2021年最新中考数学基础题专练题
- 格式:doc
- 大小:283.50 KB
- 文档页数:4
一、选择题1.函数 y =211x x x -++-的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -12.若x 2-6xy +9y 2=0,那么x yx y-+的值为( ) A .12yB .12y-C .12D .12-3.纳米是一种长度单位,1纳米810-=米,己知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米 B .43.510-⨯米 C .33.510-⨯米 D .93.510-⨯4.下列运算中,正确的是( )A .;B .;C .;D .;5.下列变形正确的是( )A .y x =22y xB .a ac b bc= C .ac a bc b= D .x m xy m y+=+ 6.与分式11a a -+--相等的式子是( ) A .11a a +- B .11a a -+ C .11a a +-- D .11a a --+ 7.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c << B .b c a <<C .c b a <<D .a c b <<8.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的189.化简22222a ab b a b++-的结果是( ) A .a ba b+- B .b a b- C .a a b+ D .b a b+ 10.下列等式从左到右的变形正确的是( )A .22b by x xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+ 11.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义12.化简a b a b b a+--22的结果是( ) A .1B .+a bC .-a bD .22a b -13.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁14.若式子01(1)k k -+-有意义,则一次函数()11y k x k =-+-的图象可能是( )A .B .C .D .15.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分16.若分式21x -有意义,则( ) A .1x ≠ B .1x =C .0x ≠D .0x =17.计算33x yx y x y---的结果是( ) A .1B .0C .3D .618.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( ) A .a b c d <<< B .b a d c <<< C .a d c b <<< D .c a d b <<<19.下列计算中错误的是( ) A .020181=B .224-=C .42=D .1133-=20.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a m n a n+=+,其中正确的个数为( ) A .4个B .3个C .2个D .1个21.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个C .6个D .8个22.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-223.下列分式中,属于最简分式的是( ) A .42xB .11xx -- C .211x x +- D .224xx - 24.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m-中,是分式的共有( )A .1个B .2个C .3个D .4个 25.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .4【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【分析】根据分母不能为零且被开方数是非负数,可得答案.【详解】解:由题意得:x-1≠0且x+1≥0,解得:x≥-1且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.2.C解析:C【解析】【分析】根据完全平方公式求出x与y的关系,代入计算即可.【详解】x2-6xy+9y2=0,(x-3y)2=0,∴x=3y,则x yx y-+=3132y yy y-=+,故选:C.【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.3.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-8米=3.5×10-4米.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【分析】根据二次根式的加减运算法则、二次根式的性质、幂的运算性质和立方根的性质对各项进行分析判断即可得出答案.【详解】解:A项,,故本选项错误;B项,,由于不知x的正负,故本选项错误;C项,,故本选项错误;D项,,正确;故答案为D.【点睛】本题考查了幂的运算性质、二次根式的性质和运算、立方根的性质,熟知幂的运算性质、二次根式的性质和运算法则是解题的关键.5.C解析:C【解析】试题解析:A、分式的乘方不等于原分式,故A错误;B、当c=0时,结果不成立,故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,故C正确;D、分式的分子分母都加同一个不为零的数,结果发生变化,故D错误.故选C.6.B解析:B【分析】根据分式的基本性质即可得出:分式的分子、分母、分式本身的符号,改变其中的任意两个,分式的值不变,据此即可解答.【详解】解:原式=1)(1)aa--+-(=11aa-+故选:B.【点睛】本题考查分式的基本性质,解题关键是熟练掌握分式的基本性质.7.C解析:C【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a,b,c,再根据有理数的比较法则判断即可.【详解】解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1, ∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.8.C解析:C 【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案. 【详解】∵把分式2x y zxyz -+中的正数x ,y ,z 都扩大2倍,∴222221222244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅. ∴分式的值缩小为原来的14. 故选:C. 【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.9.A解析:A 【分析】利用完全平方公式和平方差公式化简约分即可. 【详解】222222()=()()a ab b a b a ba b a b a b a b++++=-+--.故选A. 【点睛】此题主要考查了分式的约分,解题的关键是正确地把分子、分母分解因式.10.B解析:B 【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】 A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab ba a=,其中左边隐含a≠0,故选项正确; C 、2b aba a=,故选项错误. D 、根据分式基本性质知道11b b aa ++≠,故选项错误; 故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.11.D解析:D 【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断. 【详解】 解:∵a +b =0 ∴a=-b 或a=0,b=0 ∴ba的值为-1或无意义, 故选:D. 【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.12.B解析:B 【解析】 【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果. 【详解】解:原式=22a b a b --=()()a b a b a b+--=a+b , 故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.B解析:B 【分析】找出题中出错的地方即可. 【详解】乙同学的过程有误,应为()()22a ab ab b a b a b +-++-,故选B . 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14.C解析:C 【分析】先求出k 的取值范围,再判断出1k -及1k -的符号,进而可得出结论. 【详解】0(1)k -有意义,则1k >. ∴10k -<,10k ->,∴一次函数()11y k x k =-+-的图象经过第一、二、四象限. 故选:C . 【点睛】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.15.B解析:B 【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分. 【详解】 因为c ac b++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分; 因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分;数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分. 故他应得80分,选择B 【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.16.A解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义 ∴10x -≠1x ∴≠ 故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.17.C解析:C 【分析】根据同分母的分式加减的法则进行计算即可. 【详解】 解:()333=3x y x y x y x y x y--=--- 故选C. 【点睛】本题考查了分式的加减法,掌握分式运算的法则是解题的关键.18.B解析:B 【分析】分别求出a 、b 、c 、d 的值,比较大小即可. 【详解】20.30.09a =-=- 2213139b -=-=-=- 01()3c =-=12211=(-3))9(3d -==-故b a d c <<< 故选:B 【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.19.B解析:B 【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案. 【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案; B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B . 【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.20.D解析:D 【分析】利用同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂以及整式的除法逐个判断即可. 【详解】解:①336a a a ⋅=,故①错误;②2m 和3m 不是同类项,不能合并,故②错误;③()()()222224-2-24a a a ==,故③错误;④()2104268a a a a a a ⋅÷==⋅,故④正确;⑤()-21-525=,故⑤错误;⑥22m a m n a n+≠+,故⑥错误;只有1正确. 故答案为D . 【点睛】本题考查了同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂、整式的除法等知识点,掌握相关运算法则是解答本题的关键.21.B解析:B 【分析】首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±. 故选B .【点睛】 本题主要考查了分式的值是整数的条件,把原式化简为6321x +-的形式是解决本题的关键. 22.D解析:D【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案.【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D .【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.23.D解析:D【分析】根据最简分式的定义即可判断.【详解】 解:42=2x x,故A 选项错误; ()11=111x x x x ---=---,故B 选项错误; ()()2111==1111x x x x x x ++-+--,故C 选项错误;224x x -,故D 选项正确. 故选:D【点睛】本题主要考查的是最简分式的定义,正确的掌握最简分式的定义是解题的关键.24.C解析:C【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,进行解答即可.【详解】 解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个,故选:C .【点睛】 本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.25.C解析:C【分析】 先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b ab ab+-+,最后代入数值计算即可. 【详解】 因为2b a a b++ ()2222222222323233b a ab abb a aba b ab ab=+++=++-=+-⨯=+=所以选C.【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键.。
