一次函数的应用知识点整理,八年级下册数学一次函数的应用经典例题讲解与答案解析
- 格式:pdf
- 大小:293.31 KB
- 文档页数:9
4.5 一次函数的应用第1课时利用一次比例函数解决实际问题要点感知1函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时第4题图第5题图5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发________小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度)0<x≤140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费M元,小刚家某月用电290度,交电费153元,求M的值.参考答案预习练习1-17.4预习练习2-1 D2-2大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.或8.(1)s=10t(2)9.根据图形可得:甲的速度是=8(米/秒),乙的速度是:=7(米/秒),∴根据题意得:100-×7=12.5(米).当甲跑到终点时,乙落后甲12.5米.答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入,得解得则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=x-7(140<x≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),M=0.75-0.5=0.25.答:M的值为0.25.。
初二数学一元一次函数应用知识点及经典例题一元一次函数是初中数学中的一重要内容,本文主要介绍了一元一次函数的应用知识点及经典例题。
一、函数与解析式1. 函数的概念函数是每个自变量对应唯一一个因变量的对应关系。
2. 函数的解析式函数的解析式是对函数进行具体表述的式子,形如y = kx + b,其中 k 和 b 分别表示函数的斜率和截距。
二、函数图象函数图象是表达函数 y = f(x) 在平面直角坐标系中对应点集的图形。
三、应用知识点1. 函数的性质一元一次函数是一条直线,其图象一定是一条斜率为正或负的直线。
其次,函数图象通过第一象限或第三象限,取决于它的截距是否为正。
最后,对于 y = kx + b,当 k > 0 时,随着 x 的增大 y 增大;当 k < 0 时,随着 x 的增大 y 减小;当 k = 0 时,函数图象为一条水平直线;当 b > 0 时,函数图象通过第一象限;当 b < 0 时,函数图象通过第三象限。
2. 数据分析使用一元一次函数解决实际问题时,需要进行数据分析,找出自变量和因变量之间的关系。
对于一个数据集,通过绘制散点图可以直观表现 x 和 y 的关系;通过计算斜率和截距,可以建立 y = kx + b 的函数模型。
四、经典例题1. 试从图中判断函数解析式。
答:当 x > 2 时,函数图象与直线 y = 2x - 2 具有相同特征,因此函数解析式为 y = 2x - 2。
2. 已知一元一次函数 y = kx + 3 的图象过点 P(3, 9),求解析式。
答:由题意可知,当 x = 3 时,y = 9,因此代入函数解析式可得 9 = 3k + 3,解得 k = 2。
故函数解析式为 y = 2x + 3。
3. 农民要给小鸡喂食,每只鸡每天需要 0.1 千克的饲料。
现在农民有 200 千克饲料,请问他最多可以养多少只鸡?答:设小鸡的数量为 x,则每天需要的饲料量为 y = 0.1x。
初中数学《一次函数应用—行程问题》典型例题及答案解析一、单选题1.一辆汽车和一辆摩托车分别从A,B两地去同一个城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到1h;②A,B两地的路程为20km;③摩托车的速度为45km/h,汽车的速度为60km/h;④汽车出发1小时后与摩托车相遇,此时距B地40千米.其中正确结论的个数是()A.2个B.3个C.4个D.1个【答案】B【解析】试题解析:分析图象可知(1)4−3=1,摩托车比汽车晚到1h,正确;(2)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地的路程为20km,正确;(3)摩托车的速度为(180−20)÷4=40km/h,汽车的速度为180÷3=60km/h,故(3)错误;(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;故正确的有3个,故选B.2.小明的爷爷每天坚持锻炼身体,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路漫步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象的是().A.B.C.D.【答案】D【解析】爷爷从家里到公园这一过程,y随着x的增大而增大;打太极这一过程,y保持不变;沿原路漫步回家这一过程,y随着x的增大而减小.故选D.点睛:此题主要根据函数的增减性进行判断.3.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的函数表达式是()A.Q=40B.Q=40C.Q=40D.Q=40【答案】C【解析】汽车油箱内有油40L,每行驶100km耗油10L,汽车行驶过程中油箱内剩余的油量与行驶路程之间的函数表达式为: Q=40故选: C.4.甲从P地前往Q地,乙从Q地前往P地.设甲离开P地的时间为t( 小时),两人距离Q地的路程为S( 千米),图中的线段分别表示S与t之间的函数关系.根据图象的信息,下列说法正确的序号是( )①甲的速度是每小时80千米;②乙的速度是每小时50千米;③乙比甲晚出发1小时;④甲比乙少用2.25小时到达目的地;⑤图中a的值等于A.①②③④⑤B.①③④⑤C.①③⑤D.①③【答案】C【解析】①由图甲走了300千米,耗时3.75/小时.正确.②由图知乙走了300千米,耗时5/小时.错误.③乙在前一个小时路程没变,所以乙比甲晚出发1小时,正确.④由图知,5-3.75=1.25小时.错误.⑤由题意得,上下两个三角形相似,解得a 正确. 所以①③⑤正确.点睛:本题也可以根据图象信息,在直角坐标系下,看懂横纵坐标所表示的意义及其关系,把两个一次函数解析式求出来,函数的k 就是速度(可解决①②),函数的交点问题,只需要联立一次函数解析式(可解决⑤).5.目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数关系式是( )A . 0.05y x =B . 5y x =C . 100y x =D . 0.05100y x =+【答案】B【解析】由题意得,一分钟滴水1000.055⨯=,所以5y x = 选B.6.在一条笔直的公路上,依次有A 、B 、C 三地.小军、小扬从A 地同时出发匀速运动,小军以2千米/分的速度到达B 地立即返回A 地,到达A 后小军原地休息,小扬途经B 地前往C 地.小军与小扬的距离s (单位:千米)和小扬所用的时间t (单位:分钟)之间的函数关系如图所示.下列说法:①小军用了4分钟到达B 地;②当t=4时,小军和小扬的距离为4千米;③C 地与A 地的距离为10千米;④小军、小扬在5分钟时相遇.其中正确的个数为( )A . 1个B . 2个C . 3个D . 4个【答案】C【解析】试题解析:由图可知,小军到达B 所用的时间为4分钟,故①正确;当小扬与小军相距8千米时,小军刚好返回A 地,则此时小军行驶的总的时间为8分钟,故小扬的速度为8÷8=1千米/分,∴当t=4时,小军和小扬的距离为:4×(2-1)=4千米,故②正确;∴C 地与A 地的距离为:1×10=10千米,故③正确;∴小军和小扬相遇的时间为:8×2÷(1+2)=分钟,故④错误;故选C .7.