河南省商丘市柘城县2017-2018学年八年级上学期期末考试数学试卷
- 格式:doc
- 大小:72.14 KB
- 文档页数:4
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式中,从左到右的变形是因式分解的是( )A .24814(2)1x x x x +-=+-B .2(3)(3)9x x x +-=-C .221(1)x x x -+=-D .256(1)(6)x x x x --=+-【答案】D【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解,逐一判断即可.【详解】A 选项化成的不是乘积的形式,故本选项不符合题意;B 选项是整式的乘法,不是因式分解,故本选项不符合题意;C . 221(1)x x x -+≠-,故本选项不符合题意;D . 256(1)(6)x x x x --=+-,是因式分解,故本选项符合题意.故选D .【点睛】此题考查的是因式分解的判断,掌握因式分解的定义是解决此题的关键.2.某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x 人,绘画小组有y 人,那么可列方程组为( ) A .31525y x x y -=⎧⎨-=⎩B .31525y x y x -=⎧⎨-=⎩C .31525x y x y -=⎧⎨-=⎩D .31525x y y x -=⎧⎨-=⎩【答案】D 【解析】由两个句子:“书法小组人数的3倍比绘画小组的人数多15人”,“绘画小组人数的2倍比书法小组的人数多5人”,得两个等量关系式:①3×书法小组人数=绘画人数+15⇒ 3×书法小组人数-绘画人数=15,②2×绘画小组人数=书法小组的人数+5⇒2×绘画小组人数-书法小组的人数=5,从而得出方程组31525x y y x -=⎧⎨-=⎩. 故选D.点睛:应用题的难点,一是找到等量关系,二是根据等量关系列出方程.本题等量关系比较明显,找出不难,关键是如何把等量关系变成方程,抓住以下关键字应着的运算符号:和(+)、差(—)、积(×)、商(÷)、倍(×)、大(+)、小(—)、多(+)、少(—)、比(=),从而把各种量联系起来,列出方程,使问题得解.3.某地连续10天高温,其中日最高气温与天数之间的关系如图所示,则这10天日最高气温的平均值是( )A .34CB .34.3C C .35CD .32C【答案】B 【分析】先分别求出32℃、33℃、34℃、36℃和35℃的天数,然后根据平均数的公式计算即可.【详解】解:∵10×10%=1(天),10×20%=2(天),10×30%=3(天),∴最高气温是32℃的天数有1天,最高气温是33℃、34℃和36℃的天数各有2天,最高气温是35℃的天数有3天,∴这10天日最高气温的平均值是(32×1+33×2+34×2+36×2+35×3)÷10=34.3C故选B .【点睛】此题考查的是求平均数,掌握平均数的公式是解决此题的关键.4.如图,ABC ∆中,50A ∠=︒,60C ∠=°,DE 垂直平分AB ,则DBC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B 【分析】先根据三角形内角和定理求出ABC ∠的度数,然后根据垂直平分线的性质和等腰三角形的性质得出EBD A ∠=∠,最后利用DBC ABC EBD ∠=∠-∠即可得出答案.【详解】∵50A ∠=︒,60C ∠=°,∴18070ABC A C ∠=︒-∠-∠=︒.∵DE 垂直平分AB ,∴AD BD = ,∴50EBD A ∠=∠=︒,∴705020DBC ABC EBD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题主要考查三角形内角和定理,垂直平分线的性质和等腰三角形的性质,掌握三角形内角和定理,垂直平分线的性质和等腰三角形的性质是解题的关键.5.如图,正方期ABCD 的边长为4,点E 在对角线BD 上,且22.5,BAE EF AB ︒∠=⊥为F ,则EF 的长为( )A .2B .2C .22D .422-【答案】D 【分析】在AF 上取FG=EF ,连接GE ,可得△EFG 是等腰直角三角形,根据等腰直角三角形的性质可得EG=2EF ,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF ,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG ,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF 是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF ,设EF=x ,最后根据AB=AG+FG+BF 列方程求解即可.【详解】解:如图,在AF 上取FG=EF ,连接GE ,∵EF ⊥AB ,∴△EFG 是等腰直角三角形,∴2EF ,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF ,∵∠BAE=22.5°,∠EGF=45°,∴∠BAE=∠AEG=22.5°,∴AG=EG ,在正方形ABCD 中,∠ABD=45°,∴△BEF 是等腰直角三角形,∴BF=EF ,设EF=x ,∵AB=AG+FG+BF ,∴4=2x+x+x ,解得x=422- 故选:D .【点睛】本题考查了正方形的性质,等腰直角三角形的判定与性质,难点在于作辅助线构造出等腰直角三角形并根据正方形的边长AB 列出方程.6.将长方形纸片按如图折叠,若3DC B E =',则DAE ∠度数为( )A .15B .22.5C .30D .A B D ,,【答案】C 【分析】根据折叠的性质及含30︒的直角三角形的性质即可求解.【详解】∵折叠∴'CAB CAB ∠=∠,AB=AB’ ∵CD ∥AB∴CAB DCA ∠=∠∴'DCA CAB ∠=∠∴AE=EC ,∴DE=EB’∵3DC B E ='=3DE=DE+EC= DE+AE∴AE=2DE∵90D ∠=︒∴DAE ∠=30故选C .【点睛】此题主要考查解直角三角形,解题的关键是熟知矩形的性质、折叠的特点及含30︒的直角三角形的性质. 7.9的算术平方根是( )A .3B .-3C .3±D .以上都对 【答案】A【分析】根据算术平方根的定义解答即可.【详解】∵239=,∴9的算术平方根是3,故选:A.【点睛】此题考查算术平方根的定义:如果一个正数的平方等于a ,那么这个正数即是a 的算术平方根,熟记定义是解题的关键.8.下列计算中,①()325ab ab =;②()323639xy x y =;③325236x x x ⋅=;④()()224c c c -÷-=-不正确的有( )A .3个B .2个C .1个D .4个 【答案】A【分析】直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.【详解】解:①()3236aba b =,故此选项错误,符合题意; ②()3236327xy x y =,故此选项错误,符合题意;③325236x x x ⋅=,故此选项正确,不符合题意;④()()()2242c c c c -÷-==-,故此选项错误,符合题意;故选:A【点睛】此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.9.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .5【答案】B【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6−4)+5=7故选B.【点睛】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解.10)A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【分析】根据算术平方根的定义由9<15<16可得到31.【详解】解:∵9<15<16,∴31.故选:A.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.二、填空题11.49的平方根为_______【答案】2 3【解析】利用平方根立方根定义计算即可.【详解】∵224=39⎛⎫±⎪⎝⎭,∴49的平方根是±23,故答案为±23. 【点睛】 本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.12.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α=_________度.【答案】25°.【解析】试题分析:延长DC 交直线m 于E .∵l ∥m ,∴∠CEB=65°.在Rt △BCE 中,∠BCE=90°,∠CEB=65°,∴∠α=90°﹣∠CEB=90°﹣65°=25°.考点:①矩形的性质;②平行线的性质;③三角形内角和定理.1354n n 的最小正整数值为__________.【答案】1 54n 54n54n 96n ⨯36n54n∴1n 为完全平方数,∴n 的最小值是1.故答案为:1.【点睛】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.14.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.【答案】1.5【分析】设x=n+a ,其中n 为整数,0≤a <1,则[x]=n ,{x}=x-[x]=a ,由此可得出2a=n ,进而得出a=12n ,结合a 的取值范围即可得出n 的取值范围,结合n 为整数即可得出n 的值,将n 的值代入a=12n 中可求出a 的值,再根据x=n+a 即可得出结论.【详解】设x n a =+,其中n 为整数,01a ≤<,则[]x n =,{}[]x x x a =-=,原方程化为:2a n =, 12a n ∴=. 01a ≤<,即1012n ≤<, 02n ∴≤<, n 为整数,0n ∴=、1.当0n =时,1002a =⨯=,此时0x =, x 为非零实数,0x ∴=舍去;当1n =时,110.52a =⨯=此时 1.5x =. 故答案为:1.1.【点睛】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键.15.