2021年中考数学基础题训练(9)(40分钟限时完成)一、选择题(共10小题,每小题3分,共30分) 1.2021的相反数的倒数是( ) A .12021B .﹣2021C .±2021D .﹣120212.下列计算:①(﹣1)0=﹣1;②(﹣2)﹣2=14;③用科学记数法表示﹣0.0000108=1.08×10﹣5.其中正确的有( ) A .3个 B .2个 C .1个 D .0个3.用配方法解一元二次方程x 2﹣6x ﹣2=0以下正确的是( )A .(x ﹣3)2=2B .(x ﹣3)2=11C .(x +3)2=11D .(x +3)2=24.如图,在△ABC 中,∠ACB 为钝角.用直尺和圆规在边AB 上确定一点D .使∠ADC =2∠B ,则符合要求的作图痕迹是 ( ) A . B . C . D .5.在Rt △ABC 中,∠C =90°,BC =1,AB =4,则sin B 的值是 ( ) A .155B .14C .154D .136.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则ADAB 的值为( )A .1B .12C .22 D .27.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是 ( ) A .中位数 B .平均数 C .众数 D .方差 8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是 ( ) A .abc >0 B .b 2﹣4ac <0C .9a +3b +c >0D .c +8a <0 9.若不等式组⎩⎨⎧x -2<3x -6x <m无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2★10.如图,矩形ABCD 中,点A 在双曲线y =﹣8x 上,点B ,C 在x 轴上,延长CD 至点E ,使CD =2DE ,连接BE 交y 轴于点F ,连接CF ,则△BFC 的面积为( ) A .5 B .6 C .7 D .8二、填空题(共8小题,每小题2分,共16分)第6题 第8题 第10题11.分解因式:m 4n ﹣4m 2n = . 12.若a <1,化简(a -1)2-1= .13.将点P (2,﹣3)向右平移2个单位得到点P 1,点P 2与点P 1关于x 轴对称,则P 2的坐标是 . 14.一个暗箱里装有5个黑球,3个白球,2个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到红球的概率是 .15.已知a ,b 是一个等腰三角形的两边长,且满足a 2+b 2﹣6a ﹣8b +25=0,则这个等腰三角形的周长为 .16.某计算程序编辑如图所示,当输入x = ,输出y =1.17.在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(3,1),若将△OAB 绕O 点,逆时针旋转60°后,B 点到达B ′点,则点B ′的坐标是 .★18.等边△ABC 的边长为2,等边△DEF 的边长为1,把△DEF 放在△ABC 中,使∠D 与∠A 重合,点E 在AB 边上,如图所示,此时点E 是AB 中点,在△ABC 内部将△DEF 按下列方式旋转:绕点E 顺时针旋转,使点F 与点B 重合,完成第1次操作,此时点D 是BC 中点,△DEF 旋转了 °;再绕点D 顺时针旋转,使点E 与点C 重合,完成第2次操作;……这样依次绕△DEF 的某个顶点连续旋转下去,第11次操作完成时,CD = . 三、解答题(共7小题,共54分) 19.(6分) (1)计算:(﹣1)2021+12﹣(12)﹣2+(3﹣π)0﹣4sin60°.(2)先化简(x 2+4x +4x 2-4﹣x ﹣2)÷x +2x -2,然后从﹣2≤x ≤2范围内选取一个合适 的整数作为x 的值代入求值.20.(8分)20.解方程:(1)4x 2﹣3x +1=0;(2)解不等式组⎩⎪⎨⎪⎧2(x +2)≥3x +32+x 2-x -13>1;21.(8分)某学校为了解学生“第二课堂”活动的选修情况,对报名参加A .跆拳道,B .声乐,C .足球,D .古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有 人;在扇形统计图中,B 所对应的扇形的圆心角的度数是 ; (2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.第16题 第17题 第18题22.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB 长92cm ,车杆与脚踏板所成的角∠ABC =70°,前后轮子的半径均为6cm ,求把手A 离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).23.(8分)某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同. (1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?24.(8分)如图,AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得∠DAC =∠AED .(1)求证:AC 是⊙O 的切线;(2)若点E 是⌒BD 的中点,AE 与BC 交于点F , ①求证:CA =CF ;②若⊙O 的半径为3,BF =2,求AC 的长.25.(8分)如图,抛物线y =ax 2+bx +2交x 轴于点A (﹣3,0)和点B (1,0),交y 轴于点C . (1)求这个抛物线的函数表达式.(2)点D 的坐标为(﹣1,0),点P 为第二象限内抛物线上的一个点,求四边形ADCP 面积的最大值.★(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且∠MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.2021年中考数学基础题训练(9)(40分钟限时完成)参考答案一、选择题(共10小题,每小题3分,共30分)1.【解答】解:2021的相反数是﹣2021,﹣2021的的倒数是−1 2021.故选:D.2.【解答】解:①(﹣1)0=1,故①错误.②(﹣2)﹣2=14,故②正确.③用科学记数法表示﹣0.0000108=﹣1.08×10﹣5,故③错误.故选:C.3.【解答】解:∵x2﹣6x﹣2=0,∴x2﹣6x=2,则x2﹣6x+9=2+9,即(x﹣3)2=11,故选:B.4.【解答】解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.5.【解答】解:由勾股定理得,AC=√AB2−BC2=√42−12=√15则sin B=ACAB=√154,故选:C.6.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴S △ADE S △ABC=12,∴AD AB=√12=√22, 故选:C .7.【解答】解:去掉一个最高分和一个最低分对中位数没有影响, 故选:A .8.【解答】解:A .∵二次函数的图象开口向下,图象与y 轴交于y 轴的正半轴上, ∴a <0,c >0,∵抛物线的对称轴是直线x =1, ∴−b2a =1, ∴b =﹣2a >0,∴abc <0,故本选项错误; B .∵图象与x 轴有两个交点, ∴b 2﹣4ac >0,故本选项错误;C .∵对称轴是直线x =1,与x 轴一个交点是(﹣1,0), ∴与x 轴另一个交点的坐标是(3,0),把x =3代入二次函数y =ax 2+bx +c (a ≠0)得:y =9a +3b +c =0,故本选项错误; D .∵当x =3时,y =0, ∵b =﹣2a , ∴y =ax 2﹣2ax +c ,把x =4代入得:y =16a ﹣8a +c =8a +c <0, 故选:D . 9.【解答】解:{x −2<3x −6①x <m ②,由①得,x >2, 由②得,x <m , 又因为不等式组无解,所以根据“大大小小解不了”原则, m ≤2.故选:D .10.【解答】解:如图,设AD 交y 轴于J ,交BE 于K ,设AB =CD =2m ,则DE =m ,设DK =b .∵点A 在y =−8x上, ∴A (−4m,2m ), ∴AJ =4m ,∵四边形ABCD 是矩形, ∴DK ∥BC , ∴DK BC=ED EC=13,∴BC =AD =3b ,AK =2b ,JK =2b −4m , ∵JF ∥DE , ∴JF DE =JK DK,∴JF m=2b−4mb ,∴JF =2mb−4b, ∴OF =OJ ﹣JF =2m −2mb−4b =4b , ∴S △BFC =12•BC •OF =12×3b •4b=6, 故选:B .二、填空题(共8小题,每小题2分,共16分)11.【解答】解:原式=m 2n (m 2﹣4)=m 2n (m +2)(m ﹣2), 故答案为:m 2n (m +2)(m ﹣2) 12.【解答】解:∵a <1, ∴a ﹣1<0,∴√(a −1)2−1=|a ﹣1|﹣1 =﹣(a ﹣1)﹣1 =﹣a +1﹣1 =﹣a . 故答案为:﹣a .13.【解答】解:∵将点P (2,﹣3)向右平移2个单位得到点P 1, ∴P 1(4,﹣3)∵点P 2与点P 1关于x 轴对称,∴P 2的坐标是:(4,3). 故答案为:(4,3).14.【解答】解:从中任意摸出一个球有10种等可能结果,其中摸到红球的有2种结果, ∴摸到红球的概率是210=15,故答案为:15.15.【解答】解:a 2+b 2﹣6a ﹣8b +25=0, a 2﹣6a +9+b 2﹣8b +16=0, (a ﹣3)2+(b ﹣4)2=0, 解得,a =3,b =4,当a 是腰长时,等腰三角形的周长=3+3+4=10, 当b 是腰长时,等腰三角形的周长=3+4+4=11, 故答案为:10或11. 16.【解答】解:由题意可得 x +5=1,解得x =﹣4,符合题意; √x −3=1,解得x =4,符合题意; 故输入x =±4时,输出y =1. 故答案为:±4.17.【解答】解:将△OAB 绕O 点,逆时针旋转60°后,位置如图所示, 作B ′C ′⊥y 轴于C ′点, ∵A 的坐标为(√3,1),∴OB =√3,AB =1,∠AOB =30°, ∴OB ′=√3,∠B ′OC ′=30°, ∴B ′C ′=√32,OC ′=32,∴B ′(√32,32).18.【解答】解:∵DEF 是等边三角形, ∴∠AEF =60°, ∴∠FEB =120°,∴第一次旋转的旋转角为120°∵第一次旋转点D 落在BC 边上,第二次旋转点D 没有变化,第三次旋转点D 落在点A 处,3次应该循环,∴11÷3=3余数为2,∴第11次操作后,点D 落在BC 边上,此时CD =1, 故答案为120,1.三、解答题(共7小题,共54分)19.(1)【解答】解:原式=﹣1+2√3−4+1﹣4×√32=﹣1+2√3−4+1﹣2√3 =﹣4.(2)【解答】解:原式=[(x+2)2(x+2)(x−2)−(x +2)]•x−2x+2=(x+2x−2−x 2−4x−2)•x−2x+2=−x 2+x+6x−2•x−2x+2=−(x+2)(x−3)x−2•x−2x+2=﹣(x ﹣3) =﹣x +3, ∵x ≠±2, ∴可取x =1, 则原式=﹣1+3=2.21.解方程:(1)原方程无实数根; (2)【解答】解:{2(x +2)≥3x +3①2+x 2−x−13>1②,由①得,x ≤1; 由②得,x >﹣2,故此不等式组的解集为:﹣2<x ≤1, 在数轴上表示为:22.【解答】解:(1)本次调查的学生共有30÷15%=200(人), 扇形统计图中,B 所对应的扇形的圆心角的度数是360°×80200=144°, 故答案为:200、144;(2)C 活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:或列表如下:男 女1 女2 女3 男 ﹣﹣﹣ (女,男) (女,男) (女,男) 女1 (男,女) ﹣﹣﹣ (女,女) (女,女) 女2 (男,女) (女,女) ﹣﹣﹣ (女,女) 女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能情况,1男1女有6种情况, ∴被选中的2人恰好是1男1女的概率612=12.23.【解答】解:过点A 作AD ⊥BC 于点D ,延长AD 交地面于点E , ∵sin ∠ABD =ADAB , ∴AD ≈92×0.94=86.48, ∵DE =6,∴AE =AD +DE =92.5,∴把手A 离地面的高度为92.5cm .24.【解答】解:(1)设甲种水果的单价是x 元,则乙种水果的单价是(x +4)元,800x=1000x+4,解得,x =16,经检验,x =16是原分式方程的解, ∴x +4=20,答:甲、乙两种水果的单价分别是16元、20元;(2)设购进甲种水果a 千克,则购进乙种水果(200﹣a )千克,利润为w 元, w =(20﹣16)a +(25﹣20)(200﹣a )=﹣a +1000,∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元, ∴{a ≤3(200−a)16a +20(200−a)≤3420, 解得,145≤a ≤150,∴当a=145时,w取得最大值,此时w=855,200﹣a=55,答:水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元.25.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DBA+∠DAB=90°,∵∠DEA=∠DBA,∠DAC=∠DEA,∴∠DBA=∠DAC,∴∠DAC+∠DAB=90°,∵AB是⊙O的直径,∠CAB=90°,∴AC是⊙O的切线;(2)①证明:∵点E是BD̂的中点,∴∠BAE=∠DAE,∵∠CF A=∠DBA+∠BAE,∠CAF=∠DAC+∠DAE,∠DBA=∠DAC,∴∠CF A=∠CAF,∴CA=CF;②解:设CA=CF=x,则BC=CF+BF=x+2,∵⊙O的半径为3,∴AB=6,在Rt△ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.26.【解答】解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=−2 3,故抛物线的表达式为:y=−23x2−43x+2,(2)连接OP,设点P(x,−23x2−43x+2),则S=S四边形ADCP=S△APO+S△CPO﹣S△ODC=12×AO×y P+12×OC×|x P|−12×CO×OD=12×3×(−23x 2−43x +2)+12×2×(﹣x )−12×2×1=−x 2﹣3x +2, ∵﹣1<0,故S 有最大值,当x =−32时,S 的最大值为174;(3)存在,理由: △MNO 为等腰直角三角形,且∠MNO 为直角时,点N 的位置如下图所示:①当点N 在x 轴上方时,点N 的位置为N 1、N 2,N 1的情况(△M 1N 1O ):设点N 1的坐标为(x ,−23x 2−43x +2),则M 1E =x +1,过点N 1作x 轴的垂线交x 轴于点F ,过点M 1作x 轴的平行线交N 1F 于点E , ∵∠FN 1O +∠M 1N 1E =90°,∠M 1N 1E +∠EM 1N 1=90°,∴∠EM 1N 1=∠FN 1O , ∠M 1EN 1=∠N 1FO =90°,ON 1=M 1N 1,∴△M 1N 1E ≌△N 1OF (AAS ),∴M 1E =N 1F ,即:x +1=−23x 2−43x +2,解得:x =−7±√734(舍去负值), 则点N 1(−7+√734,−3+√734);N 2的情况(△M 2N 2O ):同理可得:点N 2(−1−√734,−3+√734);②当点N 在x 轴下方时,点N 的位置为N 3、N 4,同理可得:点N 3、N 4的坐标分别为:(−1+√734,−3−√734)、(−7−√734,−3−√734). 综上,点N 的坐标为:(−7+√734,−3+√734)或(−1−√734,−3+√734)或(−1+√734,−3−√734)或(−7−√734,−3−√734).。
