2017北京一六一中学高三(上)期中数学(文)
- 格式:pdf
- 大小:225.04 KB
- 文档页数:10
2017海淀区高三(上)期中数学(文)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3} C.{x|1<x<3} D.{x|x>2或x<1}2.(5分)已知向量=(﹣1,x),=(﹣2,4).若∥,则x的值为()A.﹣2 B.C.D.23.(5分)已知命题p:∀x>0,x+≥2命题q:若a>b,则ac>bc.下列命题为真命题的是()A.q B.¬p C.p∨q D.p∧q4.(5分)若角θ的终边过点P(3,﹣4),则tan(θ+π)=()A.B.C.D.5.(5分)已知函数y=x a,y=log b x的图象如图所示,则()A.b>1>a B.b>a>1 C.a>1>b D.a>b>16.(5分)设,是两个向量,则“|+|>|﹣|”是“•>0”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.(5分)给定条件:①∃x0∈R,f(﹣x0)=﹣f(x0);②∀x∈R,f(1﹣x)=f(1+x)的函数个数是下列三个函数:y=x3,y=|x﹣1|,y=cosπx中,同时满足条件①②的函数个数是()A.0 B.1 C.2 D.38.(5分)已知定义在R上的函数f(x)=,若方程f(x)=有两个不相等的实数根,则a的取值范围是()A.﹣≤a<B.C.0≤a<1 D.二、填空题共6小题,每小题5分,共30分.9.(5分)计算lg2﹣lg+3lg5= .10.(5分)已知sinα=,则cos2α= .11.(5分)已知函数y=f(x)的导函数有且仅有两个零点,其图象如图所示,则函数y=f(x)在x= 处取得极值.12.(5分)在正方形ABCD中,E是线段CD的中点,若=λ+μ,则λ﹣μ= .13.(5分)在△ABC中,cosA=,7a=3b,则B= .14.(5分)去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin(x+φ)(a,b为常数,0<φ<).其中三个月份的月平均气温如表所示:x 5 8 11y 13 31 13则该地2月份的月平均气温约为℃,φ= .三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)已知函数f(x)=cos(2x﹣)﹣cos2x.(Ⅰ)求f(0)的值;(Ⅱ)求函数f(x)的最小正周期和单调递增区间.16.(13分)已知数列{a n}是等差数列,且a2=﹣1,数列{b n}满足b n﹣b n﹣1=a n(n=2,3,4,…),且b1=b3=1.(Ⅰ)求a1的值;(Ⅱ)求数列{b n}的通项公式.17.(13分)如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD=.(Ⅰ)求的值;(Ⅱ)求CD的长.18.(14分)已知函数f(x)=.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)当a<0时,求函数f(x)在区间[0,1]上的最小值.19.(13分)已知{a n}是等比数列,a2=2且公比q>0,﹣2,a1,a3成等差数列.(Ⅰ)求q的值;(Ⅱ)已知b n=a n a n+2﹣λna n+1(n=1,2,3,…),设S n是数列{b n}的前n项和.若S1>S2,且S k<S k+1(k=2,3,4,…),求实数λ的取值范围.20.(14分)已知函数f(x)=x3﹣9x,g(x)=3x2+a.(Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点处具有公共切线,求a的值;(Ⅱ)若存在实数b使不等式f(x)<g(x)的解集为(﹣∞,b),求实数a的取值范围;(Ⅲ)若方程f(x)=g(x)有三个不同的解x1,x2,x3,且它们可以构成等差数列,写出实数a的值.(只需写出结果)数学试题答案一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【解答】由B中不等式解得:1<x<3,即B={x|1<x<3},∵A={x|x>2},∴A∩B={x|2<x<3},故选:B.2.【解答】向量=(﹣1,x),=(﹣2,4).若∥,可得﹣2x=﹣4,解得x=2.故选:D.3.【解答】∵x>0时,,当且仅当x=1时取“=”;∴命题p为真命题,则¬p假;若a>b>0,c<0,则ac>bc不成立;∴命题q为假命题;∴p∨q为真命题.