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.【答案】1.【分析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.16.方程()211x -=的根是______.【答案】12x =,20x =【分析】直接开方求解即可.【详解】解:∵()211x -=∴11x -=±∴12x =,20x =故答案为:12x =,20x =.【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种方法是解题的关键.17.如图,∠MON =30°,点A 1、A 2、A 3、……在射线ON 上,点B 1、B 2、B 3、……在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4,……均为等边三角形,若OA 1=1,则△A 2019B 2019A 2020的边长为__________【答案】2【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…则△A n-1B n A n+1的边长为 2n-1,即可得出答案. 【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n-1B n A n+1的边长为2n-1.则△A2019B2019A2020的边长为2.故答案是2.【点睛】本题考查等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题18.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.【答案】证明见解析.【解析】由等腰三角形性质及三角形内角和定理,可求出∠ABD=∠C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC,∠A=36°∴∠ABC=∠C=12(180°-∠A)=12×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=12×72°=36°,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠C=∠BDC,∠A=AB,∴AD=BD=BC.19.如图,,求证:.【答案】见解析.【解析】先证明CB=FE ,再加上条件AB=DE ,AC=DF ,可利用SSS 判定△ABC ≌△DEF ,根据全等三角形的性质可得∠B=∠DEF ,∠ACB=∠F ,再根据同位角相等,两直线平行可得结论.【详解】证明: ∵, ∴∴, ∵在△ABC 和△DEF 中,∴, ∴, , ∴. 【点睛】 考查了全等三角形的判定与性质,关键是熟练掌握三角形的判定定理:SSS 、SAS 、ASA 、AAS .证明三角形全等必须有边相等的条件.20.计算题(1)计算:()2101213201833π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭ (2)先化简,再求值:2344111x x x x x ++⎛⎫--÷ ⎪++⎝⎭,其中13x =. 【答案】(1)1312;(2)22x x -+, 57-. 【分析】(1)根据负指数幂的性质、零指数幂的性质和各个法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】(1)原式911343=⨯+÷ 3143=+ 1312=(2)原式()()()2113112x x x x x +--+=++ ()()()222112x x x x x +-+=++ 22x x -=+ 当13x =时,原式12531723-==-+. 【点睛】此题考查的是实数的混合运算和分式的化简求值题,掌握负指数幂的性质、零指数幂的性质和分式的各个运算法则是解决此题的关键.21.金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?【答案】三人间租住了8间,两人间租住了12间【分析】根据:住在三人间人数+住在二人间人数=总人数,三人间的总费用+二人间总费用=总费用,列出方程组,解方程组即可.【详解】解:设三人间租住了x 间,两人间租住了y 间,根据题意得:32484035022160x y x y +=⎧⎨⨯+⨯=⎩,解得812x y =⎧⎨=⎩, 答:三人间租住了8间,两人间租住了12间.【点睛】本题考查二元一次方程组的实际应用,准确找出题中的等量关系是解题关键.22.如图,在平面直角坐标系中,A 、B 、C 、D 各点的坐标分别为()6,6、()6,1、()3,0、()2,3.(1)在给出的图形中,画出四边形ABCD 关于y 轴对称的四边形1111D C B A ,并写出点1C 和1D 的坐标; (2)在四边形ABCD 内部画一条线段将四边形分割成两个等腰三角形,并直接写出两个等腰三角形的面积差.【答案】(1)见解析, ()13,0C -,()12,3D -;(2)见解析,1.【分析】(1)根据“横坐标互为相反数,纵坐标不变”分别得到4个顶点关于y 轴的对称点,再按原图的顺序连接即可;根据网络结构的特点,依据各点所在象限及距离坐标轴的距离可得相应坐标;(2)根据网络结构的特点,判断相等的边长,可将四边形分割成两个等腰三角形,再利用割补法求得其面积差即可.【详解】(1)四边形A 1B 1C 1D 1如图所示;点1C 和1D 的坐标分别为:()13,0C - ,()12,3D -;(2)根据网络结构的特点知:AB=AD ,CD=CB ,则线段BD 可将四边形分割成两个等腰三角形,如图所示BD 为所作线段;154102ABD S=⨯⨯= , ()11113413135222CBD S =⨯+⨯-⨯⨯-⨯⨯= , ∴1055ABD CBD S S -=-=.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(问题原型)如图1,在等腰直角三形ABC中,∠ACB=90°,BC=1.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.(初步探究)如图2.在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.(简单应用)如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).【答案】【问题原型】3;【初步探究】△BCD的面积为12a2;【简单应用】△BCD的面积为14a2.【分析】问题原型:如图1中,△ABC≌△BDE,就有DE=BC=1.进而由三角形的面积公式得出结论;初步探究:如图2中,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论;简单运用:如图3中,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=13BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【详解】解:问题原型:如图1中,如图2中,过点D作BC的垂线,与BC的延长线交于点E,∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC 和△BDE 中,ACB BED A DBEAB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△BDE(AAS),∴BC=DE=1.∵S △BCD 12=BC•DE , ∴S △BCD =3.故答案为:3.初步探究:△BCD 的面积为12a 2. 理由:如图2中,过点D 作BC 的垂线,与BC 的延长线交于点E .,∴∠BED=∠ACB=90°∵线段AB 绕点B 顺时针旋转90°得到线段BE ,∴AB=BD ,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE .在△ABC 和△BDE 中,ACB BED A DBEAB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△BDE(AAS),∴BC=DE=a .∵S △BCD 12=BC•DE , ∴S △BCD 12=a 2; 简单应用:如图3中,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,,∴∠AFB=∠E=90°,BF 12=BC 12=a , ∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD . ∵线段BD 是由线段AB 旋转得到的,∴AB=BD .在△AFB 和△BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB ≌△BED(AAS),∴BF=DE 12=a . ∵S △BCD 12=BC•DE , ∴S △BCD 12=•12a•a 14=a 2, ∴△BCD 的面积为14a 2. 【点睛】本题考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,解答时证明三角形全等是关键.24.如图,在平面直角坐标系xOy 中,一次函数y x b =-+的图象过点A(4,1)与正比例函数y kx =(0k ≠)的图象相交于点B(a ,3),与y 轴相交于点C.(1)求一次函数和正比例函数的表达式;(2)若点D 是点C 关于x 轴的对称点,且过点D 的直线DE ∥AC 交BO 于E ,求点E 的坐标;(3)在坐标轴上是否存在一点p ,使45PBE ABO S S ∆∆=.若存在请求出点p 的坐标,若不存在请说明理由. 【答案】(1)一次函数表达式为:5y x =-+;正比例函数的表达式为:32y x =;(2)E (-2,-3);(3)P 点坐标为(43,0)或(43-,0)或(0,2)或(0,-2). 【分析】(1)将点A 坐标代入y x b =-+可求出一次函数解析式,然后可求点B 坐标,将点B 坐标代入y kx =即可求出正比例函数的解析式;(2)首先求出点D 坐标,根据DE ∥AC 设直线DE 解析式为:y x m =-+,代入点D 坐标即可求出直线DE 解析式,联立直线DE 解析式和正比例函数解析式即可求出点E 的坐标;(3)首先求出△ABO 的面积,然后分点P 在x 轴和点P 在y 轴两种情况讨论,设出点P 坐标,根据45PBE ABO S S ∆∆=列出方程求解即可. 