一、选择题1.有个花园占地面积约为 800000平方米,若按比例尺 1 : 2000缩小后,其面积大约相当于( )A .一个篮球场的面积B .一张乒乓球台台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积2.计算23x 11x +--的结果是 A .1x 1- B .11x - C .5x 1- D .51x- 3.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .B .C .D .4.若xy y x =+,则y x 11+的值为 ( ) A 、0 B 、1 C 、-1 D 、25.分式的值为0,则x 的值为 A .4B .-4C .D .任意实数 6.下列运算正确的是( ) A .(2a 2)3=6a 6B .-a 2b 2•3ab 3=-3a 2b 5C .D .7.若分式的值为0,则x 的值为( ) A .0B .2C .﹣2D .2或﹣2 8.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( )A .a <d <c <bB .b <a <d <cC .a <d <c <bD .a <b <d <c9.PM 2.5是指大气中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科学记数法可表示为( )A .23×10﹣5mB .2.3×10﹣5mC .2.3×10﹣6mD .0.23×10﹣7m 10.如果把分式22a b ab +中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍 11.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y 2 B .11a - C .x D .13π12.如果把223y x y-中的x 和y 都扩大5倍,那么分式的值( ) A.扩大5倍 B.不变 C.缩小5倍 D.扩大10倍13.函数122y x x =+--的自变量x 的取值范围是( ) A .2x ≥ B .2x > C .2x ≠ D .2x ≤14.雾霾已经成为现在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )A .2.5×10﹣6B .0.25×10﹣6C .2.5×10﹣5D .0.25×10﹣515.化简﹣的结果是( )m+3 B .m-3 C .D . 16.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9B .227C .πD .(3)0 17.式子①,②,③,④中,是分式的是( )A .①② B.③④ C.①③ D.①②③④18.下列分式中是最简分式的是( )A .B .C .D .19.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是( ).A .aB .bC .2a b +D .2ab a b+20.下列4个分式:①;②;③;④中最简分式有()A.1个 B.2个 C.3个 D.4个21.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为()A.0.21×10-5 B.2.1×10-5C.2.1×10-6 D.21×10-622.在函数中,自变量的取值范围是()A.>3B.≥3且≠4C.>4D.≥3 23.化简-的结果是()A.B.C.D.24.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()A.1个 B.2个 C.3个 D.4个25.已知为整数,且分式的值为整数,则可取的值有( )A.1个B.2个C.3个D.4个【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题解析:设其缩小后的面积为xm2,则x:800000=(1:2000)2,x=0.2m2,其面积相当于报纸的一个版面的面积,故选C.考点:数学常识.2.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断: 2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 3.A解析:A【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程. 4.B解析:B【解析】试题分析:先被求的代数式通分,在根据已知整体带入即可.y x 11+=1==+xyxy xy y x 考点:分式的通分,整体带入. 5.A解析:A【解析】试题分析:根据分式的值为零的条件可以求出x 的值.试题解析:若分式的值为0,则|x|-4=0且x+4≠0.得x 1=4,x 2=-4.当x=-4时,分母为0,不合题意,舍去.故x 的值为4.故选A .考点:分式的值为零的条件. 6.D解析:D【解析】试题解析:A 、原式=8a 6,错误;B 、原式=-3a 3b 5,错误;C 、原式=,错误;D 、原式=,正确;故选D . 考点:1.分式的乘除法;2.幂的乘方与积的乘方;.3.单项式乘单项式;4.分式的加减法. 7.B解析:B【解析】根据分式的值为0,分子为0,分母不为0可得 且x+2≠0,解得x=2,故选B.8.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a 、b 、c 、d 的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b ,故选B.9.C解析:C【详解】解:2.3μm=2.3×0.000001m=2.3×10﹣6m ,故选C .【点睛】本题考查科学记数法—表示较小的数.10.C解析:C【解析】 分式22a b ab+中的a 和b 都扩大了2倍,得: 4212822a b a b ab ab++=⨯, 所以是缩小了2倍.故选C.11.B解析:B【解析】 试题解析:由于11a -中,分母含有字母, 故选B. 12.B解析:B【解析】试题分析:如果把223yx y-中的x和y都扩大5倍,则变为()()()252253523y yx y x y=--,分式的值没改变,所以选B考点:分式点评:本题考查分式,本题的关键是掌握分式的性质,本题难度不大,属基础题13.B解析:B【详解】解:根据题意得:x﹣2≥0且x﹣2≠0,解得:x>2.故选B.【点睛】本题考查函数自变量的取值范围.14.A解析:A【解析】由科学记数法知0.0000025=2.5×10−6,故选A.15.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.16.C解析:C【解析】9=3,227是无限循环小数,π是无限不循环小数,()031=,所以π是无理数,故选C.17.C解析:C【解析】试题分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:①,③是分式,②,④是整式,故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.18.A解析:A【解析】选项A ,的分子、分母都不能再分解,且不能约分,是最简分式;选项B,原式=2x;选项C,原式=11x+;选项D,原式=-1.故选A .19.C解析:C.【解析】试题分析:直接表示出上下坡所用时间,进而利用总路程÷总时间=平均速度,进而得出答案.设总路程为x,由题意可得:22211x abx x a ba b a b==+++.故选:C.考点:列代数式(分式).20.B解析:B【解析】①是最简分式;②,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故选:B.21.C解析:C【解析】0.0000021=2.1×10-6,故选C.22.B解析:B【解析】试题分析:根据分式的意义,可知x-4≠0,解得x≠4,根据二次根式有意义的条件可知x-3≥0,解得x≥3,因此x的取值范围为x≥3,且x≠4.故选:B.点睛:此题主要考查了复合算式有意义的条件,解题关键是根据复合算式的特点,逐步确定条件即可.主要有:分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数为非负数.23.D解析:D【解析】 试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D24.C解析:C【解析】改正:①任何非0数的零次方都等于1;②如果两条平行的直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或共线)且相等;④正确.故选C.25.C解析:C【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3故选:C.。
一、选择题1.下列运算错误的是( )A .235a a a ⋅=B .()()422ab ab ab ÷-=C .()222424ab a b -=D .3322a a -= 2.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <cC .a <d <c <bD .c <a <d <b 3.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .24.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6 C .20.19×10﹣7 D .2019×10﹣9 5.把分式中的、的值同时缩小到原来的,则分式的值( )A .扩大为原来的2倍B .不变C .扩大为原来的4倍D .缩小为原来的一半6.已知02125,,0.2532a b c --⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a 7.与分式()()a b a b ---+相等的是( )A .a b a b +-B .a b a b -+C .a b a b +--D .a b a b--+ 8.当x =_____ 时,分式11x x -+无意义.( ) A .0B .1C .-1D .2 9.下列运算结果最大的是( ) A .112-⎛⎫ ⎪⎝⎭B .02C .12-D .()12- 10.3x -x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠011.函数3y x =+的自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x ≠- D .3x ≤-12.化简a b a b b a+--22的结果是( ) A .1B .+a bC .-a bD .22a b - 13.将0.00086用科学记数法表示为( )A .8.6×104B .8.60×104C .8.6×10-4D .8.6×10-6 14.若式子01(1)k k -+-有意义,则一次函数()11y k x k =-+-的图象可能是( ) A . B . C . D .15.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( )A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只16.下列运算正确的是( )A .1133a a ﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=17.若2220110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( )A .a b d c <<<B .b a d c <<<C .a d c b <<<D .c a d b <<< 18.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a aa ⋅÷=;⑤()-21-510=;⑥22m a m n a n +=+,其中正确的个数为( ) A .4个 B .3个C .2个D .1个 19.世界上最小的开花结果植物的果实像一个微小的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( )A .87.610⨯B .77.610-⨯C .87.610-⨯D .97.610-⨯ 20.222142x x x÷--的计算结果为( )A .2x x +B .22x x +C .22x x -D .2(2)x x + 21.下列运算正确的是( )A .(﹣x 3)4=x 12B .x 8÷x 4=x 2C .x 2+x 4=x 6D .(﹣x )﹣1=1x 22.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠ B .a 2>- C .2a 2-<< D .a 2≠±23.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个B .4个C .6个D .8个 24.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m-中,是分式的共有( ) A .1个 B .2个 C .3个 D .4个25.函数 y =21x x --的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1 B .x ≠ 1且x ≠ 2 C .x ≥ -1且x ≠ 1 D .x ≥ -1【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意;C . ()222424ab a b -=,计算正确,不符合题意; D . 3322a a-=,计算正确,不符合题意. 故选:B .【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.2.B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a =﹣0.22=﹣0.04;b =﹣2﹣2=﹣14=﹣0.25,c =(﹣12)﹣2=4,d =(﹣12)0=1, ∴﹣0.25<﹣0.04<1<4,∴b <a <d <c ,故选B .【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.3.B解析:B【解析】【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数.【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+- =()()262621833x x x x x ---+++- =()()()2333x x x ++- =23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B .【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x 的值.4.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000002019=2.019×10﹣6,故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.A解析:A【解析】【分析】根据题意可知原来的x 变成,原来的y 变成,在根据分式基本性质可以求得答案.【详解】 由题意可知:分式的值 扩大为原来的2倍.故选:A【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.6.C解析:C【解析】【分析】根据负整数指数幂和零指数幂法则计算,比较即可.【详解】021295==10.25=4342a b c --⎛⎛⎫=-== ⎪ ⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b .故选C .此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.7.B解析:B【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变.【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B.【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质. 8.C解析:C【分析】根据分式无意义的条件,分母等于0,列不等式求解即可.【详解】因为分式11xx-+无意义,所以1+x=0,解得x=-1.故选C.【点睛】本题主要考查分式无意义的条件,解决本题的关键是要熟练掌握分式无意义的条件. 9.A解析:A【解析】【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案.