故选C.4.【解答】∵角θ的终边过点P(3,﹣4),则tan(θ+π)=﹣tanθ=﹣=﹣=,故选:C.5.【解答】由图象可知,0<a<1,b>1,故选:A.6.【解答】若|+|>|﹣|,则等价为|+|2>|﹣|2,即||2+||2+2•>||2+||2﹣2•,即4•>0,则•>0成立,反之,也成立,即“|+|>|﹣|”是“•>0”的充要条件,故选:C.7.【解答】条件②说明函数的对称轴是x=1,函数y=x3是奇函数,满足条件.①,但不满足条件②,y=|x﹣1|的对称轴是x=1,满足条件.②,不满足条件①,y=cosπx中,当x=1时,y=cos(﹣π)=﹣1,此时函数关于x=1对称,满足条件②,当x=时,f(﹣)=cos(﹣π)=0,f()=cos(π)=0,即此时满足f(﹣)=﹣f(),满足条件.①,故同时满足条件①②的函数是y=cosπx,故选:B.8.【解答】当x≤0时,a<f(x)≤1+a,若a≥0,当x>0时,f(x)=ln(x+a)≥lna,若方程f(x)=有两个不相等的实数根,则,即,得≤a<,∵a≥0,∴0≤a<,若a<0,当x>0时,f(x)=ln(x+a)∈R,即此时函数f(x)=有一个解,则当x≤0时,f(x)=有一个解即可,此时满足1+a≥>a,即可,则﹣≤a<0,综上﹣≤a<,故选:A.二、填空题共6小题,每小题5分,共30分.9.【解答】lg2﹣lg+3lg5=3lg2+3lg5=3lg10=3.故答案为:3.10.【解答】∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故答案为:.11.【解答】函数y=f(x)的导函数有且仅有两个零点,其图象如图所示,x<﹣1时,f′(x)<0,x>﹣1时,f′(x)≥0,所以函数只有在x=﹣1时取得极值.故答案为:﹣1.12.【解答】如图在正方形ABCD中,E是线段CD的中点,若=λ+μ===,所以,;故答案为:.13.【解答】∵在△ABC中,cosA=,∴sinA==,∵7a=3b,∴sinB==×=,∵B∈(0,π),∴B=或.故答案为:或.14.【解答】∵函数y=a+bsin(x+φ)(a,b为常数),∴当x==8时,sin(x+φ)取得最大或最小值,∴×8+φ=+kπ,k∈Z,解得φ=kπ﹣,k∈Z,又0<φ<,∴φ=;∴a﹣b=31,且a+bsinπ=13,解得a=13,b=﹣18;∴y=13﹣18sin(x+),当x=2时,y=13﹣18sin(×2+)=﹣5(°C).故答案为:﹣5,.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.【解答】(Ⅰ)∵函数f(x)=cos(2x﹣)﹣cos2x=(cos2x+sin2x)﹣cos2x=sin2x﹣cos2x=sin (2x﹣),∴f(0)=sin(0﹣)=﹣.(Ⅱ)由于函数f(x)=sin(2x﹣),故它的最小正周期为=π,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的单调递增区间为[kπ﹣,kπ+],k∈Z.16.【解答】(Ⅰ)由数列{b n}满足b n﹣b n﹣1=a n,(n≥2,n∈N*),∴b2﹣b1=a2=﹣1,b1=b3=1,∴b2=0,a3=b3﹣b2=1,∵数列{a n}是等差数列,∴d=a3﹣a2=1﹣(﹣1)=2,∴a1=a2﹣d=﹣1﹣2=﹣3,a1的值﹣3;(Ⅱ)由(Ⅰ)可知数列{a n}是以﹣3为首项,以2为公差的等差数列,a n=﹣3+2(n﹣1)=2n﹣5,∴当n≥2时,b n﹣b n﹣1=2n﹣5,b n﹣1﹣b n﹣2=2(n﹣2)﹣5,…b2﹣b1=﹣1,将上述等式相加整理得:b n﹣b1=•(n﹣1)=n2﹣4n+3,∴b n=n2﹣4n+4,(n≥2),当n=1时,b1=1也满足,∴b n=n2﹣4n+4(n∈N*).17.【解答】(Ⅰ)∵△ABC是等边三角形,∴AC=BC,又∵BC=2CD,∴AC=2CD,∴在△ACD 中,由正弦定理可得:,∴==.(Ⅱ)设CD=x,则BC=2x,∴BD=3x,∵△ABD中,AD=,AB=2x,∠B=,∴由余弦定理可得:AD2=AB2+BD2﹣2AB•BD•cos∠B,即:7=4x2+9x2﹣2x×3x,解得:x=1,∴CD=1.18.