【详解】解:(1)将点A(4,1)代入y x b =-+得14b =-+,解得:b=5,∴一次函数解析式为:5y x =-+,当y=3时,即35x =-+,解得:2x =,∴B(2,3),将B(2,3)代入y kx =得:32k =, 解得:32k , ∴正比例函数的表达式为:32y x =; (2)∵一次函数解析式为:5y x =-+,∴C (0,5),∴D (0,-5),∵DE ∥AC ,∴设直线DE 解析式为:y x m =-+,将点D 代入得:5m =-,∴直线DE 解析式为:5y x =--, 联立325y x y x ⎧=⎪⎨⎪=--⎩,解得:23x y =-⎧⎨=-⎩, ∴E (-2,-3);(3)设直线5y x =-+与x 轴交于点F ,令y=0,解得:x=5,∴F (5,0),∵A (4,1),B (2,3),∴115351522ABO BOF AOF S S S , 当点P 在x 轴上时,设P 点坐标为(m ,0),由题意得:1433525m , 解得:43m =±, ∴P 点坐标为(43,0)或(43-,0); 当点P 在y 轴上时,设P 点坐标为(0,n ),由题意得:1422525n , 解得:2n ,∴P 点坐标为(0,2)或(0,-2), 综上所示:P 点坐标为(43,0)或(43-,0)或(0,2)或(0,-2).【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及一次函数图象交点的求法,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数解析式;(2)利用平行直线的系数k 相等求出直线DE 解析式;(3)求出△ABO 的面积,利用方程思想和分类讨论思想解答. 25.列方程解应用题:某校八年级(一)班和(二)班的同学,在双休日参加修整花卉的实践活动.已知(一)班比(二)班每小时多修整2盆花,(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等.(一)班和(二)班的同学每小时各修整多少盆花?【答案】(一)班同学每小时修整22盆花,(二)班同学每小时修整20盆花.【分析】根据等量关系:工作时间=工作总量÷工作效率,根据关键句“(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等”可列出方程;【详解】解:设(一)班每小时修整x 盆花, 则(二)班每小时修整x-2盆花,根据题意得:66602x x =- 解得:x=22经检验:x=22是原分式方程的解.∴x-2=20答:(一)班同学每小时修整22盆花,(二)班同学每小时修整20盆花.【点睛】此题主要考查了分式方程的应用,找到关键描述语,找到等量关系是解决问题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC ∆中,高,BD CF 相交于点E ,若52A ︒∠=,则BEC ∠=( )A .116B .128︒C .138︒D .142︒【答案】B 【分析】利用多边形的内角和公式:180︒⨯(n-2),即可求出四边形AFED 的内角和是360°,根据已知条件知BD ⊥AC ,CF ⊥AB ,得∠AFC=∠ADB=90°,因52A ︒∠=,即可得出BEC ∠的度数.【详解】解:∵()18042360︒⨯-=︒高,BD CF 相交于点E∴∠AFC=∠ADB=90°∵52A ︒∠=∴=360529090128BEC ∠︒-︒-︒-︒=︒故选:B.【点睛】本题主要考查的是多边形的内角和公式以及角度的运算,掌握这两个知识点是解题的关键. 2.如图,已知一次函数y kx b =+的图象经过A (0,1)和B (2,0),当x >0时, y 的取值范围是( )A .1y <;B .0y <;C .1y >;D .2y <【答案】A 【分析】观察图象可知,y 随x 的增大而减小,而当x=0时,y=1,根据一次函数的增减性,得出结论.【详解】解:把A (0,1)和B (2,0)两点坐标代入y=kx+b 中,得120b k b =⎧⎨+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩∴y=-1x+1,2∵-1<0,y随x的增大而减小,2∴当x>0时,y<1.故选A.【点睛】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3.若下列各组数值代表线段的长度,则不能构成三角形的是()A.4, 9, 6 B.15, 20, 8C.9, 15, 8 D.3, 8, 4【答案】D【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】A.6+4>9,则能构成三角形,故此选项不符合题意;B.15+8>20,则能构成三角形,故此选项不符合题意;C.8+9>15,则能构成三角形,故此选项不符合题意;D.3+4<8,则不能构成三角形,故此选项符合题意.故选D.【点睛】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看其中较小的两个数的和是否大于第三个数即可.4.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A.0对B.1对C.2对D.3对【答案】C【分析】由“SAS”可证△ABE≌△ACE,可得∠B=∠C,由“AAS”可证△BDO≌△CEO,即可求解.【详解】解:∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACE(SAS)∴∠B=∠C,∵AB=AC,AD=AE,∴BD=CE,且∠B=∠C,∠BOD=∠COE,∴△BDO≌△CEO(AAS)∴全等的三角形共有2对,故选:C.【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.5.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上点,且DE=DF,连接BF,CE.①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.上述结论中,正确的个数有()A.2个B.3个C.4个D.5个【答案】B【分析】①△ABD和△ACD是等底同高的两个三角形,其面积相等,故①正确;②若AB≠AC,则AD不是∠BAC的平分线,故②错误;③由全等三角形的判定定理SAS可证得结论,故③正确;④、⑤由③中的全等三角形的性质得到.【详解】解:①∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;②若在△ABC中,AB≠AC时,AD不是∠BAC的平分线,即∠BAD≠∠CAD,故②错误;③∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;④∵△BDF≌△CDE,∴∠CED=∠BFD,∴BF∥CE,故④正确;⑤∵△BDF≌△CDE,∴CE=BF,∴只有当AE =BF 时,CE =AE ,故⑤错误,综上所述,正确的结论是:①③④,共有3个.故选:B .【点睛】本题考查了三角形中线的性质,等腰三角形的性质,全等三角形的判定和性质,解题的关键是证明△BDF ≌△CDE .6.如图,A ,B ,C 三点在同一条直线上,90A C ∠=∠=︒,AB CD =,添加下列条件,不能判定EAB BCD ∆∆≌的是( )A .EB BD =B .90E D ∠+∠=︒C .=+AC AE CD D .60EBD ∠=︒【答案】D 【分析】根据全等三角形的判定的方法,即可得到答案.【详解】解:∵90A C ∠=∠=︒,AB CD =,A 、EB BD =,满足HL 的条件,能证明全等;B 、90E D ∠+∠=︒,得到ABE D ∠=∠,满足ASA ,能证明全等;C 、=+AC AE CD ,得到AE BC =,满足SAS ,能证明全等;D 、不满足证明三角形全等的条件,故D 不能证明全等;故选:D.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握证明三角形全等的几种方法.7.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为( )A .30°B .40°C .70°D .80°【答案】A 【分析】由等腰△ABC 中,AB=AC ,∠A=40°,即可求得∠ABC 的度数,又由线段AB 的垂直平分线交AB于D ,交AC 于E ,可得AE=BE ,继而求得∠ABE 的度数,则可求得答案.【详解】∵AB=AC ,∠A=40°,∴∠ABC=∠C=(180°−∠A )÷2=70°,∵线段AB 的垂直平分线交AB 于D ,交AC 于E ,∴AE=BE ,∴∠ABE=∠A=40°,∴∠CBE=∠ABC-∠ABE=30°,故选:A .【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.8.已知直线y =-x +4与y =x +2如图所示,则方程组42y x y x =-+⎧⎨=+⎩的解为( )A .31x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .40x y =⎧⎨=⎩【答案】B 【解析】二元一次方程组42y x y x =-+⎧⎨=+⎩的解就是组成二元一次方程组的两个方程的公共解,即两条直线y =-x +4与y =x +2的交点坐标13x y =⎧⎨=⎩. 故选B点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.9.如图,在△ABC 中,90ACB ∠=︒,将△ABC 绕点A 顺时针旋转90︒,得到△ADE ,连接BD ,若3AC =,1DE =,则线段BD 的长为( )A .25B .23C .4D .10【答案】A【分析】根据旋转的性质可知:DE=BC=1,AB=AD ,应用勾股定理求出AB 的长;又由旋转的性质可知:∠BAD=90°,再用勾股定理即可求出BD 的长【详解】解:由旋转的性质得到:ABC ADE ≅ , ∠BAD=90°∴AC=AE=3 , BC=DE=1, AB=AD ,∵∠ACB=90° ∴ AB=AD= 22AC BC + = 10在Rt△BAD 中,根据勾股定理得:BD=22AD AB + =20=25故选A10.