【详解】∵11=22-⎛⎫⎪⎝⎭;02=1;12-=12;()12=2--,2>1>12>-2,∴运算结果最大的是112-⎛⎫⎪⎝⎭,故选A.【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键.解析:B【分析】直接利用二次根式有意义的条件得出答案.【详解】使式子x有意义的实数x的取值范围是:3﹣x≥0,且x≠0,解得:x≤3且x≠0.故选B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.11.A解析:A【分析】根据根式和分母有意义进行判断即可.【详解】要使得该函数有意义分母不能为0且根号内不能为负∴30x+>解得:3x>-故选:A.【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键.12.B解析:B【解析】【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.【详解】解:原式=22a ba b--=()()a b a ba b+--=a+b,故选B.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将8600用科学记数法表示为:8.6×10-4. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.C解析:C【分析】先求出k 的取值范围,再判断出1k -及1k -的符号,进而可得出结论.【详解】0(1)k -有意义,则1k >.∴10k -<,10k ->,∴一次函数()11y k x k =-+-的图象经过第一、二、四象限.故选:C .【点睛】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键. 15.B解析:B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】500万×31=5000000×31=155000000=1.55×108(只),故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.D解析:D【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案.【详解】解:A 、133a a-=,故此选项错误;B 、22a a +,不是同类项无法合并;C 、()325a a a -⋅=-,故此选项错误;D 、()()32a a a -÷-=,正确; 故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.17.B解析:B【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1, ∴-0.25<-0.04<1<4,∴b <a <d <c ,故选:B .【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键. 18.D解析:D【分析】利用同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂以及整式的除法逐个判断即可.【详解】解:①336a a a ⋅=,故①错误;②2m 和3m 不是同类项,不能合并,故②错误;③()()()222224-2-24a a a ==,故③错误;④()2104268a a a a a a ⋅÷==⋅,故④正确;⑤()-21-525=,故⑤错误;⑥22m a m n a n+≠+,故⑥错误;只有1正确. 故答案为D .【点睛】本题考查了同底数幂相乘、合并同类项、积的乘方、幂的乘方、负整数指数幂、整式的除法等知识点,掌握相关运算法则是解答本题的关键.19.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000076用科学记数法表示为7.6×10-8.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.B解析:B【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果.【详解】222142x x x÷-- =21(2)(2)(2)x x x x ÷+-- =()()()2·222x x x x -+- =22x x +. 故选:B .【点睛】本题主要考查了分式的除法,约分是解答的关键.21.A解析:A【分析】A 、根据积的乘方法则进行计算;B 、根据同底数幂的除法法则进行计算;C 、不是同类项,不能合并;D 、根据负整数指数幂的法则进行计算.【详解】解:A 、(﹣x 3)4=x 12,所以此选项正确;B 、x 8÷x 4=x 4,所以此选项不正确;C 、x 2与x 4不是同类顶,不能合并,所以此选项不正确;D 、(﹣x )﹣1=111()x x -=-,所以此选项不正确; 故选:A .【点睛】本题考查了幂的乘方和积的乘方等知识点,能求出每个式子的值是解题的关键.22.D解析:D【分析】分式有意义时,分母a 2-4≠0.【详解】依题意得:a 2-4≠0,解得a≠±2.故选D .【点睛】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零23.B解析:B【分析】 首先把分式转化为6321x +-,则原式的值是整数,即可转化为讨论621x -的整数值有几个的问题.【详解】 6363663212121x x x x x +-+==+---, 当216x -=±或3±或2±或1±时,621x -是整数,即原式是整数. 当216x -=±或2±时,x 的值不是整数,当等于3±或1±是满足条件. 故使分式6321x x +-的值为整数的x 值有4个,是2,0和1±. 故选B .【点睛】 本题主要考查了分式的值是整数的条件,把原式化简为6321x +-的形式是解决本题的关键. 24.C解析:C【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式,进行解答即可.【详解】 解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个,故选:C.【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.25.C解析:C【分析】根据分母不能为零且被开方数是非负数,可得答案.【详解】解:由题意得:x-1≠0且x+1≥0,解得:x≥-1且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.。
班级 姓名成绩时间:60分钟 你实际使用分钟一、精心选一选(本大题共10小题,每小题4分,共40分).1.下列四个数中,小于0的是( ) (A )-2.(B )0.(C )1.(D )3.2.右边的几何体是由五个大小相同的正方体组成的,它的正视图为( )3.不等式2x-6<0的解集是( )(A )x>3.(B )x<3.(C )x>-3.(D )x<-3.4.两圆的半径分别为2和5,圆心距为5,则这两圆的位置关系为 (A )外离.(B )外切.(C )相交.(D )内切. 5.要使代数式x 有意义,则x 的取值范围是()A .x ≥0B .0x <C .0x ≠D .0x > 6.下列各式运算正确的是( )A .22a a a ÷=B .()2224aba b =C .248a a a ·=D .55ab b a -=7.如图是一房子的示意图,则其左视图是( )A .B .C . D. 8.某班5位同学参加“改革开放30周年”系列活动的次数依次为12333、、、、,则这组数据的众数和中位数分别是( )A .2,2B .2.4,3C .3,2D .3,39.如图,将△ABC 绕点A 逆时针旋转80°得到△AB ′C ′.若∠BAC=50°,则∠CAB ′的度数为 ( )(A )30°.(B )40°.(C )50°.(D )80°. 10.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,正面(第2题)(第9题)点R 应运动到()A .N 处B .P 处C .Q 处D .M 处二、细心填一填(本大题共10小题,每小题4分,共40分)11. 计算:5a-2a=.12.为鼓励大学生创业,某市为在开发区创业的每位大学生提供货款150 000元,这个数据用科学记数法表示为元. 13.方程312x =-的解是. 14.如图,菱形ABCD 的对角线相交于点O , 请你添加一个条件:,使得该菱形为正方形.15.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为. 三、耐心做一做(共7大题,满分90分,其中16-20题共64分)16.(每小题7分,共14分)(1)计算:0133⎛⎫⎪⎝⎭. (2)先化简,再求值:2244242x x x x x x +++÷---,其中1x =.17.(每小题8分,共16分)(1)解方程 x 2-x=0ABCDDC BAO (第14题图) O(第15题图)2 (第10题图)(图1)(2)已知:如图在平行四边形ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、.(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?18.(本题满分10分)(1)根据下列步骤画图..并标明相应的字母:(直接在图1中画图) ①以已知线段AB (图1)为直径画半圆O ;②在半圆O 上取不同于点A B 、的一点C ,连接AC BC 、; ③过点O 画OD BC ∥交半圆O 于点D . (2)尺规作图..:(保留作图痕迹,不要求写作法、证明) 已知:AOB ∠(图2). 求作:AOB ∠的平分线.19.(本题满分12分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率: (1) 两次取出小球上的数字相同;(2) 两次取出小球上的数字之和大于10.图2 O B A 图1 第18题图 E B M ODN C第17(2)题图 A20.(本题满分12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55:x=75时,y=45。
19.(6分)计算:(﹣1)2021+2×()﹣1﹣|﹣2|.20.(6分)解不等式组,井把它的解集在数轴上表示出来.21.(8分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD . (1)求证:四边形AODE 是矩形;(2)若△ABC 是边长为4的正三角形,求四边形AODE 的面积.22.(8分)小明本学期的数学成绩如表所示:测验类别 平时成绩1平时成绩2 平时成绩3 平时成绩4 平时平均数 期中考试 期末考试成绩108103101108a110114(1)六次测试成绩的中位数和众数分别是什么? (2)请计算出小明该学期的平时成绩平均分a 的值;(3)如果学期的数学总评成绩是根据一定的权重计算所得,其中平时成绩a 所占权重为20%,已知小明该学期的总评成绩为111分,请计算出期中考试和期末考试各自所占权重.17、(4分)解方程组:⎩⎨⎧==+19y 3x 21y x 2——18、(4分)如图,四边形ABCD 为菱形,点E 、F 分别为边DA 、DC 上的点,DE =DF ,连接BE 、BF ,求证:BE =BF19、(6分)已知A =22222b a b a b a a a ——÷⎪⎪⎭⎫ ⎝⎛+(1)化简A ;(2)若点P (a ,b )是直线y =x —2与反比例函数y =x1的图象的交点,求A 的值。
20、(6分)为了了解某校开展校园志愿服务活动的情况,随机对八年级部分学生参与的图书管理、校园保洁和纪律检查这三项活动进行了抽样调查,现将调查结果绘制成如下两幅不完整的统计图。
请结合图中所给的信息解答下列问题: (1)在扇形统计图中,参加图书管理的学生人数所在扇形的圆心角度数是90°,则抽查的总人数是_________人;(2)在(1)的条件下,将条形统计图补充完整;(3)现小亮和小明拟参加上述三项志愿活动中任意一项活动,请用画树状图或者列表的方法计算他们选中同一项活动的概率。
一、选择题1.已知分式32x x +-有意义,则x 的取值范围是( )A .x ≠-3B .x≠0C .x≠2D .x=22.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 3.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 4.下列各式从左到右的变形正确的是( )A .221188a a a a ---=-++ B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x ++=-++5.下列各式中,正确的是( ). A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a ---=- 6.计算32-的结果是( ) A .-6B .-8C .18-D .187.下列变形正确的是( ).A .11a ab b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 8.使分式293x x -+的值为0,那么x ( ).A .3x ≠-B .3x =C .3x =±D .3x ≠9.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1- B .1a -C .()21a - D .11a- 10.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的1311.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7 12.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=- B .x 6=C .x 5≠D .x 5=13.生物学家发现一种病毒的长度约为0.00 004mm ,0.00 004用科学记数法表示是( ) A .40.410-⨯B .5410-⨯C .54010-⨯D .5410⨯14.下列关于分式的判断正确的是 ( ) A .无论x 为何值,231x +的值总为正数 B .无论x 为何值,31x +不可能是整数值 C .当x =2时,12x x +-的值为零 D .当x ≠3时3x x-,有意义 15.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个B .2个C .3个D .4个16.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定17.化简:32322012220122010201220122013-⨯-+-,结果是( ) A .20102013B .20102012C .20122013D .2011201318.分式b ax ,3c bx -,35a cx的最简公分母是( ) A .5cx 3B .15abcxC .15abcx 3D .15abcx 519.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯ B .51.0510-⨯C .50.10510-⨯D .410.510-⨯20.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( )A .90.710-⨯B .90.710⨯C .8710-⨯D .710⨯821.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1522.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( )A .1B .1-C .2D .2-23.3--2的倒数是( )A .-9B .9C .19D .