【解答】(Ⅰ)a=1时,f(x)=,x∈R,∴f′(x)=,令f′(x)>0,解得:x<2,令f′(x)<0,解得:x>2,∴f(x)在(﹣∞,2)递增,在(2,+∞)递减;(Ⅱ)由f(x)=得:f′(x)=,x∈[0,1],令f′(x)=0,∵a<0,解得:x=1+<1,①1+≤0时,即﹣1≤a<0时,f′(x)≥0对x∈[0,1]恒成立,∴f(x)在[0,1]递增,f(x)min=f(0)=﹣1;②当0<1+<1时,即a<﹣1时,x,f′(x),f(x)在[0,1]上的情况如下:x 0 (0,1+)1+(1+,1)1f′(x)﹣0 + f(x)递减极小值递增∴f(x)min=f(1+)=;综上,﹣1≤a<0时,f(x)min=﹣1,a<﹣1时,f(x)min=.19.【解答】(Ⅰ)由﹣2,a1,a3成等差数列,∴2a1=﹣2+a3,∵{a n}是等比数列,a2=2,q>0,∴a3=2q,a1==,代入整理得:q2﹣q﹣2=0,解得:q=2,q=﹣1(舍去),∴q=2,(Ⅱ)由(Ⅰ)a n=2n﹣1,b n=a n a n+2﹣λna n+1=4n﹣λn2n,由S1>S2,∴S2﹣S1<0,即b2<0,∴42﹣2λ•22<0,解得:λ>2,S k<S k+1(k=2,3,4,…)恒成立,b n=a n a n+2﹣λna n+1,即λ<,设c k=(k≥2,k∈N*),只需要λ<(c k)min(k≥2,k∈N*)即可,∵=×=>1,∴数列{c n}在k≥2且k∈N*上单调递增,∴(c k)min=c2==,∴λ<,∵λ>2,∴λ∈(2,).20.【解答】(Ⅰ)设f(x)与g(x)的交点坐标为(x0,y0),由,解得x0=﹣1或x0=3,解得a的值为:5或﹣27.(Ⅱ)令h(x)=x3﹣3x2﹣9x,则y=h(x)的图象在直线y=a下方的部分对应点的横坐标x∈(﹣∞,b),由h′(x)=3x2﹣6x﹣9=0,解得x的值.h′(x),h(x)的情况如下:x (﹣∞,﹣1)﹣1 (﹣1,3) 3 (3,+∞) h(x)+ 0 ﹣0 + h′(x)增极大值减极小值增因为h(a2+5)=(a2+5)(a4+7a2+1)>a2+5≥2|a|≤a,即h(a2+5)>a;h(﹣a2﹣2)=﹣(a2+2)(a4+7a2+1)<﹣(a2+2)≤﹣2|a|≤a,即h(﹣a2﹣2)<a,(或者:因为当x→+∞时,h(x)→+∞,当x→﹣∞时,h(x)→﹣∞),又因为:h(x)max=h(﹣1)=5,h(x)min=h(3)=﹣27.所以当a>5或a≤﹣27满足条件.(Ⅲ)由(Ⅱ)h(x)=x3﹣3x2﹣9x,h′(x)=3x2﹣6x﹣9,则h′′(x)=6x﹣6,令6x﹣6=0,可知x=1,此时y=﹣11,函数h(x)的对称中心为:(1,﹣11),方程f(x)=g(x)有三个不同的解x1,x2,x3,且它们可以构成等差数列,实数a的值:﹣11.11 / 11。
2017届北京市东城区重点中学高三上学期期中考试数学(文)试题(解析版)一、选择题:本大题共14小题.每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则().A. B. C. D.【答案】B【解析】有由题意可得:,则( -2,3 ] .本题选择B选项.2. 极坐标方程表示的圆的半径是().A. B. C. D.【答案】D【解析】将极坐标方程两边同乘,得,化为直角坐标方程为,整理得,所表示圆的半径。
选.3. 下列函数中,既是偶函数,又在区间上单调递增的是().A. B. C. D.【答案】C【解析】由题意知选项,,,中的函数均为偶函数,但只有选项中的函数在上单调递增。
选.4. 执行如图所示的程序框图,若输入的值为,则输出的值为().A. B. C. D.【答案】B【解析】依次运行程序框图,可得,第一次:x=1+5=6,不满足条件,k=1;第二次:x=6+5=11,不满足条件,k=2;第三次:x=11+5=16,不满足条件,k=3;第四次:x=16+5=21,不满足条件,k=4;第五次:x=21+5=26,满足条件,程序终止。
输出k=4。
选B。
5. 设,是两个向量,则“”是“且”的().A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】由“”可推出“且”;但反之不成立。
所以“”是“且”的充分而不必要条件。
选.6. 若,,,则,,的大小关系是().A. B. C. D.【答案】C【解析】∵,,,∴。
选.7. 命题“,”的否定是().A. ,B. ,C. ,D. ,【答案】A【解析】由特称命题的否定知,命题“,”的否定是“,”。