甲乙两车分别从M 、N 两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S (千米)与甲车所用时间t (小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是( )A . M 、N 两地的路程是1000千米;B . 甲到N 地的时间为4.6小时;C . 甲车的速度是120千米/小时;D . 甲乙两车相遇时乙车行驶了440千米.【答案】C【解析】试题解析: 0t =时, 560,S = ,M N ∴两地的路程560千米.A 错误. 甲车的速度为()5604401120km/h.-÷= C 正确. 设乙车的速度为km/h v , 则()()12031440.v +⨯-= 解得100.v =乙车行驶速度为100km/h. 甲车到达N 地的时间为.B 错误. ∵甲车出发1小时后乙车出发,∴乙车出发312-=小时后与甲车相遇. 甲乙两车相遇时乙车行驶了1002200⨯=千米.D 错误.故选:C.8.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象.下列结论中,错误的是( )A . 轮船的速度为20 km /hB . 快艇的速度为40 km /hC . 轮船比快艇先出发2 hD . 快艇不能赶上轮船【答案】D【解析】试题解析:观察图象,该函数图象表示的是路程与之间的函数关系,可知轮船出发4小时后被快艇追上,在4小时时快艇和轮船行驶的路程相等,所以错误的是第四个结论.故选D .9.汽车由A 地驶往相距120 km 的B 地,它的平均速度是30 km /h ,则汽车距B 地的路程s(km )与行驶时间t(h )的函数关系式及自变量t 的取值范围是( )A . s =120-30t(0≤t≤4)B . s =120-30t(t >0)C . s =30t(0≤t≤4)D . s =30t(t <4)【答案】A【解析】平均速度是30km/h ,∴t 小时行驶30tkm ,∴S=120-30t ,∵时间为非负数,汽车距B 地路程为非负数,∴t≥0,120-30t≥0,解得0≤t≤4.故选A .10.小明和小亮在同一条笔直的道路上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y (米)与小亮出发的时间t (秒)之间的函数关系如图所示,则下列结论错误的是( ).A . 8a =B . 92b =C . 123c =D . 当20t =时, 10y =【答案】D【解析】根据题意, 0t =时,小明出发2秒行驶的路程为8米, 所以,小明的速度824=÷=米/秒,∵先到终点的人原地休息,∴100秒时,小亮先到达终点, ∴小亮的速度5001005=÷=米/秒,∴a=8÷(5-4)=8(秒),()51004100292b =⨯-⨯+=(米), 100924123c =+÷=(秒), ∴小明出发123秒时到达了终点,故A 、B 、C 均正确, 小亮出发20秒,小亮走了205100⨯=米,小明走了22488⨯=米,1008812-=米, ∴小亮在小明前方12米,故D 错误.故选D.【点睛】本题主要考查一次函数的应用,能正确地识图,明确图中的拐点的含义是解题的关键.11.甲乙两辆车分别从A 、B 二地相对开出,2)。
课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。
2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。
重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。
小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .〔1〕求点D 的坐标;〔2〕求直线2l 的解析表达式;〔3〕求ADC △的面积;〔4〕在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. 例题2:如图,在平面直角坐标系,点A 〔0,6〕、点B 〔8,0〕,动点P 从点A 开场在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开场在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位.当堂稳固:如图,直线6y kx =+与*轴、y 轴分别交于点E 、F ,点E 的坐标为〔-8,0〕,点A 的坐标为〔-6,0〕。
〔1〕求k 的值;〔2〕假设点P 〔x ,y 〕是第二象限的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与*的函数关系式,并写出自变量*的取值围;〔3〕探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
课后检测:1、如果一次函数y=-*+1的图象与*轴、y 轴分别交于点A 点、B 点,点M 在*轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,则这样的点M 有〔〕。
八年级数学一次函数应用知识点归纳八年级数学一次函数的应用知识点归纳1一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
常用公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴*行线段的中点:(x1+x2)/23.求与y轴*行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)^2+(y1-y2)^2]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1y2=k2x+b2令y1=y2得k1x+b1=k2x+b2将解得的x=x0值代回y1=k1x+b1y2=k2x+b2两式任一式得到y=y0则(x0,y0)即为y1=k1x+b1与y2=k2x+b2交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]八年级数学一次函数的应用知识点归纳2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
一、选择题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限D 解析:D【分析】先解不等式组,根据不等式组有解,求得a 的取值范围,即可判断一次函数()32y a x =-+的图象一定不经过的象限.【详解】∵20210x x a ->⎧⎨-+<⎩, ∴212x a x >⎧⎪⎨-<⎪⎩, ∵不等式组有解, ∴122->a , ∴5a >,∴30a ->,∴()32y a x =-+经过第一、二、三象限,不经过第四象限,故选:D .【点睛】本题考查了一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2.如图,直线y =-2x +2与x 轴和y 轴分别交与A 、B 两点,射线AP ⊥AB 于点A .若点C 是射线AP 上的一个动点,点D 是x 轴上的一个动点,且以C 、D 、A 为顶点的三角形与△AOB 全等,则OD 的长为( )A.25B.35C.25D.35D解析:D【分析】利用一次函数与坐标轴的交点求出△AOB的两条直角边,并运用勾股定理求出AB.根据已知可得∠CAD=∠OBA,分别从∠ACD=90°或∠ADC=90°时,即当△ACD≌△BOA时,AD =AB,或△ACD≌△BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB2222+=+=.OA OB125∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD =AD +OA =5+1; 如图2所示,当△ACD ≌△BAO 时,∠ADC =∠AOB =90°,AD =OB =2,∴OD =OA +AD =1+2=3.