-1924.计算()22ab ---的结果是( )A .42b a-B .42b aC .24a b -D .24a b25.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】分析:根据分式有意义的条件:分母不等于0即可求解. 详解:根据题意得:x-2≠0, 解得:x≠2. 故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.B解析:B 【解析】 A 选项中,1(1)1a a a a a a----==--,所以A 正确;B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.3.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.4.B解析:B 【解析】解:A .原式=22(1)1(8)8a a a a -++=--- ,错误; B .原式=1,正确; C .原式为最简结果,错误; D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.5.C解析:C 【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .6.D解析:D 【解析】3311228-==. 故选D. 7.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.8.B解析:B 【解析】∵由题意可得:2903x x -=+,∴29030x x ⎧-=⎨+≠⎩,∴3x =±且3x ≠-, ∴3x =. 故选B .点睛:分式中字母的取值使分式的值为0,需同时满足两个条件:(1)字母的取值使分子的值为0;(2)字母的取值使分母的值不为0.9.D解析:D 【解析】解:A .当a ≥1时,根式有意义. B .当a ≤1时,根式有意义. C .a 取任何值根式都有意义.D .要使根式有意义,则a ≤1,且分母不为零,故a <1. 故选D .点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.10.B解析:B 【解析】 解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xyx y+,即将分式00xyx y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .11.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.000 007 7=7.7×10-6, 故选C.12.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.13.B解析:B 【解析】解:0.00 004=5410-⨯.故选B .14.A解析:A 【解析】 【分析】根据分式有意义的条件、分式值为0的条件、分式值是正负等逐一进行分析即可得. 【详解】A 、分母中x 2+1≥1,因而23x 1+的值总为正数,故A 选项正确; B 、当x+1=1或-1时,3x 1+的值是整数,故B 选项错误; C 、当x=2时,分母x-2=0,分式无意义,故C 选项错误; D 、当x=0时,分母x=0,分式无意义,故D 选项错误, 故选A . 【点睛】本题考查了分式的值为零的条件,分式的定义,分式有意义的条件,注意分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.15.A解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.16.A解析:A 【解析】 试题分析:==;故选A.考点:分式的基本性质.17.A解析:A 【分析】将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果,选出答案. 【详解】原式=32322012220122010201220122013-⨯-+-=2220122012220102012201212013--⨯+-()()=22201220102010201220132013⨯-⨯-=22201020121201320121--()()=20102013,故答案选A.【点睛】本题主要考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.18.C解析:C【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积.【详解】最简公分母为3⨯5⨯a⨯b⨯c⨯x3=15abcx3故答案选:C.【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.19.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000105=1.05×10-5,故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:若一种DNA分子的直径只有0.00000007cm,则这个数用科学记数法表示为8710-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.A解析:A 【解析】 【分析】x ,y 都扩大为原来的5倍就是分别变成原来的5倍,变成5x 和5y .用5x 和5y 代替式子中的x 和y ,看得到的式子与原来的式子的关系. 【详解】用5x 和5y 代替式子中的x 和y 得:()2255,151032x xx y x y=++则扩大为原来的5倍. 故选:A. 【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.22.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.A【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.24.B解析:B 【解析】 【分析】根据负整数指数幂和幂的乘方和积的乘方解答. 【详解】 原式=(-1)-2a -2b 4 =21a•b 4=42b a. 故选B . 【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.D解析:D【解析】解:A .原式=1,故A 错误;B .x 3与x 4不是同类项,不能进行合并,故B 错误;C .原式=a 4b 6,故C 错误;D .正确. 故选D .。
一、选择题1.下列变形中,正确的是( )A .2211x xy y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+ 2.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5 B .4 C .3 D .2 3.0.000002019用科学记数法可表示为( )A .0.2019×10﹣5B .2.019×10﹣6C .20.19×10﹣7D .2019×10﹣9 4.把分式中的、的值同时缩小到原来的,则分式的值( )A .扩大为原来的2倍B .不变C .扩大为原来的4倍D .缩小为原来的一半5.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.小张在课外阅读中看到这样一条信息:“肥皂泡的厚度约为0.0000007m ”,请你用科学记数法表示肥皂泡的厚度,下列选项正确的是( ) A .0.7 ⨯10-6 mB .0.7 ⨯10-7mC .7 ⨯10-7mD .7 ⨯10-6m7.若代数式()11x --有意义,则x 应满足( ) A .x = 0B .x ≠ 0C .x ≠ 1D .x = 18.若x 2-6xy +9y 2=0,那么x yx y-+的值为( )A .12yB .12y-C .12D .12-9.把分式2aa b+中a 、b 都扩大2倍,则分式的值( ) A .扩大4倍B .扩大2倍C .缩小2倍D .不变10.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣1611.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的1812.化简a b a b b a+--22的结果是( ) A .1 B .+a bC .-a bD .22a b -13.函数3y x =+的自变量x 的取值范围是( ) A .3x >-B .3x ≥-C .3x ≠-D .3x ≤-14.若式子01(1)k k -+-有意义,则一次函数()11y k x k =-+-的图象可能是( )A .B .C .D .15.下列各分式中,最简分式是( )A .21x x +B .22m n m n -+C .22a b a b +-D .22x y x y xy ++16.函数 y =211x x x -+-的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1 B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -117.若分式21x -有意义,则( ) A .1x ≠ B .1x =C .0x ≠D .0x =18.下列变形正确的是( )A .()23524a a -=-B .22220x y xy -=C .23322b ab a a-÷=- D .()()222222x y x y x y +-=-19.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变20.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<21.下列等式成立的是( ) A .123a b a b+=+ B .212a b a b=++ C .2ab aab b a b =--D .a aa b a b=--++ 22.化简21211a aa a----的结果为( )A .11a a +- B .a ﹣1 C .a D .123.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-224.下列各式:2a b -,3x x +,13,a b a b +-,1()x y m-中,是分式的共有( )A .1个B .2个C .3个D .4个 25.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可. 【详解】A ,B ,D 均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C 可以将分子分母同时除以(a-b )到()2a b a b a b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.2.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++--=()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B . 【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x 的值.3.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.A解析:A 【解析】 【分析】根据题意可知原来的x 变成,原来的y 变成,在根据分式基本性质可以求得答案.【详解】由题意可知:分式的值扩大为原来的2倍.故选:A【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5.C解析:C【解析】【分析】根据题意,分式中的x和y都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式xyyx+中的x和y都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍;故选C.【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 7=7×10-7.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.C解析:C【解析】【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.8.C解析:C【解析】【分析】根据完全平方公式求出x与y的关系,代入计算即可.【详解】x2-6xy+9y2=0,(x-3y)2=0,∴x=3y,则x yx y-+=3132y yy y-=+,故选:C.【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.9.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式2aa b+中的a、b都扩大2倍,得2222222()a aa b a b⋅⋅=++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.10.A解析:A【解析】【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可. 【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a ab -=⎧⎨+=⎩, 2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.11.C解析:C 【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案. 【详解】 ∵把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅. ∴分式的值缩小为原来的14. 故选:C. 【点睛】考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.12.B解析:B 【解析】 【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果. 【详解】解:原式=22a b a b --=()()a b a b a b+--=a+b , 故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.A解析:A 【分析】根据根式和分母有意义进行判断即可. 【详解】要使得该函数有意义分母不能为0且根号内不能为负 ∴30x +> 解得:3x >- 故选:A. 【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键.14.C解析:C 【分析】先求出k 的取值范围,再判断出1k -及1k -的符号,进而可得出结论. 【详解】0(1)k -有意义,则1k >. ∴10k -<,10k ->,∴一次函数()11y k x k =-+-的图象经过第一、二、四象限. 故选:C . 【点睛】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.15.A解析:A 【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1. 【详解】 解:A.21xx +,分子分母的最大公因式为1; B. 22m n m n-+,分子分母中含有公因式m+n;C. 22a ba b +-,分子分母中含有公因式a+b ; D.22x yx y xy ++,分子分母中含有公因式x+y故选:A. 【点睛】最简分式首先系数要最简;一个分式是否为最简分式,关键看分子与分母是不是有公因式,但表面不易判断,应将分子、分母分解因式.16.C解析:C 【分析】根据分母不能为零且被开方数是非负数,可得答案. 