下列图形中,不是轴对称图形的是( )A .B .C .D . 【答案】A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A 、不是轴对称图形,故本选项正确;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误;故选:A .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.已知102a =,103b =,则2310a b +=________.【答案】1【分析】根据同底数幂乘法的逆用和幂的乘方的逆用计算即可.【详解】解:2310a b +=231010a b •=()()231010a b •=2323⨯=1故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂乘法的逆用和幂的乘方的逆用是解决此题的关键. 12.命题“全等三角形的面积相等”的逆命题是__________【答案】如果两个三角形的面积相等,那么是全等三角形【分析】首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.【详解】命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形. 故答案为:如果两个三角形的面积相等,那么是全等三角形【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.的绝对值是________.【解析】根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.【详解】解:根据负数的绝对值是它的相反数,得=.【点睛】此题主要考查绝对值的意义,熟练掌握,即可解题.14.命题“如果0a b +>,则0a >,0b >”的逆命题为____________.【答案】若0,0a b >>,则0a b +>【分析】根据逆命题的定义即可求解.【详解】命题“如果0a b +>,则0a >,0b >”的逆命题为若0a >,0b >,则0a b +>故填:若0a >,0b >,则0a b +>.【点睛】此题主要考查逆命题,解题的关键是熟知逆命题的定义.15.已知点(3,2)M -与点(,)N x y 在同一条平行于x 轴的直线上,且点N 到y 轴的距离等于4,那么点N 的坐标是__________.【答案】(4,2)-或(4,2)--【分析】根据平行于x 轴的直线上的点纵坐标相等可求得点N 的纵坐标y 的值,再根据点N 到y 轴的距离等于4求得点N 的横坐标x 即可.【详解】解:∵点M (3,-2)与点N (x ,y )在同一条平行于x 轴的直线上,∴y=-2,∵点N 到y 轴的距离等于4,∴x=-4或x=4,∴点N 的坐标是(4,2)-或(4,2)--.故答案为:(4,2)-或(4,2)--.【点睛】本题考查了坐标与图形,主要利用了平行于x 轴的直线上点的坐标特征,需熟记.还需注意在直线上到定点等于定长的点有两个.16.因式分解:3x 2-6xy+3y 2=______.【答案】3(x ﹣y )1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x 1﹣6xy+3y 1=3(x 1﹣1xy+y 1)=3(x ﹣y )1.考点:提公因式法与公式法的综合运用17.如图,ABC 中,AD BC ⊥于D ,要使ABD ACD △≌△,若根据“HL ”判定,还需要加条件__________【答案】AB=AC【解析】解:还需添加条件AB=AC .∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°.在Rt △ABD 和Rt △ACD 中,∵AB=AC ,AD=AD ,∴Rt △ABD ≌Rt △ACD (HL ).故答案为AB=AC .三、解答题18.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?【答案】原计划每天种树40棵.【解析】设原计划每天种树x 棵,实际每天植树(1+25%)x 棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.【详解】设原计划每天种树x 棵,实际每天植树(1+25%)x 棵,由题意,得1000x −1000+%x(125)=5, 解得:x=40,经检验,x=40是原方程的解.。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。
八年级数学段考试卷题号选择填空19 20 21 22 23 24 25 26 总分得分一.选择题(本大题共10小题,每小题3分,共30分.)把正确的选项填在下面的表格中题号 1 2 3 4 5 6 7 8 9 10 选项1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.下列各组线段,能组成三角形的是()A、2 cm,3 cm,5 cmB、5 cm,6 cm,10 cmC、1 cm,1 cm,3 cmD、3 cm,4 cm,8 cm3.在下列条件中:①∠A+∠B=∠C;②∠A:∠B∠:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C,能确定△ABC是直角三角形的条件有()个.A.1B.2C.3D.44..用直尺和圆规作已知角的平分线,说明两角相等的依据是( )A. SSSB. SASC. ASAD. AAS5.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA6.如图所示,AB=CD,AD=BC,则图中的全等三角形共有:()A.1对B. 2对C. 3对D.4对7.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( )A.17 B.16 C.15 D.16或15或178.正多边形的每个内角都等于135º,则该多边形是正()边形。
A. 8B. 9C. 10D. 119.如图,△ABC中,∠B=∠C,BD= C F,BE=CD,∠EDF=a,则下列结论正确的是( )A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°10.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是以BC为中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EFP是等腰直角三角1形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),2BE+CF=EF,上述结论中始终正确的有()A.1个B.2个C.3个D.4个AFEB CD第5题第6题图第9题图第10题二.填空题(共8小题,每小题3分,共24分)把答案填在下面的表格中题号11 12 13 14 15 16 17 18答案11.王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是__________.12.已知等腰三角形一边长等于5,一边长等6,则它的周长是.13.已知BD是△ABC的中线,AB=5cm,BC=3cm,△ABD和△BCD的周长差是__________. 14如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.15.如图,在直角△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB 的距离为__________.D AAEBEC F第17 题图B D C第14 题图第15 题图第16 题图17.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为. 18.如图,在△ABC中,∠C=90°,AD平分∠BAC,BDE⊥AB于E,有下列结论:①CD=ED;E②AC+BE=AB;③∠BDE=∠BAC;D④AD平分∠CDE;⑤S△ABD:S△ACD=AB:AC,其中正确的有______________.(填序号)AC第18 题图三.解答题(共46分)19.(4分) 如图,已知AE⊥BC,AD平分∠BAE,∠ADB=110°,∠CAE=20°,求∠B和∠C的度数.20.(4分)一个多边形的内角和是外角和的2倍,则这个多边形是几边形?21.(4分)如图,AB=AD,BC=CD,求证:∠ABC=∠ADC.22.(4分)已知:如图,△ABC中,∠ABC=∠C,BD是∠ABC的平分线,且∠BDE=∠BED,∠A=100°,求∠DEC的度数.23.(4分)在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24 cm和30 cm的两部分,求三角形各边的长。
八年级数学试题上学期期末考试一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.4 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
学习-----好资料八年级数学试题上学期期末考试8.若x 2 2 ^3 x 16是完全平方式,则m 的值等于()A. 3B. -5C.7D. 7 或-19. 如图,在△ ABC 中,AB=AC , BE=CD , BD=CF ,则/ EDF 的度数为 ()11A . 45 AB . 90 AC . 90「“AD . 180A一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( A B2 ,.已知三角形的三边长分别是3, C8, x ,若x 的值为偶数,则 x 的值有( )C.4个D.3个 A.6个 B.5个3 .—个多边形截去一个角后,形成的多边形的内角和是2520。
