浙江财经大学2014年《601高等数学》考研专业课真题试卷
- 格式:pdf
- 大小:2.24 MB
- 文档页数:2
1 / 13全国统一咨询热线:400-6998-626 育明教育官方网址: 2014年城市规划各专业考试科整理笔育明教育:2012年北京大学601高等数学考研分析和复习方法指导【介绍】北大考研科目里的“高数601”是针对理科部分专业设置的考试科目(环境科学、地理学、生态学等),主要考察内容为高等数学(微积分)(一般不包括三角级数、换流量、通量、方向导数,对于格林公式、斯托克斯、高斯公式考察也不多。
通过分析真题,育明教育考研专业课咨询师发现,北京大学601高数考查知识面并不很宽,但题目很有难度和深度)。
有鉴于此,育明教育( )每年都会开办601高等数学(原360高等数学)考研辅导班。
辅导科目:601高等数学辅导师资:育明教育咨询师,北京大学、清华大学、北京师范大学数学系师资,两年以上601高等数学辅导经验,辅导时间:8月份辅导效果:连续三年考点命中率高达90%以上辅导费用:1880元,赠送历年真题,复习大纲等资料。
育明教育,由北京大学、中国人民大学和中央财经大学的老师投资创办,并有北京大学、清华大学、中国人民大学、北京师范大学、复旦大学、中央财经大学、山东大学、南开大学、浙江大学等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研专业课辅导机构。
【辅导高校】北大、人大、清华、北师大、人行五道口、中财、贸大、北林、北理、北外、北语、矿大、科大、北交大等北京30所高校【辅导成效】考研专业课:押题命中率高达95%以上!!原题最高命中278分(总分300分)2 / 13全国统一咨询热线:400-6998-626 育明教育官方网址: 考研英语:历年阅卷老师授课,大小作文全部压中!!考研政治:清华老师授课,2011年五道大题全部压中!!城市规划原理笔记第一章 城市与城市发展:10个知识点1、城市形成和发展根本动因:建立在工业化基础上的经济发展,城市的规模效益和聚集效益使城市成为人类聚居地的主要形式。
2、城市发展的基本规律:6个理论1)区域理论:城市是区域的核心,区域发展是不均衡的。
2014年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.当x→x0时,若f(x)存在极限,g(x)不存在极限,则下列结论正确的是( )A.当x→x0时,f(x)g(x)必定存在极限B.当x→x0时,f(x)g(x)必定不存在极限C.当x→x0时,f(x)g(x)若存在极限,则此极限必为零D.当x→x0时,f(x)g(x)可能存在极限,也可能不存在极限正确答案:D解析:极限运算法则,可以举反例,若f(x)=x2,g(x)=lnx,则f(x)= x2=0,g(x)=lnx=-∞,但f(x).g(x)=x2lnx=0;若f(x)=2,g(x)=sin=2,不存在,但f(x).g(x)=不存在;可见选项D正确.2.曲线y=x3-3x上切线平行于x轴的点是( )A.(0,0)B.(1,2)C.(一1,2)D.(0,2)正确答案:C解析:由导数几何意义可知,k切=y′(x0)=3—3=0,所以切点坐标为(1,一2)或(一1,2),即选项C正确.3.函数f(x)=(x2—x一2)|x3一x|的不可导点个数是( )A.3B.2C.1D.0正确答案:B解析:导数定义,f′(0)=所以f′-(0)==2,f′+(0)==-2所以函数f(x)在x=0处不可导;同理,f′(1)=所以f′-(1)=一(x2一x—2)|x(x+1)|=4.f′+(1)=(x2一x—2)|x(x+1)|=-4,所以函数f(x)在x=1处不可导;f′(-1)==(x-2)|x3-x|=0,所以函数f(x)在x=-1处可导;综上可知,函数f(x)共有2个不可导点,选项B正确.4.若f(x=sin(t一x)dt,则f(x)= ( )A.-sinxB.-1+cosxC.sinxD.0正确答案:A解析:变限函数求导数,因为sin(t一x)dt sinudu,所以sin(t—x)dt=sinudu=0一sin(一x).(一1)=-sim,可见选项A正确.5.微分方程y′+的通解是( )A.arctanx+CB.(arctanx+C)C.arctanx+CD.+arctanx+C正确答案:B解析:一阶线性微分方程,由通解公式可得y=e-∫p(x)dx[∫Q(x).e∫p(x)dxdx+C]=.elnxdx+C]=(arctanx+C),可见选项B正确.填空题6.设f(x)在(-∞,+∞)上连续,且f(2)=3,则=___________.正确答案:9解析:利用连续性求极限,=3f(2)=9 7.设f(x)=,则f[f(x)]=___________.正确答案:解析:求复合函数的表达式,f[f(x)]=f[f(x)]=8.曲线y=xln(e+)(x>0)的渐近线方程是___________.正确答案:y=x+解析:计算斜渐近线,设直线y=ax+b为所求曲线的渐近线,则a==lne=1,b=所以,斜渐近线为y=x+.9.设y=ln,则y′|x=0=___________.正确答案:-1解析:求导函数,因为y=ln[ln(1一x)一ln(1+x)]所以y′=,故y′(0)=-1.10.曲线y=(x>0)的拐点是___________.正确答案:()解析:求曲线的拐点,当x>0时,y′=令y″=0,得x=,所以拐点为().11.由曲线y=x和y=x2所围成的平面图形的面积是___________.正确答案:解析:据题意画图,求所围平面图形的面积S=(x—x2)dx=(x2一12.将函数f(x)=sin2x展开成x的幂级数为___________.正确答案:,x∈(一∞,+∞)解析:麦克劳林展式,f(x)=sin2x=cos2x,又因cosx=x2n,x∈(一∞,+∞),所以cos2x=(2x)2n即f(x)=,x∈(一∞,+∞).13.设(a×b).c=1,则[(a+b)×(b+c)].(c+a)=___________.正确答案:2解析:混合积,向量积运算法则,在混合积计算中,如有两向量相同,则混合积为0.因此,[(a+b)×(b+c)].(c+a)=[a×(b+c)+b×(b+c)]=[a×b+a×c+b×b+b ×c].(c+a)=[a×b+a×c+b×c].(c+a)=(a×b).c+(a×b).a+(a×c).c+(a×c).a+(b×c).c+(b×c).a=(a×b).c-(b×c).a=2(a×b).c=214.微分方程(1+x)ydx+(1一y)xdy=0的通解为___________.正确答案:ln|xy|+x-y+C=0,C为任意常数解析:可分离变量的微分方程,(1+x)ydx+(1一y)xdx=0x+ln|x+C=y—ln|y|,即通解为y=x+ln|xy|+C,C为任意常数.15.设二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=C1ex+C1e2x,那么非齐次y″+ay′+by=1满足的条件y(0)=2,y′(0)=-1的解为___________.正确答案:y=4ex-解析:求二阶线性常系数非齐次方程的通解,特征方程为r2+ar+b=0,r1=1,r2=2即(r-1)(r-2)=0,r2-3r+2=0,故a=-3,b=2.所以原微分方程为y″一3y′+2y=1,由于λ=0不是特征方程的根,取k=0,因此,设特解y*=A,则(y*)′=0,(y*)″=0,代入可得A=,所以y*=,所以y″一3y′+2y=1的通解为y=C1ex+C2e2x+,再由y(0)=2,y′(0)=-1,可得C1=4,C2=,故满足初始条件的特解为y=4ex-解答题解答时应写出推理、演算步骤。