【详解】解:由题意得:x-1≠0且x+1≥0, 解得:x≥-1且x≠1. 故选C . 【点睛】本题考查了函数自变量的取值范围,利用分母不能为零且被开方数是非负数得出不等式是解题关键.17.A解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义 ∴10x -≠1x ∴≠ 故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.18.C解析:C 【分析】原式各项计算得到结果,即可作出判断. 【详解】A 、原式=4a 6,错误;B 、原式不能合并,错误;C 、原式=−232a,正确; D 、原式=2x 2−4xy +xy−2y 2=2x 2−3xy−2y 2,错误. 故选:C . 【点睛】此题考查了分式的乘除法,合并同类项,幂的乘方与积的乘方,以及整式的乘法,熟练掌握公式及运算法则是解本题的关键.19.D解析:D 【分析】 根据题意把分式x xy2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断. 【详解】 解:∵分式x xy2中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变. 故选:D 【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.20.B解析:B 【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案. 【详解】∵a=-0.22=-0.04;b=-2-2=-14=-0.25,c=(-12)-2=4,d=(-12)0=1,∴-0.25<-0.04<1<4, ∴b <a <d <c , 故选:B . 【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.21.C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.22.B解析:B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=21211a a a a -+--, =2(1)1a a --, =a ﹣1故选B .点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.D解析:D【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案.【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D .本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.24.C解析:C【分析】利用分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式,进行解答即可.【详解】 解:在2a b -,3x x +,13,a b a b +-,1()x y m-中, 3x x +,a b a b +-,1()x y m -是分式,共3个,故选:C .【点睛】 本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.25.D解析:D【分析】根据分式为零的条件进行计算即可.【详解】解:∵分式有意义且它的值为零,∴分子为0,分母不为0A. 2m +10≠,分式的值不可能为零,不符合题意;B. 10≠,分式的值不可能为零,不符合题意;C. 2m+1=0m -10⎧⎨≠⎩无解,分式的值不可能为零,不符合题意; D.当 2m -1=0m+10⎧⎨≠⎩,即m=1时,分式的值为零,符合题意; 故选:D【点睛】本题主要考查分式为零的条件,(1)分子的值为零;(2)分母的值不为零;两个条件必须同时具备,缺一不可.。
一、选择题1.如图,下列关于物体的主视图画法正确的是( )A .B .C .D . 2.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .33.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 4.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .525.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36- 6.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( )A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1) 7.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样 9.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C .1x =- D .无解10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤11.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=012.若点P1(x1,y1),P2(x2,y2)在反比例函数kyx(k>0)的图象上,且x1=﹣x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y213.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8%B.9%C.10%D.11%14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D 的边长为()A14B.4cm C15D.3cm15.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差16.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为12,则C 点坐标为( )A .(6,4)B .(6,2)C .(4,4)D .(8,4)17.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D . 18.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9 19.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分20.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A .110B .19C .16D .1521.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 22.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++= 23.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°24.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .2325.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁26.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分27.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .154B .14C .1515D .4171728.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( ) A . B . C . D .29.cos45°的值等于( )A .2B .1C .32D .2230.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .二、填空题31.分解因式:2x 3﹣6x 2+4x =__________.32.使分式x 2−1x+1的值为0,这时x=_____.33.若a ,b 互为相反数,则22a b ab +=________.34.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.35.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧BC 的长为 cm .36.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为 .37.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.38.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.39.当m=____________时,解分式方程533x mx x-=--会出现增根.40.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.41.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.42.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.43.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)44.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.45.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.46.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.47.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.48.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.49.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.50.如果a 是不为1的有理数,我们把11a -称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .51.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.52.计算:2cos45°﹣(π+1)0111()42-=______. 53.若一个数的平方等于5,则这个数等于_____.54.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.55.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.56.计算:21(1)211x x x x ÷-+++=________.57.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.58.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.59.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.60.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.A4.C5.C 6.A 7.B 8.C 9.D 10.A 11.C 12.D 13.C 14.A 15.A 16.A 17.B 18.D 19.B 20.A 21.D 22.D 23.A 24.C 25.D 26.B 27.A 28.B 29.D 30.A二、填空题31.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点32.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法33.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数34.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD =180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-135.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC 可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B36.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角37.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主38.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣739.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:240.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-141.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得42.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π43.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合44.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A45.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=46.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角47.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E ∵∠B=90°∴∴BE=∴48.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】49.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A 2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得50.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a201951.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA52.【解析】解:原式==故答案为:53.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质54.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2 m=0有一个根为0∴m2﹣2m=55.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根56.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛57.