,则原多边形的边数是( )A.15 或 16B.16 或 17C.15 或 17D.15.16 或 174.如图,△ ACB ◎△ A'CB',/ BCB' = 30 °,则/ ACA'的度数为( ) A.20 ° B.30 °5 ,等腰三角形的两边长分别为 C.35 ° D.40 5cm 和10cm ,则此三角形的周长是 C. 25cm D.20cm 或 25cm 6. 如图,已知/ CAB = Z DAB , A.AC = ADB.BC = BD 7. 如图,已知在厶 ABC 中,CD =2,则△ BCE 的面积等于( A.10 B.7则添加下列一个条件不能使△C. / C =Z DD. / ABC= Z ABD 是AB 边上的高,BE 平分/ ABC ,交CD 于点E , BC = 5, DE ) C.5ABC ABD 的是()D.42 2第10题10.如上图,等腰 Rt △ ABC 中,/ BAC = 90° AD 丄BC 于点D ,/ ABC 的平分线分别交 AC 、 AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接DM ,下列结论:① DF 2=DN :② △ DMN 为等腰三角形;③ DM 平分/ BMN :④ AE = - EC ;⑤ AE = NC ,其中正3确结论的个数是( )A . 2个B . 3个C . 4个D . 5个二、填空题(每小题3分,共24分)31211.计算:0.1253 域(一0.25)汉2° 汉(一2) _______ = 12,在实数范围内分解因式:3a 3 -4ab 2… m — n .2m4n13.右x - 2)x 3,则 x18.如图所示,在△ ABC 中,/ A=80°,延长 BC 到D ,/ ABC 与/ ACD 的平分线相交于 A 1点,/ A 1BC 与/ A 1CD 的平分线相交于 A 2点,依此类推,/ A 4BC 与/ A 4CD 的平分线相交于 A 5点,则/ A 5的度数是 ________________________ 。
2017-2018学年河南省商丘市柘城县八年级(上)期末数学试卷一、填空题(每小题4分,共24分)1. 下列图形中轴对称图形的个数是_______.【答案】3【解析】第一个图形是轴对称图形;第二个图形是轴对称图形;第三个图形不是轴对称图形;第四个图形不是轴对称图形;第五个图形不是轴对称图形;第六个图形不是轴对称图形,综上所述,轴对称图形有3个.故答案为:3.2. 已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为_____cm.【答案】10【解析】连接PC,∵△ABC为等边三角形,D为AB的中点,∴CD⊥AB,∴CD=AH=10cm.∵AH⊥BC,∴PB=PC,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.故答案为:10.3. 已知2m=a,4n=b,m,n为正整数,则23m+4n=_____.【答案】a3b2【解析】∵,∴23m+4n=.故答案为:.4. 当x=3时,分式的值为0;而当x=1时,分式无意义,则a=_____,b=_____.【答案】(1). -3(2). 3【解析】∵当x=3时,分式的值为0,∴3+a=0,解得a=-3;∵当x=1时,分式没有意义,∴3-b=0,解得b=3,故答案为:-3;3.5. 若分式方程:2﹣=无解,则k=_____.【答案】1、﹣2【解析】分式方程去分母得:2(x-2)-(1-kx)=-1,分为两种情况:①当x=2时,方程无解,由题意将x=2代入得:1-2k=1,解得k=0;②当x≠2时, 2(x-2)-(1-kx)=-1,化简整理得(2+k)x=4,当2+k=0时,方程无解,即k=-2;故答案为:0或-2.6. 某列车平均提速60km/h用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度.若设提速期那该列车的平均速度为xkm/h,则列出的方程为_____【答案】【解析】设提速前该列车的平均速度为xkm/h,根据提速后,列车用相同时间比提速前多行驶100km,可得方程.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.二、选择题(每小题4分,共32分)7. 已知A(2,3),其关于x轴的对称点是B,B关于y轴对称点是C,那么相当于将A经过()的平移到了C.A. 向左平移4个单位,再向上平移6个单位B. 向左平移4个单位,再向下平移6个单位C. 向右平移4个单位,再向上平移6个单位D. 向下平移6个单位,再向右平移4个单位【答案】B【解析】点A(2,3)关于x轴的对称点B(2,-3),B关于y轴对称点C(-2,-3),∵2-(-2)=4,3-(-3)=6,∴相当于将A经过向左平移4个单位,再向下平移6个单位得到点C.故选B.8. 一个正多边形,它的一个外角等于与它相邻的内角的,则这个多边形是()A. 正十二边形B. 正十边形C. 正八边形D. 正六边形【答案】B.....................∴它的每一个外角=180÷5=36°,∴它的边数=360÷36=10.故选B.9. 如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC ﹣BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】①∵BE平分∠ABC,∴∠CBE=∠ABC,∵∠ABC=2∠C,∴∠EBC=∠C,∴BE=CE,∴AC-BE=AC-CE=AE;(①正确)②∵BE=CE,∴点E在线段BC的垂直平分线上;(②正确)③∵∠BAC=90°,∠ABC=2∠C,∴∠ABC=60°,∠C=30°,∵BE=CE,∴∠EBC=∠C=30°,∴∠BEA=∠EBC+∠C=60°,又∵∠BAC=90°,AD⊥BE,∴∠DAE=∠ABE=30°,∴∠DAE=∠C;(③正确)④∠ABE=30°,AD⊥BE,∴AB=2AD,∵∠BAC=90°,∠C=30°,∴BC=2AB,∴BC=4AD.(④正确)综上,正确的结论有4个,故选D.点睛:此题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及30°角直角三角形的性质.此题难度适中,注意数形结合思想的应用.10. 已知a,b,c是三角形的三边,那么代数式a2﹣2ab+b2﹣c2的值()A. 大于零B. 等于零C. 小于零D. 不能确定【答案】C【解析】a2-2ab+b2-c2=(a-b)2-c2=(a+c-b)[a-(b+c)].∵a,b,c是三角形的三边.∴a+c-b>0,a-(b+c)<0.∴a2-2ab+b2-c2<0.故选C.11. 下来运算中正确的是()A. B. ()2=C. D.【答案】D【解析】选项A,;选项B,;选项D,;选项D,.只有选项D正确,故选D.12. 为了运用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是()A. [x﹣(2y+1)]2B. [x+(2y﹣1)][x﹣(2y﹣1)]C. [(x﹣2y)+1][(x﹣2y)﹣1]D. [x+(2y﹣1)]2【答案】B【解析】试题解析:(x+2y-1)(x-2y+1)=[x-(2y-1)][x+(2y-1)],故选B.13. 使(x2+px+8)(x2﹣3x+q)乘积中不含x2与x3项的p、q的值是()A. p=0,q=0B. p=3,q=1C. p=﹣3,q=﹣9D. p=﹣3,q=1【答案】B考点:多项式的乘法计算.14. 若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A. 1,2,3B. 1,2C. 1,3D. 2,3【答案】C【解析】试题解析:等式的两边都乘以(x﹣2),得:x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程的解为正数,得:m=1,m=3,故选C.点睛:本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.三、简答题(共44分)15. 因式分解:(1)3a(a﹣2b)+6b(2b﹣a)(2)(x2+4y2)2﹣16x2y2【答案】(1)原式=3(a﹣2b)2;(2)原式==(x﹣2y)2(x+2y)2.【解析】试题分析:(1)直接提取公因式a-2b即可;(2)先利用平方差公式,再利用完全平方公式因式分解即可.试题解析:(1)原式=3a(a﹣2b)﹣6b(a﹣2b)=3(a﹣2b)(a﹣2b)=3(a﹣2b)2;(2)原式=(x2+4y2)2﹣(4xy)2=(x2+4y2﹣4xy)(x2+4y2+4xy)=(x﹣2y)2(x+2y)216. 阅读下面题目的计算过程:=①=x﹣4﹣2(x﹣2)②=x﹣4﹣2x+4③=﹣x④(1)上述计算过程中,从哪一步开始出现错误?请写出错误步骤的序号;(2)错误原因是;(3)写出本题的正确解法.【答案】(1)②;(2)丢掉了分母;(3)见解析.【解析】试题分析: (1)第一步根据最简公分母为(x+2)(x-2)通分没有错误,第二步错了;(2)出错的原因是丢了分母;(3)按照异分母分式加减法的法则计算即可.解:(1)上述过程中,从第二步出现错误,故答案为:②;(2)错误的原因是丢掉了分母,故答案为:丢掉了分母;(3)原式=﹣==﹣.点睛:本题是考查异分母分式加减法的题目,异分母分式加减法运算法则是:先把它们通分,化为同分母分式,再加减.17. 先化简,再求值:(3a﹣2)2﹣9a(a﹣5b)+12a5b2÷(﹣a2b)2,其中ab=﹣.【答案】45ab+4,﹣18.5.【解析】试题分析:根据整式的运算法则依次计算后合并同类项,再将已知数据代入求出答案即可.试题解析:原式=9a2﹣12a+4﹣9a2+45ab+12a5b2÷a4b2=﹣12a+4+45ab+12a=45ab+4,把ab=﹣代入原式=﹣+4=﹣点睛:本题主要考查了整式的混合运算,正确掌握整式乘除运算法则是解题关键,解题时注意整体思想.18. 解分式方程(1)=4(2)【答案】(1)x=1;(2)原分式方程无解.【解析】试题分析:(1)方程两边同乘以2x-3,化分式方程为整式方程,解整式方程后检验即可;(2)(1)方程两边同乘以(x-1)(x+1),化分式方程为整式方程,解整式方程后检验即可.试题解析:(1)方程两边乘(2x﹣3),得x﹣5=4(2x﹣3),解得:x=1,当x=1时,2x﹣3≠0,∴原分式方程的解为x=1;(2)方程两边乘(x﹣1)(x+1),得x+1﹣2(x﹣1)=4,解得:x=﹣1,当x=﹣1时,x2﹣1=0,∴原分式方程无解.19. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)证明见解析;(2)AD⊥MC,理由见解析.【解析】试题分析:(1)根据等腰直角三角形的性质得出DF⊥AE,DF=AF=EF,进而利用全等三角形的判定得出△DFC≌△AFM(AAS),即可得出答案;(2)由(1)知,∠MFC=90°,FD=EF,FM=FC,即可得出∠FDE=∠FMC=45°,即可理由平行线的判定得出答案.(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=FA=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.考点:全等三角形的判定与性质;等腰直角三角形.20. 早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【答案】(1)小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是600米.【解析】试题分析:(1)此题等量关系为:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程求解即可;(2)此题等量关系为:小明步行时间=自行车时间×2,根据等量关系列出方程求解即可. 试题解析:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y=240,答:小明家与图书馆之间的路程最多是240米.考点:1分式方程的应用;2一元一次方程的应用.21. 在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE=.(2)设∠BAC=α,∠DCE=β:①如图1,当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B、C重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【答案】(1)30°;(2)①α=β,理由见解析;②当D在线段BC上时,α+β=180°,当点D在线段BC 延长线或反向延长线上时,α=β.【解析】试题分析:(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②α+β=180°或α=β,根据三角形外角性质求出即可.试题解析:(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=30°,∴∠DCE=30°.故答案为:30°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.点睛:本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,题目比较典型.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:H7N9病毒的长度约为0.000065mm,用科学记数法表示数0.000065为______.试题2:若4x2+2(k﹣3)x+9是完全平方式,则k=______.试题3:若关于x的方程=﹣1无解,则a=______.试题4:某公路急转弯处设立了一面圆形大镜子,从镜子中看到汽车车牌的部分号码如图所示,则该车牌照的部分号码为______.试题5:如图,△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为______.试题6:评卷人得分对于实数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=27时,则x=______.试题7:若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4试题8:下列美丽的图案中,是轴对称图形的是()A. B. C. D.试题9:下列运算正确的是()A.a+2a2=3a3 B.(a3)2=a6 C.a3•a2=a6 D.a6÷a2=a3试题10:下列各式,分解因式正确的是()A.a2﹣b2=(a﹣b)2 B.a2﹣2ab+b2=(a﹣b)2C. D.xy+xz+x=x(y+z)试题11:如图,在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF的度数为()A.30° B.45° C.60° D.75°试题12:某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=20 B.﹣=20C.﹣=0.5 D.﹣=0.5试题13:如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2 D.a(a﹣b)=a2﹣ab试题14:如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为()A.2m+6 B.3m+6 C.2m2+9m+6 D.2m2+9m+9试题15:先化简,再求值:(+)÷,其中x=2.试题16:解方程:.试题17:用乘法公式计算:2016×2014;试题18:用乘法公式计算:(3a+2b﹣1)(3a﹣2b+1)试题19:分解因式:6x(a﹣b)+4y(b﹣a)试题20:9(a+b)2﹣25(a﹣b)2.试题21:如图,已知△ABC和△CEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE,线段AF和BE有怎样的大小关系?证明你的猜想.试题22:杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?试题23:请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.6.5×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:H7N9病毒的长度约为0.000065mm,用科学记数法表示数0.000065为6.5×10﹣5,故答案为:6.5×10﹣5.试题2答案:9或﹣3 .【考点】完全平方式.【分析】将原式转化为(2x)2+2kx+32,再根据4x2+2(k﹣3)x+9是完全平方式,即可得到4x2+2(k﹣3)x+9=(2x±3)2,将(2x±3)2展开,根据对应项相等,即可求出k的值.【解答】解:原式可化为(2x)2+2(k﹣3)x+32,又∵4x2+2(k﹣3)x+9是完全平方式,∴4x2+2(k﹣3)x+9=(2x±3)2,∴4x2+2(k﹣3)x+9=4x2±12x+9,∴2(k﹣3)=±12,解得:k=9或﹣3.故答案为:9或﹣3.试题3答案:﹣2 .【考点】分式方程的解.【分析】先将分式方程化为整式方程,用含x的式子表示a的值,然后根据分式方程无实数根,得出x的值,继而求出a 的值.【解答】解:=﹣1,去分母化成整式方程得:2x+a﹣2=0,所以a=2﹣2x,因为关于x的方程=﹣1无解,所以x=2,所以a=2﹣2×2=﹣2.故答案为:﹣2.试题4答案:E6395 .【考点】镜面对称.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的图片中的数字与“E6395”成轴对称,则该车牌照的部分号码为E6395.故答案为:E6395.试题5答案:40°.【考点】等腰三角形的性质.【分析】根据等边对等角可得∠B=∠ADB,∠C=∠CAD,再根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:∵AB=AD=DC,∴∠B=∠ADB=80°,∠C=∠CAD,由三角形的外角性质得,∠ADB=∠C+∠CAD=2∠C=80°,∴∠C=40°.故答案为:40°.试题6答案:22 .【考点】多项式乘多项式.【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,利用多项式乘多项式的运算法则及平方差公式化简合并即可求出x的值.【解答】解:∵=27,∴(x+1)(x﹣1)﹣(x+2)(x﹣3)=27,∴x2﹣1﹣(x2﹣x﹣6)=27,∴x2﹣1﹣x2+x+6=27,∴x=22;故答案为:22.试题7答案:c【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选C.试题8答案:D【考点】轴对称图形.【分析】根据轴对称图形定义,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,结合定义可得答案.【解答】解:根据轴对称图形的概念知A、B、C都不是轴对称图形,只有D是轴对称图形.故选D.试题9答案:B【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】本题涉及乘方、同底数幂的乘法,同底数幂的除法等几个考点.在计算时,需要针对每个考点分别进行计算,然后根据运算法则求得计算结果.【解答】解:A、a+2a2=3a3,不能相加,故选项错误;B、(a3)2=a6,正确;C、a3•a2=a5,故选项错误;D、a6÷a2=a4,故选项错误.故选B.试题10答案:B【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】分别利用公式法以及提取公因式法分解因式判断得出即可.【解答】解:A、a2﹣b2=(a+b)(a﹣b),故此选项错误;B、a2﹣2ab+b2=(a﹣b)2,故此选项正确;C、x2+x3=x2(1+x),故此选项错误;D、xy+xz+x=x(y+z+1),故此选项错误;故选:B.试题11答案:C【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AE=BE,BF=CF,推出∠A=∠ABE,∠C=∠CBF,根据三角形内角和定理求出∠A+∠C 的度数,即可求出∠ABE+∠CBF的度数,就能求出答案.【解答】解:∵DE、FG分别垂直平分AB、BC,∴AE=BE,BF=CF,∴∠A=∠ABE,∠C=∠CBF,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选C.试题12答案:B【考点】由实际问题抽象出分式方程.