综上所述,OD 的长为3或5+1.故选:D .【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.3.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( ) A . B . C . D .A 解析:A【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解.【详解】解:因为实数k 、b 满足k+b=0,且k >b ,所以k >0,b <0,所以它的图象经过一、三、四象限,故选:A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.5.在直角坐标系中,点P在直线x+y-4=0上,O为原点,则OP的最小值为()A.22B.2 C.6D.10A解析:A【分析】当OP垂直于直线x+y-4=0时,|OP|取最小值.根据直线方程得到该直线与坐标轴的交点坐标,则易得△AOB为等腰直角三角形,等腰直角三角形斜边上的中线等于斜边的一半,据此求得线段OP的长度.【详解】解:由直线x+y-4=0得到该直线与坐标轴的两交点坐标是A(0,4)、B(4,0),则△AOB是等腰直角三角形,如图,∴22224442OA OB+=+=当OP⊥AB时,线段OP最短.此时OP=12AB=22故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,垂线段最短.解题时,利用了直角三角形斜边上的中线等于斜边的一半求得OP的长度.6.若点(-2,y1),(3,y2)都在函数y=-2x+b的图像上,则y1与y2的大小关系是()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定A解析:A【分析】 根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.7.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩C 解析:C【分析】先根据223y x =+可得B 、C 的坐标,进而确定OB 、OC 的长,然后根据3S △ABO =S △BOC 结合点A 在第二象限确定A 点的纵坐标,然后再根据点A 在y =23x+2上,可确定点A 的横坐标即可解答.【详解】 解:由223y x =+可得B (﹣3,0),C (0,2), ∴BO =3,OC =2,∵3S △ABO =S △BOC ,∴3×12×3×|yA|=12×3×2, 解得y A =±23, 又∵点A 在第二象限,∴y A =23, 当y =23时,23=23x+2,解得x =﹣2, ∴方程组0236kx y x y -=⎧⎨-=-⎩的解为223x y =-⎧⎪⎨=⎪⎩. 故答案为C .【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.8.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0) D.图象与坐标轴交点的连线段长度等于解析:B【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案.【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交=故选:B .【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.9.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-5C解析:C【分析】 先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.10.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0)D .(43,0)或(0,2)C 解析:C【分析】要使得△PAB 的周长最小,实则在x 轴上找到P 点,使得PA PB +最小即可,从而将A 沿x 轴对称至A 1,求解A 1B 的解析式,其与x 轴的交点坐标即为所求.【详解】∵要使得△PAB 的周长最小,A ,B 为固定点,∴在x 轴上找到P 点,使得PA PB +最小即可,∴将A 沿x 轴对称至A 1,则()11,1A -,设直线A 1B 的解析式为:y kx b =+, 将()11,1A -,B(3,5),代入求解得:34k b =⎧⎨=-⎩,则解析式为:34y x =-, 令0y =,解得:43x =, 即4,03P ⎛⎫ ⎪⎝⎭时,△PAB 的周长最小, 故选:C .【点睛】本题考查轴对称最短路径问题,及一次函数与坐标轴得交点问题,能够对题意进行准确分析,建立合适的最短路径模型是解题关键.二、填空题11.已知关于x ,y 的二元一次方程组1,mx y y nx -=⎧⎨=⎩的解是1,2x y =⎧⎨=⎩则直线1y mx =-与直线y nx =的交点坐标是______;(12)【分析】根据二元一次方程组的解对应的x 和y 值就是对应函数交点的横纵坐标即可得解【详解】解:由可得它的解为故直线与直线的交点坐标是(12)故答案为:(12)【点睛】本题考查一次函数与二元一次方解析:(1,2)【分析】根据二元一次方程组的解对应的x 和y 值,就是对应函数交点的横纵坐标即可得解.【详解】解:由1mx y y nx -=⎧⎨=⎩可得1y mx y nx =-⎧⎨=⎩,它的解为12x y =⎧⎨=⎩, 故直线1y mx =-与直线y nx =的交点坐标是(1,2),故答案为:(1,2).【点睛】本题考查一次函数与二元一次方程组.理解二元一次方程组与一次函数的关系是解题关键.12.函数1y x =-中自变量x 的取值范围是________.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】y =,根据题意得:x≥0 10≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b 【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.14.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:52【分析】依据题意得到三个关系式:a+b=355c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点35(15P ,在“勾股一次函数”a b y x c c =+的图象上,把35(1)5P ,代入得: 35a b c c=+,即35a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10,∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=, ∴2235220c ⎫-⨯=⎪⎪⎝⎭,故24405c =, 解得:52c =.故答案为:52【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.15.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-52a =-,故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.16.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.【分析】求出两直线交点的横坐标m 代入求出b 的取值范围即可【详解】解:根据题意得解得∴∵∴∴故答案为:【点睛】此题主要考查了直线交点问题构造方程求交点是解答本题的关键 解析:111b -≤<【分析】求出两直线交点的横坐标m ,代入13m -≤<,求出b 的取值范围即可.