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q58.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB =×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G59.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单60.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)2+4ab=11a+b=∴y=-x2x∴顶点坐标为2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.2.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S+=12.故选B.3.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.4.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.5.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴2234+,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.6.A解析:A【解析】【分析】把点(3,1)代入直线y=kx﹣2,得出k值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y=kx﹣2,得1=3k﹣2,解得k=1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.7.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:直线//m n,21180ABC BAC∴∠+∠∠+∠=+︒,30ABC=︒∠,90BAC∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.8.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C .考点:列代数式.9.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.10.A解析:A【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a , ∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于0.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).11.C解析:C【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C .点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.12.D解析:D【解析】 由题意得:1212k k y y x x ==-=- ,故选D. 13.C解析:C【解析】【分析】设月平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设该商店的每月盈利的平均增长率为x ,根据题意得:240000(1+x )2=290400,解得:x 1=0.1=10%,x 2=-0.21(舍去),故选C.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-.14.A解析:A【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,x =(负值已舍),故选A15.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.16.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.17.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.18.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.19.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.20.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A. 21.D 解析:D 【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12, ∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.22.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 23.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.24.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13; 故选:C .【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.25.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 26.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:95+952=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.27.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC ,则cos B =BC AB , 故选A 28.B解析:B【解析】解:A .不是轴对称图形,是中心对称图形,不符合题意;B .既是轴对称图形,也是中心对称图形,符合题意;C .不是轴对称图形,是中心对称图形,不符合题意;D .不是轴对称图形,也不是中心对称图形,不符合题意.故选B .29.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°= 2. 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 30.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近, 故选A .二、填空题31.2x (x ﹣1)(x ﹣2)【解析】分析:首先提取公因式2x 再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x (x2﹣3x+2)=2x (x ﹣1)(x ﹣2)故答案为2x (x ﹣1)(x ﹣2)点解析:2x (x ﹣1)(x ﹣2).【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案.详解:2x 3﹣6x 2+4x=2x (x 2﹣3x+2)=2x (x ﹣1)(x ﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.32.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,x 2−1x+1=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法33.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零. 34.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD ,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.35.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).36.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:。
2021年中考数学基础题训练(7)(40分钟限时完成)一、选择题(共10小题,每小题3分,共30分) 1.﹣5的绝对值是( ) A .﹣5B .15C .±5D .5 2.下列式子正确的是( ) A .2x ﹣x =2B .(ab 2)3=ab 8C .a •a 4=a 5D .(﹣a +b )2=(a +b )2 3.已知2a ﹣3b =0,则ab 的值为( ) A .23B .2C .3D .324.分式方程x 2-1x +1=0的解是( ) A .﹣1 B .1 C .±1 D .无解5.如图,△ABC 中,A (2,4)以原点为位似中心,将△ABC 缩小后得到△DEF ,若D (1,2),△DEF 的面积为4,则△ABC 的面积为 ( ) A .2 B .4 C .8 D .16 6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为 ( ) A .9人 B .10人 C .11人 D .12人7.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12,则S △ADE :S 四边形BCED 的值为A .1:3B .1:2C .1:3D .1:4( )8.如图,矩形ABCD 中,AB =3,BC =4,点P 从A 点出发,按A →B →C 的方向在AB和BC 上移动.记P A =x ,点D 到直线P A 的距离为y ,则y 关于x 的函数大致图象是 ( ) A . B . C . D . 9.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =kx (k >0,x >0)的图象相交于点A ,与x 轴相交于点B ,若OA 2﹣OB 2=20,则k 的值是 ( ) A .15 B .5 C .20 D .1010.如图,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,点M 为边AB 上的一动点,点N 为边AC 上的一动点,且∠MDN =90°,则cos ∠DMN 为 ( ) A .105 B .55 C .35D .45第5题 第7题 第8题 第9题二、填空题(共8小题,每小题2分,共16分)11.南京在建的地铁6号线由栖霞山站开往南京南站,全长32400米.用科学记数法表示32400是_______. 12.分解因式3x 2﹣27y 2=__________.13.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为_________cm 2.(结果保留π)14.在一个不透明的袋子中有1个红球,2个白球和3个黑球,这些球除颜色外均相同,将球摇匀后,从袋子中任意摸出一个球,摸到_________(填“红”或“白”或“黑”)球的可能性最大. 15.一组数据1,2,5,x ,3,6的众数为5.则这组数据的中位数为__________.16.如图,抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣2,﹣3),B (3,q )两点,则不等式ax 2﹣mx +c <n 的解集是__________. 17.将双曲线y =3x 向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx ﹣2﹣k (k >0)相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(a ﹣1)(b +2)=__________.18.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE =60°,BD =3,CE =2,则AB 的长为__________.三、解答题(共7小题,共54分)19.(6分)(1)计算:12﹣|1﹣3|﹣(12)﹣2﹣tan60°. (2)先化简,再求值:1x +2-x +3x 2-4÷x 2+5x +6(x -2)2,其中x =3﹣2.20.(8分)(1)解方程:3x x -3=1-13-x.(2)解不等式组⎩⎨⎧x -4≤32(2x -1)①2x -1+3x 2<1②,把解集表示在数轴上,并求出不等式组的整数解.21.(8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩达到良好及以上等级的有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A 、B 、C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?22.(8分)时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为 2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23.(8分)给出①AO平分∠BAC;②AB是⊙O的切线,从①或②中选择一个填在下面的文字“且”后面的空格上,再将剩余的一项作为结论填在“则”后面的空格上,构成一个命题.并证明你所构造的命题是真命题.(1)如图,△ABC中,∠C=90°,BD是中线,O在边BD上,⊙O与AC相切于点E;且__________,则______________.(2)根据(1)中的真命题,当AC=4,AB=5时,求⊙O的半径.24.(8分)疫情期间,某销售商在网上销售A、B两种型号的电脑“手写板”,其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400600200B型8001200400根据市场行情,该销售商对A型手写板降价销售,同时对B型手写板提高售价,此时发现A型手写板每降低5元就可多卖1个,B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变,设其中A型手写板每天多销售x个,每天获得的总利润为y元.(1)求y与x之间的函数关系式,并直接写出x的取值范围;(2)要使每天的利润不低于212000元,求出x的取值范围;(3)该销售商决定每销售一个B型手写板,就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生,若当30≤x≤40时,每天的最大利润为203400元,求a的值.25.(8分)如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax﹣3a(a <0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M ′.将直线l 绕点A 按顺时针方向旋转得到直线l ′,当直线l ′与直线AM ′重合时停止旋转,在旋转过程中,直线l ′与线段BM ′交于点C ,设点B 、M ′到直线l ′的距离分别为d 1、d 2,当d 1+d 2最大时,求直线l ′旋转的角度(即∠BAC 的度数).2021年中考数学基础题训练(7)(40分钟限时完成)参考答案一、选择题(共10小题,每小题3分,共30分) 1.【解答】解:﹣5的绝对值是5. 故选:D .2.【解答】解:A 、原式=x ,不符合题意; B 、原式=a 3b 6,不符合题意; C 、原式=a 5,符合题意;D 、(﹣a +b )2=(a ﹣b )2≠(a +b )2,不符合题意, 故选:C .3.【解答】解:∵2a ﹣3b =0, ∴2a =3b , 则a b 的值为:32. 故选:D .4.