选.8. 要得到函数的图象,只需要将函数的图象().A. 向左平移个单位B. 向右平移个单位C. 向左平移个单位D. 向右平移个单位【答案】B【解析】∵,∴将函数的图象向右平移个单位,可得函数的图象。
北京市部分区2017届高三上学期考试数学文试题分类汇编平面向量15 44、(东城区2017届高三上学期期末) △ ABC 的内角 代B, C 的对边分别为a,b,c ,若a=5,b=7, c = 8 ,则AB AC 等于5、(丰台区2017届高三上学期期末)平面向量a 二(x,1) ,b = (1,y) ,c = (2,- 4),如果a A (b -c ),那么实数x , y 的值分别是1 A. -B . 127、 (海淀区2017届高三上学期期中)已知向量 1 1 A. -2B. C. D.22 28、 (石景山区2017届高三上学期期末)向量a(A)2, - 2(B)- 2 , - 2(C)(D)6、(海淀区2017届高三上学期期末)已知向量a,b 满足 a -2b= 0 , (a -b )2,贝U |bF1、(昌平区2017届高三上学期期末)在平行四边形 ABCD 是(A )矩形(B)梯形(C)A.-C. uuu uuuAB-AD D.uun uuuAB AD ,则平行四边形菱形 b5E2RGbCAP),则a 与a b 的夹角为5兀~63、(朝阳区2017届高三上学期期中) 已知三角形 ABC 外接圆O 的半径为1 ( O 为圆心),且OB 0^ -0 ,|OA| = 2| AB|,则CA BC 等于(15D .bll c ,且(J3,1) ,b=(J3, —1) ,a 与b 夹角的大小为 _________________2、(朝阳区2017届高三上学期期末)已知平面向量ABCD 中,若 正方形(C. 2a= (-1,x), b = (-2,4).若a^b,则x 的值为9、(通州区2017届高三上学期期末)如图,在正方形ABCD 中,P 为DC 边上的动点,T T T设向量AC =扎DB + 4APU 九+卩的取值范围是 ________________ .10、(西城区2017届高三上学期期末)设a , b 是非零向量,且a^=b .则“| a |=| b |”是“ (a b ) _(a b ) ”A . -3 B14、(朝阳区 2017届高三上学期期中) 设平面向量 a= (1,2), b = (-2,y),若 a 〃b ,则 y =15、(海淀区 2017届高三上学期期中) 在正方形ABCD 中,E 是线段CD 的中点,若AE = • AB 」BD ,则(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件11、 (北京昌平临川育人学校 2017届高三上学期期末)已知向量b ,其中1 a 1三:打,1 b 1 =2,且(a丄a ,则向量a 和b 的夹角是()p1EanqFDPwC .3兀~T5兀~T12、 (北京市 2017届高三春季普通高中会考) ■4a -4b) 2b 等于()A .a —2b B . a 「4bC13、(北京市 2017届高三春季普通高中会考) 已知向量.a =(3,-1), b =(1,x),但a_b ,那么x 的值是已知向量 a , b ,那么参考答案6、C 1、A 2、B 3、A 4、44228、- 3-----------------------11、【解答】 解:设两个向量的夹角为|1 ;丄;-1-^-―■ —fl二(a - b )F=C - .. -■-- -i-i - |即• ’ . .1 j 故选A 12、 C 13、 B 14. — 4[1,3] 10、 C•/ eq 。
2016-2017年北京市海淀区高三(上)期中数学试卷及参考答案(文科)预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制2016-2017学年北京市海淀区高三(上)期中数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)若集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>2}B.{x|2<x<3}C.{x|x>3}D.{x|1<x<3} 2.(5分)已知向量=(﹣1,x),=(﹣2,4).若∥,则x的值为()A.﹣2 B.C.D.23.(5分)已知命题p:?x>0,x+≥2命题q:若a>b,则ac >bc.下列命题为真命题的是()A.q B.¬p C.p∨q D.p∧q4.(5分)若角θ的终边过点P(3,﹣4),则tan(θ+π)=()A.B.C.D.5.