【详解】解:根据题意得,22x x b +=-+,解得,23b x -=, ∴23b m -= ∵13m -≤<∴2133b --≤< ∴111b -≤< 故答案为:111b -≤<【点睛】此题主要考查了直线交点问题,构造方程求交点是解答本题的关键.17.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A1A2A3的坐标即可根据正方形的性质得出C1C2C3的纵坐标根据点的坐标的变化可找出变化规律:点Cn 的纵坐标为2n-1再代入n 解析:22019【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出点A 1,A 2,A 3的坐标,即可根据正方形的性质得出C 1,C 2,C 3的纵坐标,根据点的坐标的变化可找出变化规律:点C n 的纵坐标为2n-1,再代入n=2020即可得出结论.【详解】解:作1C D ⊥x 轴于D ,当x=0时,y=x+1=1,当y=0时,x=-1,∴点A 1的坐标为(0,1),点A 的坐标为(-1,0),∵四边形A 1B 1C 1A 2为正方形,∴∠111A AO A B A ∠==∠1145C B D =︒,∴11111A A A B C B ==,∴Rt △1A AO ≅Rt △11C B D ,∴11A O C D =,∴点C 1的纵坐标与点A 1的纵坐标相同,都为1,当x=1时,y=x+1=2,∴点A 2的坐标为(1,2).同理,点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.……,∴点C n 的纵坐标为2n-1,∴点C 2020的纵坐标为22019.故答案为:22019.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律:点C n 的纵坐标为2n-1是解题的关键.18.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3. 故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.19.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.【分析】由点P 的纵坐标为40代入求得点P 的坐标再利用两图象的交点坐标满足方程组方程组的解就是交点坐标据此求解即可【详解】∵点P 的纵坐标为40∴解得:∴点P 的坐标为()∴方程组即的解为故答案为:【点睛解析:240x y =⎧⎨=⎩【分析】由点P 的纵坐标为40,代入20y x =求得点P 的坐标,再利用两图象的交点坐标满足方程组,方程组的解就是交点坐标,据此求解即可.【详解】∵点P 的纵坐标为40,∴4020x =,解得:2x =,∴点P 的坐标为(2,40),∴方程组2040y x y ax =⎧⎨=-⎩即20040x y ax y -=⎧⎨-=⎩的解为, 故答案为:240x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解,利用了数形结合思想.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?解析:(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本【分析】(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 22.我市全民健身中心面向学生推出假期游泳优惠活动,活动方案如下.方案一:购买一张学生卡,每次游泳费用按六折优惠;方案二:不购买学生卡,每次游泳费用按八折优惠.设某学生假期游泳x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求y 1关于x 的函数关系式,并直接写出单独购买一张学生卡的费用和购买学生卡后每次游泳的费用;(2)求打折前的每次游泳费用和k 2的值;(3)八年级学生小明计划假期前往全民健身中心游泳8次,应选择哪种方案所需费用更少?说明理由.解析:(1)1530y x =+,单独购买一张学生卡的费用为30元,购买学生卡后每次游泳的费用为15元;(2)打折前的每次健身费用为25元,k 2=20;(3)选择方案一所需费用更少,理由见解析【分析】(1)把点(0,30),(10,180)代入11y k x b =+,得到关于1k 和b 的二元一次方程组,求解即可,再利用1k 的含义可得答案;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出2k 的值;(3)将x=8分别代入12,y y 关于x 的函数解析式,比较即可.【详解】解:(1)∵11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩, 解得:11530k b =⎧⎨=⎩, 11530,y x ∴=+由115k =可得:购买一张学生卡后每次健身费用为15元,b =30可得:购买一张学生卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则2250.820k =⨯=;220y x ∴=.(3)选择方案一所需费用更少.理由如下:由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y =⨯+=(元),选择方案二所需费用:2208160y =⨯=(元),∵150<160,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出12,y y 关于x 的函数解析式.23.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式;(2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.解析:(1)1364y x =-+,21y 12x =+;(2)15;(3)存在,理由见解析. 【分析】(1)直接把点A (0,6)代入l 1解析式中,求出m 的值;把点B (-2,0)代入直线l 2,求出k 的值即可;(2)首先求出点C 的坐标,然后求出点D 坐标,进而根据S △ABD =S △ACB +S △ACB 求出答案; (3)分点P 在点B 的左边和右边两种情况进行讨论,利用三角形面积公式求出点P 的坐标.【详解】解:(1)∵直线113:4l y x m =-+与y 轴交于A (0,6), ∴m =6,∴1364y x =-+, ∵22:1l y kx =+分别与x 轴交于点B (−2,0),∴−2k +1=0,∴k =12,∴21y 12x =+; (2)令21y 12x =+中x =0,求出y =1, ∴点C 坐标为(0,1), 联立364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ , 解得x =4,y =3∴点D 的坐标为(4,3), ∴11(61)2522ACB S AC BO =⨯=⨯-⨯=△ 154102ACD S =⨯⨯=△ ∴51015ABD ACD ACD S S S =+=+=△△△;(3)设点P 坐标为(m ,0),当点P 在B 点的右侧时,BP =m +2,114(2)615223ABP S BP AO m =⨯=⨯+⨯=⨯△, 解得m =143, 则点P 坐标为(143,0), 当点P 在B 点的左侧时,BP =−2−m , 114(2)615223ABP S BP AO m =⨯=⨯--⨯=⨯△, 解得m =−263, 则点P 坐标为(−263,0), 综上点P 的坐标为(143,0)或(−263,0). 【点睛】本题考查了一次函数综合题的知识,本题涉及到求一次函数解析式、两直线交点问题,三角形面积等知识,解本题(2)的关键是求出D 点的坐标,解答(3)的关键是进行分类讨论.24.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义;(2)求1y 与x 的函数关系式;(3)求小明到达A 地所需的时间.