【解答】解:两边都乘以x +1,得:x 2﹣1=0, 解得:x =1或x =﹣1,当x =1时,x +1≠0,是方程的解;当x =﹣1时,x +1=0,是方程的增根,舍去; 所以原分式方程的解为x =1, 故选:B .5.【解答】解:∵A (2,4)以原点为位似中心,将△ABC 缩小后得到△DEF ,D (1,2),∴位似比为:2:1, ∵△DEF 的面积为4,∴△ABC 的面积为:4×4=16. 故选:D .6.【解答】解:设参加酒会的人数为x 人, 根据题意得:12x (x ﹣1)=55,整理,得:x 2﹣x ﹣110=0,解得:x 1=11,x 2=﹣10(不合题意,舍去). 答:参加酒会的人数为11人. 故选:C .7.【解答】解:在△ADE 与△ACB 中,⎩⎪⎨⎪⎧AE AB =AD AC ∠A =∠A , ∴△ADE ∽△ACB ,∴S △ADE :S △ACB =(AE :AB )2=1:4, ∴S △ADE :S 四边形BCED =1:3. 故选:C .8.【解答】解:(1)当点P 在AB 上移动时, 点D 到直线P A 的距离为: y =DA =BC =4(0≤x ≤3).(2)如图1,当点P 在BC 上移动时, ,∵AB =3,BC =4, ∴AC =5,∵∠P AB +∠DAE =90°,∠ADE +∠DAE =90°, ∴∠P AB =∠ADE , 在△P AB 和△ADE 中,⎩⎨⎧∠P AB =∠ADE ∠ABP =∠DEA∴△P AB ∽△ADE , ∴P A AD =AB DE,∴x 4=3y, ∴y =12x (3<x ≤5).综上,可得y 关于x 的函数大致图象是: . 故选:D .9.【解答】解:直线y =x 向下平移b 个单位后得直线l :y =x ﹣b , ∴B (b ,0),∵l 与反比例函数y =kx (k >0,x >0)的图象相交于点A ,∴x ﹣b =kx ,则x 2﹣bx ﹣k =0.∴x 2=bx +k .设点A 的坐标为(x ,x ﹣b ),∵OA 2﹣OB 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2bx =2(bx +k )﹣2bx =2k ,OA 2﹣OB 2=20, ∴2k =20, ∴k =10. 故选:D .10.【解答】解:连接AD ,如图,∵∠A =90°,AB =6,AC =8, ∴BC =10,∵点D 为边BC 的中点, ∴DA =DC =5, ∴∠1=∠C ,∵∠MDN =90°,∠A =90°, ∴点A 、D 在以MN 为直径的圆上, ∴∠1=∠DMN , ∴∠C =∠DMN ,在Rt △ABC 中,cos C =AC BC =45,∴cos ∠DMN =45.故选:D .二、填空题(共8小题,每小题2分,共16分) 11.【解答】解:用科学记数法表示32400是3.24×104. 12.【解答】解:原式=3(x 2﹣9y 2)=3(x +3y )(x ﹣3y ). 13.【解答】解:圆锥的侧面积=12•2π•1•3=3π(cm 2).14.【解答】解:在袋子中,黑球个数最多,所以从袋子中任意摸出一个球,可能性最大的是黑球. 15.【解答】解:∵数据1,2,5,x ,3,6的众数为5, ∴x =5,则数据为1,2,3,5,5,6, ∴这组数据的中位数为3+52=4.16.【解答】解:∵抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣2,﹣3),B (3,q )两点, 观察函数图象可知:当x ﹣2<x <3时,直线y =mx +n 在抛物线y =ax 2+c 的上方, ∴不等式ax 2+c <mx +n 的解集为﹣2<x <3, 即不等式ax 2﹣mx +c <n 的解集是﹣2<x <3.17.【解答】解:一次函数y =kx ﹣2﹣k (k >0)的图象过定点P (1,﹣2),而点P (1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y =3x 向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k (k >0)相交于两点,在没平移前是关于原点对称的, 平移前,这两个点的坐标为(a ﹣1,3a -1),(3b +2,b +2),∴a ﹣1=﹣3b +2, ∴(a ﹣1)(b +2)=﹣3.18.【解答】解:∵△ABC 是等边三角形, ∴∠B =∠C =60°,AB =BC ; ∴CD =BC ﹣BD =AB ﹣3; ∴∠BAD +∠ADB =120°, ∵∠ADE =60°,∴∠ADB +∠EDC =120°, ∴∠DAB =∠EDC , 又∵∠B =∠C =60°, ∴△ABD ∽△DCE ;∴AB CD =BD CE , 即AB AB -3=32, 解得AB =9.三、解答题(共7小题,共54分)19.(6分)(1)【解答】解:原式=23﹣(3﹣1)﹣4﹣3 =23﹣3+1﹣4﹣3 =﹣3.(2)【解答】解:原式=4(x +2)2,当x =3﹣2时,原式=43.20.(8分)(1)【解答】解:方程两边同乘(x ﹣3)得:3x =x ﹣3+1, 解得:x =﹣1,经检验,x =﹣1是原方程的解, ∴原方程的解为x =﹣1.(2)【解答】解:⎩⎨⎧x -4≤32(2x -1)①2x -1+3x 2<1②,由①得,x ≥﹣54,由②得,x <3,故此不等式组的解集为:﹣54≤x <3,在数轴上表示为:此不等式组的整数解为:﹣1,0,1,2.21.(8分)【解答】解:(1)调查的总人数为16÷40%=40(人), 所以合格等级的人数为40﹣12﹣16﹣2=10(人),合格等级人数所占的百分比=1040×100%=25%;优秀等级人数所占的百分比=1240×100%=30%;统计图为:(2)600×(30%+40%)=420,所以估计成绩达到良好及以上等级的有420名;(3)画树状图为:共有9种等可能的结果数,其中甲、乙两人恰好分在同一组的结果数为3, =所以甲、乙两人恰好分在同一组的概率=39=13.22.(8分)【解答】解:(1)由题意可知:∠BAD =18°, 在Rt △ABD 中,AB =BD tan18°≈2.8-10.32≈5.6(m ),答:应在地面上距点B 约5.6m 远的A 处开始斜坡的施工; (2)能,理由如下:如图,过点C 作CE ⊥AD 于点E ,则∠ECD =∠BAD =18°,在Rt △CED 中,CE =CD •cos18°≈2.8×0.95=2.66(m ), ∵2.66>2.5,∴能保证货车顺利进入地下停车场.23.(8分)【解答】解:(1)如图,△ABC 中,∠C =90°,BD 是中线,O 在边BD 上,⊙O 与AC 相切于点E ,AB 是⊙O 的切线,则AO 平分∠BAC ; 证明:过点O 作OF ⊥AB ,垂足为F ,∵AB 是⊙O 的切线, ∴OF 是⊙O 的半径, ∵⊙O 与AC 相切于点E , ∴OE ⊥AC ,OE 是⊙O 的半径, ∴OE =OF ,∵OF ⊥AB ,OE ⊥AC , ∴OA 为∠CAB 的平分线,故答案为:AB 是⊙O 的切线;AO 平分∠BAC ; (2)在△ABC 中,∠C =90°, ∵AC =4,AB =5, ∴BC =3,∵BD 是△ABC 的中线,∴S △ABD =12S △ABC =12×12×AC ×BC =12×12×4×3=3,∵S △ABD =S △AOB +S △AOD , ∴3=12×AB ×OF +12×AD ×OE ,∵OF =OE =r ,AD =DC =12AC =2,∴r (AB +AD )=6, ∴7r =6, 解得:r =67.即⊙O 的半径为67.24.(8分)【解答】解:(1)由题意得,y =(600﹣400﹣5x )(200+x )+(1200﹣800+5x )(400﹣x )=﹣10x 2+800x +200000,(0≤x ≤40且x 为整数),即y 与x 之间的函数关系式是y =﹣10x 2+800x +200000,(0≤x ≤40且x 为整数); (2)∵y =﹣10x 2+800x +200000=﹣10(x ﹣40)2+216000, ∴当y =212000时,﹣10(x ﹣40)2+216000=212000, 解得:x 1=20,x 2=60, 要使y ≥212000,则20≤x ≤60, ∵0≤x ≤40, ∴20≤x ≤40,即x 的取值范围是:20≤x ≤40; (3)设捐款后每天的利润为w 元,则w =﹣10x 2+800x +200000﹣(400﹣x )a =﹣10x 2+(800+a )x +200000﹣400a , 对称轴为x =40+a20,∵0<a ≤100, ∴40<40+a20≤45,∵抛物线开口向下,当30≤x ≤40时,w 随x 的增大而增大, ∴当x =40时,w 最大,∴﹣10×402+40(800+a )+200000﹣400a =203400, 解得,a =35.25.(8分)【解答】解:(1)令x =0代入y =﹣3x +3,∴y =3,∴B (0,3),把B (0,3)代入y =ax 2﹣2ax ﹣3a ,∴3=﹣3a ,∴a =﹣1,∴二次函数解析式为:y =﹣x 2+2x +3;(2)令y =0代入y =﹣x 2+2x +3,∴0=﹣x 2+2x +3,∴x =﹣1或3,∴抛物线与x 轴的交点横坐标为﹣1和3,∵M 在抛物线上,且在第一象限内,∴0<m <3,令y =0代入y =﹣3x +3,∴x =1,∴A 的坐标为(1,0),由题意知:M 的坐标为(m ,﹣m 2+2m +3),S =S 四边形OAMB ﹣S △AOB=S △OBM +S △OAM ﹣S △AOB=12×m ×3+12×1×(﹣m 2+2m +3)﹣12×1×3 =﹣12(m ﹣52)2+258, ∴当m =52时,S 取得最大值258. (3)由(2)可知:M ′的坐标为(52,74); ②过点M ′作直线l 1∥l ′,过点B 作BF ⊥l 1于点F ,根据题意知:d 1+d 2=BF ,此时只要求出BF 的最大值即可,∵∠BFM ′=90°,∴点F 在以BM ′为直径的圆上,设直线AM ′与该圆相交于点H ,∵点C 在线段BM ′上,∴F 在优弧⌒BM 'H 上,∴当F 与M ′重合时,BF 可取得最大值,此时BM ′⊥l 1,∵A (1,0),B (0,3),M ′(52,74), ∴由勾股定理可求得:AB =10,M ′B =554,M ′A =854, 过点M ′作M ′G ⊥AB 于点G ,设BG =x ,∴由勾股定理可得:M ′B 2﹣BG 2=M ′A 2﹣AG 2, ∴8516﹣(10﹣x )2=12516﹣x 2, ∴x =5108, cos ∠M ′BG =BG M 'B =22, ∵l 1∥l ′,∴∠BCA =90°,∠BAC =45°;方法二:过B 点作BD 垂直于l ′于D 点,过M ′点作M ′E 垂直于l ′于E 点,则BD =d 1,ME =d 2,∵S △ABM ′=12×AC ×(d 1+d 2)当d 1+d 2取得最大值时,AC 应该取得最小值,当AC ⊥BM ′时取得最小值.根据B (0,3)和M ′(52,74)可得BM ′=554, ∵S △ABM =12×AC ×BM ′=258, ∴AC =5当AC ⊥BM ′时,cos ∠BAC =22, ∴∠BAC =45°.。
班级 姓名成绩时间:60分钟 你实际使用分钟
一、选择题(本大题共10个小题,每小题4分,共40分) 1.3-的相反数是( ) A .3 B .3-
C .13
D .13
-
2.图中几何体的主视图是( )
3.如图,AB CD ∥,
直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒ C .120︒ D .150︒
4.估计20的算术平方根的大小在( )
A .2与3之间
B .3与4之间
C .4与5之间
D .5与6之间
5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .5
35.910⨯平方米 B .5
3.6010⨯平方米 C .5
3.5910⨯平方米 D .4
35.910⨯平方米
6.若12x x ,是一元二次方程2
560x x -+=的两个根,则12x x +的值是( )
A .1
B .5
C .5-
D .6
7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50
名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( ) A .20、20 B .30、20
C .30、30
D .20、30
8.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( )
A
C E
B F
D H
G (第3题图)
正面
(第2题图)
A .
B .
C .
D . 捐款人数
金额(元) 15 20 61320
8 3
20 30 50 100 (第7题图)
10
A .230cm
B .230cm π
C .260cm π
D .2
120cm
9.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )
A .1.6
B .2.5
C .3
D .3.4
10.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重.合部分...的面积(S )随时间(t )变化的图象大致是( )
二、填空题(本大题共5个小题,每小题4分,共20分)
11.分解因式:2
9x -=.
12.如图,⊙O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是cm .
13.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是. 14.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球冠军球队的五名主力队员的身高如下表:(单位:厘米)
(第8题图) B A C O A B C D
O
E (第9题图) G D C E
F A B b a
A .
B .
C .
D .
第12题图 O A B 第13题图 (第10题图)
则该队主力队员身高的方差是厘米2.
15.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝 的高度,进行了如下操作:
(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.
根据测量数据,计算出风筝的高度CE 约为米.(精确到0.1
1.73≈)
三、解答题(共7大题,满分90分,其中16-20题共64分)
16.(本小题满分14分)
(1)计算:(π-1)°+11
()2
-+275--23(2)计算:()()2
121x x ++-
17.(本小题满分16分) (1)解分式方程:
21
31
x x =--.
(2) 用圆规、直尺作图,不写作法,但要保留作图痕迹.15.为美化校园,学校准备在如图所示的三角形(ABC △)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.
结论:
18.(本小题满分10分)
已知,如图①,在平行四边形ABCS 中,E 、F 是对角线BD 上的两点,且BF DE =. 求证:AE CF =.
19.(本小题满分12分)
有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率;
(2)求一次函数y kx b =+的图象经过二、三、四象限的概率.(用树状图或列表法求解)
1-2-3
-正面
A
B
C
20.(本小题满分12分)
自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:
(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?
(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?。