(5分)已知函数y=x a,y=log b x的图象如图所示,则()A.b>1>a B.b>a>1 C.a>1>b D.a>b>16.(5分)设,是两个向量,则“|+|>|﹣|”是“?>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)给定条件:①?x0∈R,f(﹣x0)=﹣f(x0);②?x∈R,f(1﹣x)=f(1+x)的函数个数是下列三个函数:y=x3,y=|x﹣1|,y=cosπx中,同时满足条件①②的函数个数是()A.0 B.1 C.2 D.38.(5分)已知定义在R上的函数f(x)=,若方程f(x)=有两个不相等的实数根,则a的取值范围是()A.﹣≤a< B.C.0≤a<1 D.二、填空题共6小题,每小题5分,共30分.9.(5分)计算lg2﹣lg+3lg5=.10.(5分)已知sinα=,则cos2α=.11.(5分)已知函数y=f(x)的导函数有且仅有两个零点,其图象如图所示,则函数y=f(x)在x=处取得极值.12.(5分)在正方形ABCD中,E是线段CD的中点,若=λ+μ,则λ﹣μ=.13.(5分)在△ABC中,cosA=,7a=3b,则B=.14.(5分)去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin(x+φ)(a,b为常数,0<φ<).其中三个月份的月平均气温如表所示:。
北京一六一中学2017届高三年级第一学期期中考试理科数学试题一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集,集合,,则().A. B. C. D.【答案】A【解析】由题意得,,所以。
选:A。
2.极坐标方程和参数方程(为参数)所表示的图形分别是().A. 直线、直线B. 圆、圆C. 直线、圆D. 圆、直线【答案】D【解析】由,得,将代入上式得,故极坐标方程表示的图形为圆;由消去参数整理得,故参数方程表示的图形为直线。
选D。
3.设,则().A. B. C. D.【答案】A【解析】由条件得,所以。
选A。
4.若非零平面向量,满足,则().A. B. C. D.【答案】D【解析】由得,,所以,整理得,所以。
选D。
5.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A. ①和②B. ③和①C. ④和③D. ④和②【答案】D【解析】在空间直角坐标系中,根据所给的条件标出已知的四个点,结合三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②。
选D。
6.如图,小明从街道的处出发,先到处与小红会合,在一起到位于处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为().A. B. C. D.【答案】B【解析】由题意得,小明从街道的E处出发到F处最短路程有条,再从F处到G处最短路程有条,故小明从老年公寓可以选择的最短路径条数为条。
选B。
7.设抛物线的焦点为,过点的直线与抛物线相交于,两点,与抛物线的准线相交于,,则与的面积之比().A. B. C. D.【答案】C【解析】∵抛物线方程为,∴抛物线的焦点坐标为,准线方程为。
如图,设,,过A,B分别作抛物线准线的垂线,垂足分别为,由抛物线的定义可得,∴。
将代入得,∴点的坐标为。
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(文史类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,那么集合A B = A.∅B .1{|1,}2x x x <<∈R C .{|22,}x x x -<<∈R D .{|21,}x x x -<<∈R2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是 A .1y x =- B .tan y x =C .3y x =D .2y x=-3. 已知3sin 5x =,则sin 2x 的值为 A .1225 B .2425 C .1225或1225- D .2425或2425-4. 设x ∈R 且0x ≠,则“1x >”是“1+2x x>”成立的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件5. 设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题正确的是A .