【分析】设原价每瓶x元,根据某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,可列方程.【解答】解:设原价每瓶x元,﹣=20.故选B.试题13答案:A【考点】完全平方公式的几何背景.【分析】根据正方形ABCD的面积=边长为a的正方形的面积+两个长为a,宽为b的长方形的面积+边长为b的正方形的面积,即可解答.【解答】解:根据题意得:(a+b)2=a2+2ab+b2,故选:A.试题14答案:B【考点】因式分解-运用公式法.【分析】首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:∵(2m+3)2=4m2+12m+9,拼成的长方形一边长为m,∴[4m2+12m+9﹣(m+3)2]÷m=3m+6.故另一边长为:3m+6.故选:B.试题15答案:【考点】分式的化简求值.【分析】先将括号内的第一项约分,再进行同分母分式的加法运算,再将除法转化为乘法,进行化简,最后将x=2代入.【解答】解:(+)÷=(+)•=•=x﹣1,当x=2时,运算=2﹣1=1.试题16答案:【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘最简公分母3(x+1),得:3x﹣(3x+3)=2x解得:x=﹣,检验:当x=﹣时,3(x+1)=3×(﹣+1)=﹣≠0,则原方程的解为x=﹣.试题17答案:原式=×=20152﹣1=4060225﹣1=4060224;试题18答案:原式=9a2﹣(2b﹣1)2=9a2﹣4b2+4b﹣1.试题19答案:6x(a﹣b)+4y(b﹣a)=2(a﹣b)(3x﹣2y);试题20答案:9(a+b)2﹣25(a﹣b)2=[3(a+b)﹣5(a﹣b)][3(a+b)+5(a﹣b)]=(﹣2a+8b)(8a﹣2b)=4(4b﹣a)(4a﹣b).试题21答案:【考点】全等三角形的判定与性质;等边三角形的性质.【分析】先利用等边三角形的性质得到AC=BC,CE=CF,∠ACB=60°,∠ECF=60°,再利用“SAS”证明△ACF≌△BCE,然后根据全等三角形的性质得AF=BE.【解答】解:AF=BE.理由如下:∵△ABC和△CEF是两个不等的等边三角形,∴AC=BC,CE=CF,∠ACB=60°,∠ECF=60°,在△ACF和△BCE中,∴△ACF≌△BCE,∴AF=BE.试题22答案:【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)设动漫公司第一次购x套玩具,那么第二次购进2x套玩具,根据第二次比第一次每套进价多了10元,可列方程求解.(2)根据利润=售价﹣进价,根据且全部售完后总利润率不低于20%,这个不等量关系可列方程求解.【解答】解:(1)设动漫公司第一次购x套玩具,由题意得:=10,解这个方程,x=200经检验x=200是原方程的根.∴2x+x=2×200+200=600答:动漫公司两次共购进这种玩具600套.(2)设每套玩具的售价y元,由题意得:≥20%,解这个不等式,y≥200答:每套玩具的售价至少是200元.试题23答案:【考点】完全平方公式的几何背景.【分析】(1)直接把两个正方形的面积相加或利用大正方形的面积减去两个长方形的面积;(2)利用面积相等把(1)中的式子联立即可;(3)注意a,b都为正数且a>b,利用(2)的结论进行探究得出答案即可.【解答】解:(1)两个阴影图形的面积和可表示为:a2+b2或(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵a4﹣b4=(a2+b2)(a+b)(a﹣b),且∴a﹣b=±5又∵a>b>0,∴a﹣b=5,∴a4﹣b4=(a2+b2)(a+b)(a﹣b)=53×9×5=2385.。
八年级数学试题 第 1 页 (共 8 页)2017-2018学年度第一学期期末测试八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.下列商标是轴对称图形的是( )2.下列计算正确的是( ) A .333632a a a =⋅B .326a a a =÷C. 2623b a b a =)( D .422532a a a =+3.在ABC ∆中,若2=AB ,5=AC ,则BC 的长一定不等于( ) A.3B.4C.5D.64.下列各式变形中,是因式分解的是( ) A .1)(12222+-=++-y x y xy x B .1)2(122++=++x x x x C .4)2(22-=-+x x x )( D .)1)(1(3-+=-x x x x x5.下列分式中,最简分式是( )A .112-+x xB . 1122-+x x C .82162--x xD .xyx y xy x +++22226.如图,F E C B ,,,四点在一条直线上,DE AB //,DE AB =,下列条件不能判定ABC ∆与DEF ∆全等的是( ) A .CF BE = B .DF AC = C .DF AC // D .D A ∠=∠7. 甲乙两人分别从距目的地km 8和km 10的两地同时出发,甲、乙的速度比是3:2,结果乙ABCDE题图)(8题图)(10AB CD EF题图)(6八年级数学试题 第 2 页 (共 8 页)比甲提前20分钟到达目的地,求甲的速度是多少?设甲的速度为时千米/x ,可列方程为( ) A .3123108=-x x B .2023108=-x x C .3182310=-x x D .2082310=-xx8.如图,在五边形ABCDE 中,CD BC ⊥,若DE AB //,则CDE ABC ∠+∠应等于( ) A . 260B . 270C . 280D . 2909.在ABC ∆中,如果C B A ∠=∠=∠32,那么ABC ∆的形状是( ). A.等腰三角形B .直角三角形C .锐角三角形D .钝角三角形10.如图,已知ABC ∆为等边三角形,BD 为中线,延长BC 至E , 使CD CE =,连接DE ,则BDE ∠的度数为( ). A . 105B . 120C . 135D . 15011.若1)3(22+-+x m x 是完全平方式,n x +与2+x 的乘积中不含x 的一次项,则m n 的值为( ) A .4- B .16 C .164或 D .164--或12.从4-,2-,1-,0,1,2这六个数中,随机抽取一个数,记为a ,若数a 使关于x 的分式方程14142-=--+-xax x 有整数解,那么这六个数中所有满足条件的a 的值之和是( ) A .5- B .3- C .1- D .3二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.使分式22-+x x 有意义的x 的取值范围是 . 14.因式分解y xy y x ++22的结果是 .15.若有m 条对角线的多边形的内角和是o720,则=m .16.如图,在△ABC 中,∠B =100°,AC 边的垂直平分线DE 与AB 边交于点D ,且∠BCD ∶∠BDC =3∶5,则∠A 为 度.17.若()()2217,11a b a b +=-=,则22a b +=___________.18.如图,CD AB //,BAC ∠的角平分线与ACD ∠的角平分线相交于点O ,过O 的直线与AB ,CD 分别相交于点F E ,,若cm AE 4=,cm CF 6=,则=AC cm .ABCDEFO题图)(18EDCBA题图)(16八年级数学试题 第 3 页 (共 8 页)三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19. 解分式方程:2412-=-+x x x .20.如图,点A ,B ,C 在同一直线上,BE ∥CD ,AB =CD , AC =BE ,求证:AE =AD .四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:22441()422x x x x x x x -+--÷-++,其中x 满足)4)(4(2)2(22+-=++x x x x .23.如图,在ABC ∆中,AC AB =, 36=∠A ,DE 是AC 的垂直平分线. (1)求证:BCD ∆是等腰三角形;(2)若BCD ∆的周长是a ,b BC =,求ACD ∆的周长(用含a ,b 的 代数式表示)x EDCB A题图)(20ABCDE题图)(23八年级数学试题 第 4 页 (共 8 页)24.阅读材料:如果一个长方形的长和宽m 、n 满足2222440m mn n n -+-+=,求长方形的面积.解:∵2222440m mn n n -+-+=,∴222(2)(44)0m mn n n n -++-+=∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴,2m n n ==. ∴4m n ⋅=,即长方形的面积为4. 根据阅读材料,请探究下面的问题:(1)若0245222=+-++xz xy z y x ,求代数式z y x 3++的值;(2)若ABC ∆的三边长c b a ,,都是正整数,其中b a ,满足221012610a b a b +--+=,求边长c 的最大值.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.为了进一步优化潼南区的环境,区政府拟对某道路进行改造,改造工程若由甲、乙两工程队合作,则18天刚好完成.已知甲工程队单独施工完成的天数是乙工程队单独施工完成天数的32. (1)求甲、乙两工程队单独施工完成此项工程分别需要多少天?(2)已知甲工程队施工每天需付施工费1.7万元,乙工程队每天需付施工费1万元.工程预算的施工费用为50万元.若甲乙两工程队合作施工6天后,乙工程队因故离去,剩下工程由甲工程队单独完成.你认为预算费用是否够用?如果不够用,需要追加多少万元?26.如图,在等腰直角△ABC 中,∠ACB =90°,AC =BC ,点D ,F 为BC 边上的两点,CF =DB ,连接AD ,过点C 作AD CE ⊥于点G ,交AB 于点E ,连接EF . (1)若∠DAB =15°,AD =6,求线段GD 的长度; (2)求证:∠EFB =∠CDA ;备用图(26题图)八年级数学试题 第 5 页 (共 8 页)2017-2018学年度第一学期期末测试八年级数学答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分) 13. 