解析:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键.25.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.解析:(1)12k =,3b =;(2)点P 的坐标为()2,2-,()10,2--. 【分析】 (1)求出F 的坐标,将E ,F 代入解析式求解即可;(2)确定直线关系式,根据POE △的面积为6,得到点P 的纵坐标,代入关系式即可求解;【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =, (2)∵12k =, ∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.【点睛】本题主要考查了一次函数图像上点的坐标特征,准确分析计算是解题的关键.26.综合与探究如图1,一次函数162y x =-+的图象交x 轴、y 轴于点A ,B ,正比例函数12y x =的图象与直线AB 交于点(),3C m .(1)求m 的值并直接写出线段OC 的长;(2)如图2,点D 在线段OC 上,且与O ,C 不重合,过点D 作DE x ⊥轴于点E ,交线段CB 于点F .请从A ,B 两题中任选一题作答.我选择题____题.A .若点D 的横坐标为4,解答下列问题:①求线段DF 的长;②点P 是x 轴上的一点,若PDF 的面积为CDF 面积的2倍,直接写出点P 的坐标; B .设点D 的横坐标为a ,解答下列问题: ①求线段DF 的长,用含a 的代数式表示;②连接CE ,当线段CD 把CEF △的面积分成1:2的两部分时,直接写出a 的值. 解析:(1)6m =,35OC =2)A 或B ;A①2DF =;②()0,0P 或()8,0;B①6FD a =-+,②3a =或245【分析】 (1)将(),3m 代入12y x =求解即可,根据勾股定理即可得出OC ; (2)若选择A 题:①先求出D 和F 的坐标,然后即可求出DF ; ②先求出CDF 的面积,然后可求出PDF S △,可求出EP 即可得出答案; 若选择B 题:①过程如下:先求出D 和F 的坐标,即可求出FD ;②先求出D ,F 的坐标,然后得出FD ,DE ,分当12CDF CDE S S =△△时和当21CDF CDE S S =△△时两种情况求解即可.【详解】(1)将(),3m 代入12y x =得132m =,解得6m =,OC ==(2)若选A 题:①过程如下:将4x =代入162y x =-+得1462y =-⨯+=4, ∴()4,4F ;将4x =代入12y x =得142y =⨯=2, ∴()4,2D ,∴422DF =-=.②过程如下:易得CDF 的面积1S 2222CDF =⨯⨯=△, ∴224PDF S =⨯=△, 又∵12PDF S DF EP =⨯⨯△,易得4EP =, ∵P 点是x 轴上动点,E 的坐标为(4,0) ∴P 点坐标()0,0或()8,0;若选B 题:①过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭;将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. 116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. ②过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭; 将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. D 点在C 点左侧,116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. 12D E DE y y a =-=, 当12CDF CDE S S =△△时,12DF DE =,∴61 122aa-+=,解得245a=,当21CDFCDESS=△△时,21DFDE=,∴62 112aa-+=,解得3a=.【点睛】本题考查了一次函数的综合,充分理解题意是解题关键.27.某商店需要购进甲、乙两种商品共200件,其进价和售价如表:件?(2)若商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元,请问有几种购货方案?并求出其中获利最大的购货方案.解析:(1)甲种商品购进80件,乙种商品购进120件;(2)共有4种购货方案,甲种商品购进81件、乙种商品购进119件时,获利最大【分析】(1)设甲种商品购进x件,乙种商品购进y件,根据该商品购进两种商品共200件且销售完这批商品后能获利1680元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲种商品购进m件,则乙种商品购进(200﹣m)件,根据“该商店计划投入资金小于5320元,且销售完这批商品后获利大于1660元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为非负整数即可得出购货方案的数量,设销售完这批商品后获利w元,根据总利润=每件的利润×销售数量(购进数量),即可得出w 关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设甲种商品购进x件,乙种商品购进y件,依题意得:200(2014)(4535)1680 x yx y+=⎧⎨-+-=⎩,解得:80120x y =⎧⎨=⎩. 答:甲种商品购进80件,乙种商品购进120件.(2)设甲种商品购进m 件,则乙种商品购进(200)m -件,依题意得:1435(200)5320(2014)(4535)(200)1660m m m m +-<⎧⎨-+-->⎩, 解得:8085m <<,又m 为非负整数,m ∴可以为81,82,83,84,∴该商店共有4种购货方案.设销售完这批商品后获利w 元,则(2014)(4535)(200)42000w m m m =-+--=-+, 40-<,w ∴随m 的增大而减小,∴当81m =时,w 取得最大值,即甲种商品购进81件、乙种商品购进119件时,该商店销售完这批商品后获利最大.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.28.如图直线:x 6=+l y k 与x 轴、y 轴分别交于点B C 、两点,点B 的坐标是()8,0-,点A 的坐标为()6,0-.(1)求k 的值.(2)若点P 是直线l 上的一个动点且在第二象限,当PAC ∆的面积为3时,求出此时点P 的坐标.(3)在x 轴上是否存在点M ,使得BCM ∆为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.解析:(1)34k =;(2)点P 的坐标为(-4,3);(3)点M 的坐标为(-18,0),7(,0)4-,(2,0)或(8,0). 【分析】(1)由点B 的坐标,利用一次函数图象上点的坐标特征可求出k 值;。