若,,m n m n αβ⊂⊂⊥,则αβ⊥B .若//,,//m n αβαβ⊥,则 m n ⊥C .若,,//m n αβαβ⊥⊥,则//m nD .若,,m n m αβαβ⊥=⊥,则n β⊥6. 已知三角形ABC 外接圆O 的半径为1(O 为圆心),且OB OC +=0, ||2||OA AB =,则CA BC ⋅等于( )A .154-B .34-C .154D .347. 已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数()1()()2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是( )A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 设平面向量(1,2),(2,)y ==-a b ,若a //b ,则y = .10. 已知角A 为三角形的一个内角,且3cos 5A =,sin A = . cos2A = . 11. 已知 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 .12. 设各项均为正数的等比数列{}n a 的前n 项和为n S ,若23=a ,245S S =,则1a 的值为 ,4S 的值为 .13.已知函数221,0,()(1)2,0,xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上具有单调性,则实数m 的取值范围是 .14. 《九章算术》是我国古代一部重要的数学著作.书中有如下问题“今有良马与驽马发长安,至齐。
北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试数学试卷(文史类) 2017.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{|1}A x x =>,2{|log 1}B x x =>,则AB =A. {|2}x x >B. {|12}x x <<C. {|1}x x >D. {|0}x x > 2. 执行如右图所示程序框图,则输出i 的值为 .A .3B .4C .5D .63. 已知,m n 表示两条不同的直线,α表示平面,下列说法正确的是A .若//m α,//n α,则//m nB .若//m α,m n ⊥,则n α⊥C .若m α⊥,m n ⊥,则//n αD .若m α⊥,//m n ,则n α⊥ 4. 要想得到函数πsin(2)3y x =-的图象,只需将函数sin y x =的图象上所有的点 A. 先向右平移π3个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变 B. 先向右平移π6个单位长度,横坐标缩短为原来的12倍,纵坐标不变C. 横坐标缩短为原来的12倍,纵坐标不变,再向右平移π6个单位长度D. 横坐标变伸长原来的2倍,纵坐标不变,再向右平移π3个单位长度5. 已知非零平面向量,a b ,则“+=+a b a b ”是“存在非零实数λ,使λb =a ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6.一个几何体的三视图如图所示,则该几何体的体积为 A .5 B .6 C .7 D .87. 函数()f x 在其定义域内满足()xf x '()e xf x ,(其中()f x '为函数()f x 的导函数),(1)e f ,则函数()f xA .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值又无极小值8. 袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中A .一定有3号球 B.一定没有3号球 C.可能有5号球 D.可能有6号球第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知数列{}n a 为等比数列,11a =,48a =,则{}n a 的前5项和5S =___________. 10.在平面直角坐标系xOy 中,已知点(0,1)A ,将线段OA 绕原点O 按逆时针方向旋转60︒,得到线段OB ,则向量OB 的坐标为___________.正视图 侧视图俯视图11. 