器处至左轴承;段23:齿轮至右轴承。
c、扭矩恒为T2=50000N·mmd为轴单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力为已选轴承材料为45钢。
调质处理,查表得,故安全。
(七)轴承的选择与计算(1)输出轴选用轴承为7208AC,在上述轴的强度校核中以求出两轴承的径向力与轴向力:查表知7207AC轴承计算系数 e=0.68有查表知当量动载荷系数为轴承在运转过程中有轻微振荡,查表知,则有由于,按轴承1的受力大小验算寿命,圆锥滚子轴承,额定寿命为故轴承7208AC能满足预计计算说明要求。
(2)输入轴选用轴承为7207AC,在上述轴的强度校核中以求出两轴承的径向力与轴向力:e=0.68有查表知当量动载荷系数为轴承在运转过程中有轻微振荡,查表取,则有由于,按轴承1的受力大小验算寿命Lh≥48000h=Lh′故轴承7207AC能满足预计计算说明要求。
(八)(1)大轴齿轮处键连接此处选用L=45mm,b=14mm,h=9mm的A型平键,连接中带轮材查表知45钢,查表知45钢为100-120Mpa,一般取其平均值=110Mpa。
键的工作长度为L=L-b=45-14=31mm,则强度足够。
(2)大轴轴1处键连接选用A型平键,键长40mm,b=10mm,h=8mm,连接中联轴器材料最弱为45号钢,铸铁为100-120Mpa,一般取其平均值=110Mpa。
键的工作长度为L=L-b=63-10=53mm,则该平键连接强度足够。
(3)小轴轴1处连接选用A型平键周向定位,键长40mm,b×h=6×6,连接中齿轮材料最弱为45钢,查表知45钢为100-120Mpa,一般取其平均值=110Mpa。
键的工作长度为l=L-b=40-6=34mm,则该平键连接强度是足够的。
(九)联轴器的选择选取制作轴的材料为45钢,调质处理,查表取Ao=112,轴的最小径与联轴器相连,联轴器,计算转矩应小于联轴器公称转矩,查标准GB/T 5014-2003,可选用弹性套柱销联轴器LT6,起公称转矩为250N•m。
(十)箱体设计铸造减速器箱体结构尺寸(十一)润滑和密封设计由于齿轮圆周速度V=1.497m/s<2m/s,故采用脂润滑,选用全损耗系统用油L-AN68。
四、设计小结课程设计是机械设计中最为重要的实践环节,通过具体对问题进行思考和设计,才真正理解了设计的严谨性和创造性,也理解了机械工作的辛苦和精密。
设计过程中开始遇到了很多问题,有些参数选错不得不推到重来,一开始为了方便选择了直齿圆柱齿轮,后来发现还是斜齿圆柱齿轮符合要求,所以重新全部算过。
第一次学CAD软件,很不熟练,感觉挫折而失望,但是要有不怕困难的精神,最终完成了绘制任务。
这次课程设计我收获颇丰,培养了我综合运用机械设计解决实际问题的能力,现在对任何可看到的机械都有一种亲切感:会不自主的分析它的结构,看它设计的巧妙性。
机械不是冰冷的,一台设计严谨,功能强大的机械本身就有很高的艺术性。