一、选择题1.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .B解析:B【分析】根据一次函数y kx b =+图像在坐标平面的位置,可先确定,k b 的取值范围,在根据,k b 的取值范围确定一次函数y bx k =+图像在坐标平面的位置,即可求解.【详解】根据一次函数y kx b =+经过一、二、四象限,则函数值y 随x 的增大而减小,可得0k <;图像与y 轴的正半轴相交则0b >,因而一次函数y bx k =+的一次项系数0b >,y 随x 的增大而增大,经过一三象限,常数0k <,则函数与y 轴的负半轴,因而一定经过一、三、四象限,故选:B .【点睛】本题考查了一次函数的图像与系数的关系,解题关键是根据已知函数图像的位置确定,k b 的取值范围.2.已知点()1,4P 在直线2y kx k =-上,则k 的值为( )A .43B .43-C .4D .4-D解析:D【分析】根据一次函数图象上的点的坐标特征,将P (1,4)代入反比例函数的解析式2y kx k =-,然后解关于k 的方程即可.【详解】解:∵点P (1,4)在反比例函数2y kx k =-的图象上,∴4=k-2k ,解得,k=-4.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键. 3.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和3A解析:A【分析】 根据题意可得OC 的解析式为y=-x ,再由各选项的数字得到点P 的坐标,代入解析式即可得出结论.【详解】解:由作图可知,OC 为第四象限角的平分线,故可得直线OC 的解析式为y=-x ,A 、当x=2,y=-1时,P (2,-2),代入y=-x ,可知点P 在射线OC 上,故A 符合题意;B 、当x=2,y=-2时,P (2,-3),代入y=-x ,可知点P 不在射线OC 上,故B 不符合题意;C 、当x=2,y=2时,P (2,1),代入y=-x ,可知点P 不在射线OC 上,故C 不符合题意; D/当x=2,y=3时,P (2,2),代入y=-x ,可知点P 不在射线OC 上,故D 不符合题意; 故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确的理解题意是解题的关键.4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得: 227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫-⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34D .611-B 解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx中,得k=6(8)-=34-. 【详解】 ∵点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6,∴点A '的坐标为(-8,6),∵点A '落在直线y kx =,∴6= -8k ,解得k=34-, 故选:B. .【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键. 6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限D 解析:D【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可.【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意.故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键. 8.函数2y x=+()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x x -≥⎧⎪⎨-≠⎪⎩,解得:0x <, ∴20x >,10x >-, ∴210y x x=+>-, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b >A解析:A【分析】 根据题意和题目中函数图象,可以延长,得到该函数图象经过的象限,从而可以得到k 、b 的正负情况,本题得以解决.【详解】解:由图象可得,该函数经过第一、三、四象限,0k ∴>,0b <,故选:A .【点睛】本题考查了一次函数的应用,一次函数的图象与系数的关系,解答本题的关键是明确题意,利用数形结合思想解答.10.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( )A .4B .1C .2D .-5C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】 11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.二、填空题11.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断ab 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断cd 的正负即可得出结论;③以解析:②④⑤【分析】仔细观察图象:①根据一次函数y =ax +b 图象从左向右变化趋势及与y 轴交点即可判断a 、b 的正负;②根据一次函数y =cx +d 图象从左向右变化趋势及与y 轴交点可判断c 、d 的正负,即可得出结论;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④由两个一次函数图象的交点坐标的横坐标为1可得出结论;⑤由一次函数y =cx +d 图象与x 轴的交点坐标为(d c -,0),可得d c->-1,解此不等式即可作出判断. 【详解】解:①由图象可得:一次函数y =ax +b 图象经过一、二、四象限,∴a <0,b >0,故①错误;②由图象可得:一次函数y =cx +d 图象经过一、二、三象限,∴c >0,d >0,∴ac <0,故②正确;③由图象可得:当x >1时,一次函数y =ax +b 图象在y =cx +d 的图象下方, ∴ax +b <cx +d ,故③错误;④∵一次函数y=ax+b与y=cx+d的图象的交点P的横坐标为1,∴a+b=c+d,故④正确;⑤∵一次函数y=cx+d图象与x轴的交点坐标为(dc-,0),且dc->-1,c>0,∴c>d.故⑤正确.故答案为:②④⑤.【点睛】本题考查了一次函数的图象与性质、一次函数与一元一次不等式,掌握一次函数的图象与性质并利用数形结合的思想是解题的关键.12.某生物小组观察一植物生长,得到植物高度y(位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴)请你算一下,该植物的最大高度是________厘米.16【分析】根据平行线间的距离相等可知50天后植物的高度不变也就是停止长高设直线AC的解析式为y=kx+b(k≠0)然后利用待定系数法求出直线AC的解析式再把x=50代入进行计算即可得解【详解】设直解析:16【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高,设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC的解析式,再把x=50代入进行计算即可得解.【详解】设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴63012 bk b=⎧⎨+=⎩,解得156kb⎧=⎪⎨⎪=⎩.所以,直线AC的解析式为165y x=+(0≤x≤50),当x=50时,15065y =⨯+=16cm . 答:该植物最高长16cm .【点睛】 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.10【分析】根据两条直线平行比例系数k 相同求出k=-1把点代入即可求b 【详解】解:因为一次函数的图象与直线平行所以k=-1把点代入得解得b=10故答案为:10【点睛】本题考查了一次函数图象互相平行时解析:10【分析】根据两条直线平行,比例系数k 相同,求出k=-1,把点(8,2)代入即可求b .【详解】解:因为一次函数y kx b =+的图象与直线1y x =-+平行,所以k=-1,把点(8,2)代入y x b =-+,得28b =-+,解得,b=10,故答案为:10.【点睛】本题考查了一次函数图象互相平行时,比例系数的关系和待定系数法求解析式,解题关键是知道两条直线平行时比例系数k 相同.14.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k=-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键.15.