已知函数12log , 0< 1,()21, 1.x x x f x x -<⎧⎪=⎨⎪+≥⎩若方程()f x m =有2个不相等的实数根,则实数m 的取值范围是 .12. 某四棱锥的三视图如图所示,该四棱锥的 体积为 ;表面积为 .13. 某品牌连锁便利店有n 个分店,A,B,C 三种商品在各分店均有销售,这三种商品的单价表1某日总店向各分店分配的商品A,B,C 的数量如表2所示:表2表3表示该日分配到各分店去的商品A,B,C 的总价和总重量:表3则a = ;b = . 14. 已知函数()f x 同时满足以下条件: ①定义域为R ; ②值域为[0,2]; ③()()0f x f x --=.俯视图试写出一个函数解析式()f x = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数π()2sin cos()3f x x x =-.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当π[0,]2x ∈时,求函数()f x 的取值范围.16. (本小题满分13分)已知数列{}n a 的前n 项和为()n S n *∈N ,满足21n n S a =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项积为n T ,求n T .17. (本小题满分13分)已知ABC ∆中,3B π=,a =(Ⅰ)若b =A ;(Ⅱ)若ABC ∆的面积为2,求b 的值.18.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,E 是棱PA 上的一个动点.(Ⅰ)若E 为PA 的中点,求证://PC 平面BDE ; (Ⅱ)求证:平面PAC ⊥平面BDE ;(Ⅲ)若三棱锥P BDE -的体积是四棱锥P ABCD -体积的13,求EA PA的值.19. (本小题满分13分) 已知函数1()(1)ln f x kx k x x=--+,k ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0k >时,若函数()f x 在区间(1,2)内单调递减,求k 的取值范围.20. (本小题满分14分)已知函数12()ln e e x f x x x=--. (Ⅰ)求曲线()y f x =在点(1(1))f ,处的切线方程; (Ⅱ)求证:1ln e x x≥-; (Ⅲ)判断曲线()y f x =是否位于x 轴下方,并说明理由.PADBE北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试数学试题答案(文史类) 2017.11一、选择题二、填空题三、解答题15. (本小题满分13分)解:因为π()2sin cos()3f x x x =⋅-,所以ππ()2sin (cos cos sin sin )33f x x x x =⋅+2sin cos x x x =⋅+1sin 2cos2)2x x =+- πsin(2)3x =- (Ⅰ)函数()f x 的最小正周期为2ππ2T ==. ……………………………… 8分(Ⅱ)因为π[0,]2x ∈,所以ππ2π2[,]333x -∈-.所以πsin(2)[3x -∈.所以()[0,1f x ∈. ……………………………… 13分16. (本小题满分13分)解:(Ⅰ) 由21n n S a =-可得, 当1n =时,11a =.当2n ≥时1n n n a S S -=-,122n n n a a a -=-,即1=2n n a a -则数列{}n a 为首项为1,公比为2的等比数列, 即1=2n n a -,n *∈N . ………………………………8分(Ⅱ)(1)0123(1)212322n n n n n T a a a a -++++⋅⋅⋅+-=⋅⋅⋅⋅⋅⋅⋅== ………………………………13分17. (本小题满分13分)(Ⅰ)解:由正弦定理sin sin a b A B =,可得sin sin 3A =π.所以sin 2A =. 在三角形中,由已知b a >,所以4A π=. ………………………………6分 (Ⅱ)由面积公式1sin 2S ac B =可得1222=⨯,解得c =. 由余弦定理知2222cos 218614b a c ac B =+-=+-=,所以b =………………………………13分18. (本小题满分14分)解:(Ⅰ)证明:如图,设AC 交BD 于O ,连接EO .因为底面ABCD 是菱形, 所以O 是AC 的中点. 