2≠x ; 14. 2)1(+x y ; 15.9; 16. 25; 17.14; 18.10.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须写出必要的演算过程或推理步骤.19.解:两边同时乘以)2(+x (2-x ),得)2(4)2)(2()2(+=-+--x x x x x ………………………3分 84)4(222+=---x x x x 46-=x解得32-=x ………………………7分 经检验,32-=x 是原方程的解. ………………………8分20.证明: BE ∥CD ∴C ABE ∠=∠.................3分在△ABE 和△DCA 中∴△ABE ≅△DCA (SAS ) ...........7分A⎪⎩⎪⎨⎧=∠=∠=ACBE C ABE CD AB八年级数学试题 第 6 页 (共 8 页)∴ AE =AD .......................8分四、解答题(本大题4个小题,每小题10分,共40分) 21.解:原式22()221x x x x x x -+=-⋅++- …………………………2分 2221x x x -+=⋅+- …………………………4分 21x =-- …………………………6分 )4)(4(2222+-=++x x x x )(∴)16(244222-=+++x x x x∴3244-=+x∴9-=x …………………………9分 ∴原式21x =--51192=---= …………………………10分 22.解:(1)画出图形如图所示.……………………(2 分)C 、D 的坐标分别为C ( -1,-4) 、 D( 4, 2).………(4 分) (2)P 点位置如图所示.………(7 分) (3)AEB CED ABDC S S S ∆∆-=四边形 1232216521=⨯⨯-⨯⨯=∴四边形 ABDC 的面积是12 .…………………………………………(10分) 23.(1)证明:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,……………………2分∵DE 是AC 的垂直平分线,∴AD=DC,……………………3分∴∠ACD=∠A=36°, ∵∠CDB 是△ADC 的外角,∴∠CDB=∠ACD+∠A=72°,……………………4分 ∴∠B=∠CDB, ∴CB=CD,∴△BCD 是等腰三角形;……………………5分 (22题图)x八年级数学试题 第 7 页 (共 8 页)(2)解:∵AD=CD=CB=b,△BCD 的周长是a ,∴AB=a﹣b ,……………………7分∵AB=AC, ∴AC=a﹣b ,∴△ACD 的周长=AC+AD+CD=a ﹣b+b+b=a+b . …………………10分24.解:(1)0,02,0)()2(22=+=-∴=++-z x y x z x y x∴x z x y -==,2………………3分∴0323=-+=++x x x z y x .………………………………………5分(2)06,05,0)6()5(22=-=-∴=-+-b a b a∴6,5==b a , ……………………7分∵a b c a b +<<-∴111<<c ,∵ABC ∆的三边长c b a ,,都是正整数,∴边长c 的最大值为10. ……………………………10分五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.解:(1)设乙工程队单独施工需x 天完成,则甲工程队单独施工需要x 32天完成, 得:1132118=⎪⎪⎪⎪⎭⎫ ⎝⎛+x x ……………………………3分解得:45=x ………………………4分经检验:45=x 是原分式方程的解.………………………5分 答:甲、乙两工程队单独完成此项工程分别需要30天和45天. (2)甲乙两工程队合作,每天完成总工作量的181,施工6天完成了316181=⨯,再由甲工程队单独完成剩下的工程的时间为20301311=÷⎪⎭⎫ ⎝⎛-(天).………………………7分八年级数学试题 第 8 页 (共 8 页)所需要工程费用为()2.507.12017.16=⨯++⨯(万元)………………………9分 答:预算费用不够用,需要追加0.2万元.………………………10分 26.解:(1) △ABC 是等腰直角三角形,∠ACB =90°,AC =BC∴︒=∠=∠45CBA CAB 又 ∠DAB =15°∴︒=∠30CAD ………………1分 AD CE ⊥∴︒=∠90CGA ∴︒=∠60ACG 又 ∠ACB =90° ∴︒=∠30DCG ………………3分 在Rt △CGD 中, ︒=∠90CGD∴CD DG 21=在Rt △ACD 中,,︒=∠90ACG ,︒=∠30CAD , AD =6∴321==AD CD ∴5.121==CD DG ………………5分(2)证明:过点C 作AB CP ⊥于点P,交AD 于点M△ABC 是等腰直角三角形 ∴CP 平分 ACB ∠∴︒=∠=∠=∠4521ACB PCB ACP ∴ABC ACP ∠=∠∠ACB =90°, ︒=∠90CGA∴︒=∠+∠90ACG DCG ,︒=∠+∠90ACG CAG , ∴GCD CAG ∠=∠ AC =BC∴△ACM ≌△CBE (ASA ) ...........9分 ∴ MC =BECF =DB∴ CD =FB又 ∠MCD =∠ABC =45° ∴△DCM ≌△FBE (SAS ) ∴∠EFB =∠CDA ................12分第24题 第24题。
河南省商丘市柘城县2017-2018学年八年级上学期期末考试数学试
卷
一、填空题
(★) 1 . 下列图形中轴对称图形的个数是
_____.
(★★★) 2 . 如图,已知△ABC为等边三角形,高AH=5cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为_________cm.
(★★★) 3 . 已知2 m=a,4 n=b,m,n为正整数,则2 3m+4n=_____.
(★) 4 . 当x=3时,分式的值为0;而当x=1时,分式无意义,则a=_____,b=_____.(★★★★★) 5 . 若分式方程:2﹣= 无解,则k=_____.
(★★★) 6 . 某列车平均提速60km/h用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km,求提速前该列车的平均速度.若设提速前该列车的平均速度为xkm/h,则列出的方程为_____
二、单选题
(★★★) 7 . 已知A(2,3),其关于x轴的对称点是B,B关于y轴对称点是C,那么相当于将A经过()的平移到了C.
A. 向左平移4个单位,再向上平移6个单位
B. 向左平移4个单位,再向下平移6个单位
C. 向右平移4个单位,再向上平移6个单位
D. 向下平移6个单位,再向右平移4个单位
(★★★) 8 . 一个正多边形,它的一个外角等于与它相邻的内角的,则这个多边形是()
A.正十二边形B.正十边形C.正八边形D.正六边形
(★★★) 9 . 如图,在△ ABC中,∠ BAC=90°,∠ ABC=2∠ C, BE平分∠ ABC交 AC于 E,
AD⊥ BE于 D,下列结论:① ACBE= AE;②点 E在线段 BC的垂直平分线上;③∠ DAE=∠ C;
④ BC=4 AD.其中正确的有()
A.1个B.2个C.3个D.4个
(★★★★★) 10 . 已知a,b,c是三角形的三边,那么代数式a 2﹣2ab+b 2﹣c 2的值()
A.大于零B.等于零C.小于零D.不能确定
(★★★) 11 . 下来运算中正确的是()
A.B.()2=
C.D.
(★) 12 . 为了运用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是()
A.[x﹣(2y+1)]2B.[x+(2y﹣1)][x﹣(2y﹣1)]
C.[(x﹣2y)+1][(x﹣2y)﹣1]D.[x+(2y﹣1)]2
(★★★) 13 . 若(x 2+px+8)(x 2-3x+q)乘积中不含项和项,则p、q的值为( )
A.p=0,q=0B.p=3,q=1C.p="–3," q=–9D.p=–3,q=1
(★★★) 14 . 若关于x的分式方程的解为正数,则满足条件的正整数m的值为()
A.1,2,3B.1,2C.1,3D.2,3
三、解答题
(★★★) 15 . 因式分解:
(1)3a(a﹣2b)+6b(2b﹣a)
(2)(x 2+4y 2)2﹣16x 2y 2
(★★★) 16 . 阅读下面题目的计算过程:
﹣
= ﹣①
=x﹣4﹣2(x﹣2)②
=x﹣4﹣2x+4③
=﹣x④
(1)上述计算过程中,从哪一步开始出现错误?请写出错误步骤的序号_____;
(2)错误原因是_____;
(3)写出本题的正确解法.
(★★★) 17 . 先化简,再求值:(3a﹣2)2﹣9a(a﹣5b)+12a 5b 2÷(﹣a 2b)2,其中ab=﹣.(★★★) 18 . 解分式方程
(1)=4
(2)
(★★★) 19 . 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.
(1)求证:∠FMC=∠FCM;
(2)AD与MC垂直吗?并说明理由.
(★★★) 20 . 早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是
他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校已知小明步行从学校到家所
用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.
求小明步行速度单位:米分是多少;
下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度
不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?
(★★★) 21 . 在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE= .
(2)设∠BAC=α,∠DCE=β:
①如图1,当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由;
②当点D在直线BC上(不与B、C重合)移动时,α与β之间有什么数量关系?请直接写出你的结
论.。