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.k=b=或k=b=【分析】分 k >0和 k <0两种情况结合一次函数的增减性可得到关于 k b 的方程组求解即可【详解】解:当 k >0时此函数是增函数∵当﹣1≤x≤4时3≤y≤6∴当x =﹣1时解析:k =35,b =185或k =35-,b=275. 【分析】分 k >0和 k <0两种情况,结合一次函数的增减性,可得到关于 k 、 b 的方程组,求解即可.【详解】解:当 k >0时,此函数是增函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =3;当x =4时,y =6,∴346k b k b -+=⎧⎨+=⎩ ,解得35185k b ⎧=⎪⎪⎨⎪=⎪⎩; 当k <0时,此函数是减函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =6;当x =4时,y =3,∴643k b k b -+=⎧⎨+=⎩,解得35275k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故答案为:k =35,b =185或k =35-,b=275. 【点睛】本题考查一次函数知识,涉及一次函数的增减性以及求一次函数解析式,属于基础题,熟练掌握一次函数的增减性以及解析式的求法是解决此题的关键.16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k的值不变.18.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1_____y2(填“>”、“<”或“=”).>【分析】由k=2>0利用一次函数的性质可得出y随x的增大而增大结合2>﹣1即可得出y1>y2【详解】解:∵k=2>0∴y随x的增大而增大又∵2>﹣1∴y1>y2故答案为:>【点睛】本题考查一次函数解析:>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【详解】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【点睛】本题考查一次函数的增减性,根据比例系数k的正负,判断y随x的变化规律是解题关键.,且y随x的增大而减小,则这个一次函数的解19.已知一个一次函数的图象过点(1,2)析式为__________.(只要写出一个)y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b根据一次函数的性质得k<0取k=-1然后把(-12)代入y=-x+b 可求出b【详解】解:设一次函数的解析式为y=kx+b∵y随x的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b,根据一次函数的性质得k<0,取k=-1,然后把(-1,2)代入y=-x+b可求出b.【详解】解:设一次函数的解析式为y=kx+b,∵y随x的增大而减小,∴k可取-1,把(-1,2)代入y=-x+b得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.20.平面直角坐标系中,点A坐标为(),将点A沿x轴向左平移a个单位后恰好落在正比例函数y=-的图象上,则a的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A坐标为(23)∴将点A沿x轴向左平移a个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a=【分析】根据点的平移规律可得平移后点的坐标是,3),代入y=-计算即可.【详解】解:∵A坐标为3),∴将点A沿x轴向左平移a个单位后得到的点的坐标是-a,3),∵恰好落在正比例函数y=-的图象上,∴)3-=,a解得:.【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.设一次函数y1=kx﹣2k(k是常数,且k≠0).(1)若函数y1的图象经过点(﹣1,5),求函数y1的表达式.(2)已知点P(x1,m)和Q(﹣3,n)在函数y1的图象上,若m>n,求x1的取值范围.(3)若一次函数y2=ax+b(a≠0)的图象与y1的图象始终经过同一定点,探究实数a,b满足的关系式.解析:(1)151033y x =-+;(2)当k <0时,x 1<﹣3;当k >0时,x 1>﹣3;(3)2a +b =0.【分析】(1)将点(﹣1,5)代入y 1=kx ﹣2k ,求得k 值,即可得出函数解析式;(2)根据一次函数的性质,由k 值判断函数自变量的大小,即可得出结论;(3)根据一次函数y 1=kx ﹣2k 得y 1=k (x ﹣2),可得函数图象经过的定点为(2,0),再将定点坐标代入y 2=ax+b 即可求出实数a ,b 满足的关系式.【详解】解:(1)∵函数y 1的图象经过点(﹣1,5),∴5=﹣k ﹣2k ,解得k =53-, 函数y 1的表达式151033y x =-+; (2)当k <0时,若m >n ,则x 1<﹣3;当k >0时,若m >n ,则x 1>﹣3;(3)∵y 1=kx ﹣2k =k (x ﹣2),∴函数y 1的图象经过定点(2,0),当y 2=ax +b 经过(2,0)时,0=2a +b ,即2a +b =0.【点睛】本题考查了一次函数图象与性质,掌握一次函数的图象与性质并能准确理解题意进行解答是解题的关键.22.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?解析:(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中,得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴=32AB ,=2AM =25BM ,又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.23.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y (千米)与甲出发时间x (小时)的函数关系如图所示.(1)求甲、乙两人的速度.(2)求OC 和BD 的函数关系式.(3)求学校和博物馆之间的距离.解析:(1)甲、乙的速度分别是80千米/小时,40千米/小时;(2)OC 的函数关系式为:80y x =,BD 的函数关系式为:4030y x =+;(3)140千米.【分析】(1)根据函数图像,甲0.75小时行驶60千米,计算得出甲的速度;结合题意,乙行驶60千米时,所用总时间为:(0.750.75)+小时,计算得出乙的速度.(2)观察函数图像,根据A 点坐标,计算得出OC 的函数解析式;根据题意得出A 、B 两点的坐标,用待定系数法求出BD 的函数解析式.(3)设甲行驶时间为x 小时,根据甲乙两人行驶路程相等,列出一元一次方程,计算得出行驶时间,根据“路程=速度×时间”计算得出学校和博物馆之间的距离.【详解】解:(1)甲的速度:600.7580÷=(千米/小时),从8:00到8:45经过0.75小时,乙的速度为:60(0.750.75)40÷+=(千米/小时),甲、乙的速度分别是80千米/小时,40千米/小时.(2)∵根据题意得:A 点坐标为(0.75,60),当乙运动了45分钟后即0.75小时,距离学校:400.7530⨯=(千米),∴B 点坐标为(0,30).∵设直线OC 的函数关系式为1y k x =,将点A 代入得:1600.75k =,解得:180k =,∴直线OC 的函数关系式为80y x =,∵设BD 的函数关系式为2y k x b =+,将A 、B 两点的坐标值代入得:220.7560030k b k b +=⎧⎨⨯+=⎩,解得:24030k b =⎧⎨=⎩, ∴直线BD 的函数关系式为:4030y x =+.