又因为E 为PA 的中点, 所以//EO PC .因为PC ⊄平面BDE , EO ⊂平面BDE , 所以//PC 平面BDE . ……………………4分 (Ⅱ)证明:因为底面ABCD 是菱形,所以AC BD ⊥.又因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥. 因为PAAC A =,所以BD ⊥平面PAC . 因为BD ⊂平面BDE ,所以平面PAC ⊥平面BDE . ………………………………10分PADBCOE(Ⅲ)设四棱锥P ABCD -的体积为V .因为PA ⊥平面ABCD ,所以13ABCD V S PA ∆=⋅⋅. 又因为底面ABCD 是菱形,所以12ABD BCD ABCD S S S ∆∆∆==, 所以1132P ABD ABD V S PA V -∆=⋅⋅=.根据题意,13P BDE V V -=, 所以111236E ABD P ABD P BDE V V V V V V ---=-=-=.又因为13E ABD ABD V S EA -∆=⋅⋅,所以13E ABD P ABD V EA PA V --==. ………………………………14分 19. (本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.211()k f x k x x+'=-+ 22(1)1kx k x x-++= 2(1)(1)kx x x--=(1)当0k ≤时,令()0f x '>,解得01x <<,此时函数()f x 为单调递增函数;令()0f x '<,解得1x >,此时函数()f x 为单调递减函数.(2)当0k >时,①当11k<,即1k > 时, 令()0f x '>,解得10x k<<或1x >,此时函数()f x 为单调递增函数; 令()0f x '<,解得11x k<<,此时函数()f x 为单调递减函数. ②当1k = 时,()0f x '≥恒成立,函数()f x 在()0+∞,上为单调递增函数; ③当11k>,即01k << 时, PADBE令()0f x '>,解得01x <<或1x k>,此时函数()f x 为单调递增函数; 令()0f x '<,解得11x k<<,此时函数()f x 为单调递减函数. ……………9分 综上所述,当0k ≤时,函数()f x 的单调递增区间为()0,1,单调递减区间为()1+∞,; 当01k <<时,函数()f x 的单调递增区间为()0,1,(+)k∞1,,单调递减区间为(1)k1,; 当1k =时,函数()f x 的单调递增区间为()0+∞,; 当1k >时,函数()f x 的单调递增区间为(0)k 1,,()1+∞,,单调递减区间为(+)k∞1,. (Ⅱ)2(1)(1)()kx x f x x --'=,因为函数()f x 在(1,2)内单调递减,所以不等式在2(1)(1)0kx x x--≤在(1,2)上成立. 设()(1)(1)g x kx x =--,则(1)0,(2)0,g g ≤⎧⎨≤⎩即00210,k ≤⎧⎨-≤⎩,解得102k <≤. …………13分20. (本小题满分14分) 解:函数的定义域为(0,)+∞,2112()e e x f x x x'=--+. (Ⅰ)1(1)1e f '=-,又1(1)e f =-,曲线()y f x =在1x =处的切线方程为111(1)1e e e y x +=--+,即12()+10e ex y -1--=. ┈┈ 4分(Ⅱ)“要证明1ln (0)e x x x≥->”等价于“1ln e x x ≥-”设函数()ln g x x x =.令()=1+ln 0g x x '=,解得1ex =.因此,函数()g x 的最小值为()e e g =-.故ln ex x ≥-. 即1ln e x x≥-. ┈┈ 9分 (Ⅲ)曲线()y f x =位于x 轴下方. 理由如下:由(Ⅱ)可知1ln e x x ≥-,所以1111()()e e e ex x x f x x x ≤-=-. 设1()e e x x k x =-,则1()ex xk x -'=.令()0k x '>得01x <<;令()0k x '<得1x >. 所以()k x 在()0,1上为增函数,()1+∞,上为减函数.所以当0x >时,()(1)=0k x k ≤恒成立,当且仅当1x =时,(1)0k =. 又因为1(1)0ef =-<, 所以()0f x <恒成立. 故曲线()y f x =位于x 轴下方. ………………………14分。