(3)∵设甲的行驶时间为x 小时,则乙所用的时间为:0.751 1.75x x ++=+(小时),列方程为:()8040 1.75x x =+ 解得:74x =, 7801404⨯=(千米). ∴学校和博物馆之间的距离是140千米.【点睛】本题考查一次函数的实际应用,从函数图像中获取相关信息是解题关键.24.如图,A ,B ,C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通,A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km ,现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货,该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H ,设H 到A 的路程为km x ,这辆货车每天行驶的路程为km y .(1)用含的代数式填空:当025x ≤≤时:货车从H 到A 往返1次的路程为2km x ,①货车从H 到B 往返1次的路程为_______km .②货车从H 到C 往返2次的路程为_______km ,当2535x <≤时,这辆货车每天行驶的路程y =__________.(2)求y 与x 之间的关系式;(3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?最短路程是多少?(直接写出结果,不必写出解答过程)解析:(1)①602x -;②1404x -;100;(2)2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩;(3)建在CD 段,100km .【分析】(1)根据当0≤x ≤25时,结合图象分别得出货车从H 到A ,B ,C 的距离,进而得出y 与x 的函数关系,再利用当25<x ≤35时,分别得出从H 到A ,B ,C 的距离,即可得出y =100;(2)利用(1)的结论可得y 与x 的函数关系;(3)根据一次函数的性质解答即可.【详解】解:(1)①如图1,当025x ≤≤时,货车从H 到A 往返1次路程为22km AH S x =货车从H 到B 往返1次的路程为:()22(255)HD DB S S x +=-+2(30)x =-602x =-;②货车从H 到C 往返2次的路程为:()44(2510)DH CD S S x +=-+4(35)x =-1404x =-,如图2,25DH S x =-,25,10(25)35DH CH S x S x x =-=--=-,∴2535x <≤时,货车从H 到A 往返1次路程为:2x ,货车从H 到B 往返1次的路程为:2(525)240x x +-=-,货车从H 到C 往返2次的路程为:4(35)1404x x -=-,∴这辆货车每天行驶的路程为:22401404100km y x x x =+-+-=.(2)由(1)可得:025x ≤≤时,26021404y x x x =+-+-2004x =-,2535x <≤时,100y =,∴2004(025)100(2535)x x y x -≤≤⎧=⎨<≤⎩. (3)由②得,025x ≤≤时,4200y x =-+,2535x <≤时,100y =,如图所示,由图象可知,配货中心建在CD 段时,这辆货车每天行驶的路程最短为100km .【点睛】此题主要考查了一次函数的应用,利用已知分别表示出从P 到A ,B ,C ,D 距离是解题关键.25.地表以下岩层的温度()y ℃随着所处深度() km x 的变化而变化,在某个地点y 与x 之间满足如下关系: 深度() km x1 2 3 4 温度()y ℃ 55 90 125 160 y x (2)当8x =时,求出相应的y 值.(3)若岩层的温度是510℃,求相应的深度是多少?解析:(1)3520y x =+;(2)300;(3)相应的深度是14km .【分析】(1)根据图表可知,深度每增加1km ,温度增加35℃,据此直接直接写出y 与x 之间的关系式即可;(2)根据(1)所得关系式,令x=8,求得y 的值即可;(3)根据(1)所得关系式,令y=510,求得x 的值即可.【详解】(1)由图表可知,深度每增加1km ,温度增加35℃,5535(1)y x ∴=+-553535x =+-3520x =+,即y 与x 之间的关系式为:3520y x =+;(2)由3520y x =+令8x =时,则35820300y =⨯+=;(3)由3520y x =+令510y =时,则3520510x +=,解得14x =故相应的深度是14km .【点睛】本题主要考查一次函数的应用,明确题意、正确列出函数解析式成为解答本题的关键. 26.小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地走去,1y ,2y 分别表示小东、小明离B 地的距离()y km 与所用时间()x h 的关系,如图所示,根据图象提供的信息,回答下列问题:(1)试用文字说明交点P 所表示的实际意义;(2)求1y 与x 的函数关系式;(3)求小明到达A 地所需的时间.解析:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇;(2)1520y x =-+;(3)263h 【分析】(1)根据相遇问题的等量关系结合函数图象的表示的量,可知点P 横纵坐标表示两人相遇时的时间和两人离B 地的距离;(2)代入两个已知点坐标列出方程组,用待定系数法求出解析式即可;(3)根据时间等于路程除以速度,用小明走的路程除以小明走的速度即可得到结果.【详解】解:(1)交点P 表示小东和小明出发2.5小时在距离B 地7.5km 处相遇.(2)设1y 与x 的函数关系式为1y kx b =+(k ,b 为常数,且0k ≠),因为函数图象经过点()020,,()40,,所以20b =,①40k b +=,②解得5k =- 所以1y 与x 的函数关系式为1520y x =-+.(3)小明的速度为()7.5 2.53/km h ÷=,小明到达A 地所需的时间为()220363h ÷=. 【点睛】本题考查一次函数的应用、待定系数法求解析式和读懂函数图象的能力,熟练运用相遇问题的数量关系解决相关问题是解题的关键.27.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.解析:(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键. 28.已知一次函数3y kx =-的图象经过点()2,1A .。
八年级下册数学一次函数讲解
一次函数是指形如y=kx+b(k和b为常数,k≠0)的函数。
在八年级下册数学中,我们主要学习了以下几个方面的内容:
1、一次函数的定义和图像:一次函数是一条直线,它的图像是一条经过原点的直线。
2、一次函数的性质:
a. 斜率:k表示一次函数的斜率,即y随x的变化率。
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
b. 截距:b表示一次函数与y轴的交点,即当x=0时,y的值。
3、一次函数的解析式:给定两个点的坐标(x1, y1)和(x2, y2),可以通过以下公式求出一次函数的解析式:y = kx + b
4、一次函数的应用:例如,计算两点之间的距离、判断两条直线是否平行等。
以下是一些八年级下册数学一次函数的例题及答案解析:
1.已知一次函数y=2x+3,求当x=1时,y的值是多少?
解:将x=1代入一次函数方程,得y=2(1)+3=5。
所以
当x=1时,y的值为5。
2.已知一次函数y=-3x+7,求当x=2时,y的值是多少?
解:将x=2代入一次函数方程,得y=-3(2)+7=1。
所以当x=2时,y的值为1。
3.已知一次函数y=(4/3)x-5,求当x=3时,y的值是多少?
解:将x=3代入一次函数方程,得y=(4/3)(3)-5=-1。
所以当x=3时,y的值为-1。