(完整版)算法的概念及误差分析方法(精)
- 格式:doc
- 大小:45.01 KB
- 文档页数:7
误差知识与算法知识点总结1. 误差的概念误差是指测量结果与真实值之间的差异。
在实际应用中,无法完全获得真实值,因此测量结果总会有一定的偏差,这种偏差就是误差。
误差可以分为系统误差和随机误差两种类型。
2. 系统误差系统误差是指测量结果偏离真实值的固有偏差,常常是由于仪器、环境或测量方法等因素引起的。
系统误差的存在会导致测量结果产生偏差,降低测量结果的准确性。
3. 随机误差随机误差是由于实验环境、人为操作等随机因素引起的误差,是无法完全避免的。
随机误差会导致测量结果的离散度增大,降低测量结果的精确性。
4. 误差分析误差分析是对测量结果中的误差进行定量分析的过程,其目的是评估测量结果的准确性和精确性。
误差分析通常包括误差的来源和类型、误差的大小和分布、误差的传递和积累等内容。
5. 误差传递误差传递是指当多个测量结果相互影响时,每个测量结果中的误差会随着计算和运算的进行而传递和积累。
误差传递的过程需要考虑各种因素对误差的影响,以准确评估测量结果的误差范围。
6. 误差控制误差控制是指在测量过程中采取一系列措施来减小误差的产生和传递,以提高测量结果的准确性和精确性。
误差控制的方法包括校准仪器、规范操作、提高测量精度等。
7. 误差分布误差分布是指测量结果中误差的分布情况,可以通过统计学方法进行分析和描述。
误差分布通常服从正态分布或其他概率分布,可以通过统计参数进行描述。
8. 误差评估误差评估是对测量结果中的误差进行评定和验证的过程,以确定测量结果的可靠性和可信度。
误差评估通常包括测量不确定度的计算和报告,以及误差边界的确定和验证。
二、算法知识点总结1. 算法的概念算法是指解决问题或实现功能的一系列有序步骤的描述,是计算机程序的核心。
算法描述了如何通过一定的计算过程来实现特定的功能或者处理特定的数据。
2. 算法的特性算法具有确定性、有限性、输入和输出、易实现等特性。
确定性指算法的每一步都有唯一的后续步骤,有限性指算法必须在有限的步骤内结束,输入和输出指算法需要接受输入数据并产生输出结果,易实现指算法可以通过简单的描述和规范步骤来实现。
算法的知识点总结算法的知识点非常广泛,涉及到数学、计算机科学、逻辑学等多个领域。
本文将从算法的基本概念、常用算法思想、数据结构和算法的关系以及一些常用的算法进行总结介绍。
一、算法的基本概念1. 算法的定义算法是一种解决问题的方法或技巧,它是一个有序的、确定性的操作序列,用来解决特定的问题或完成特定的任务。
算法可以描述为一系列的步骤,每个步骤都能够被清晰地描述,并且能够按照一定的顺序执行。
2. 算法的特性(1)输入:算法需要接受一些输入数据来解决问题。
(2)输出:算法需要产生一个输出来解决问题。
(3)确定性:算法的每一步骤都必须是明确的,没有二义性。
(4)有限性:算法必须在有限步骤内结束。
3. 算法的评价标准(1)时间复杂度:衡量算法执行所需的时间的指标,通常使用大O表示法来描述。
(2)空间复杂度:衡量算法所需的空间资源的指标,通常使用占用空间的增长率来描述。
二、常用算法思想1. 贪心算法贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望通过局部最优解最终达到全局最优解。
贪心算法通常适用于解决最优化问题,但不能保证一定能得到全局最优解。
例如,找零钱时,可以采用贪心算法,选择面值最大的硬币,直到找零完成。
2. 动态规划动态规划是一种具有重叠子问题和最优子结构性质的解决问题的方法。
动态规划通常适用于不同阶段的决策问题,它将问题分解为若干个相互重叠的子问题,然后按照一定的顺序求解子问题从而得到原问题的最优解。
例如,最长递增子序列、背包问题等都可以使用动态规划来解决。
3. 分治算法分治算法是一种将问题分解成一些小的子问题,然后递归地解决这些子问题,最后将这些子问题的解合并起来得到原问题的解。
分治算法通常包括三个步骤:分解,解决子问题,合并子问题的解。
例如,归并排序、快速排序等都是基于分治思想的算法。
4. 回溯算法回溯算法是一种在解决约束满足问题时的穷举搜索技术,它通过递归地搜索所有可能的解来找到满足约束的解。
数学必修三算法的概念的知识点数学必修三算法的概念的知识点1.1.1 算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的。
输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。
处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时明“否”或“N”。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
算法概述知识点总结一、算法的概念1. 算法是什么算法(Algorithm)是指用于解决特定问题的一系列具体操作步骤。
它是一种解决问题的方法论,能够将问题的输入转化为输出。
2. 算法的特点(1)确定性:算法在相同的输入条件下,能够得到相同的输出结果。
(2)可行性:算法的每一步操作可以实际执行,不会陷入无穷循环。
(3)有穷性:算法必须在有限的步骤内结束。
(4)输入输出:算法必须具有输入和输出。
3. 算法的重要性算法在计算机科学领域有着重要的地位,它是计算机程序的核心。
一个好的算法能够提高程序的执行效率和准确性,从而提高计算机系统的整体性能。
二、算法的设计方法1. 分治法分治法(Divide and Conquer)是一种算法设计方法,它将问题分解为更小的子问题,通过递归地解决子问题,最终得到原问题的解。
分治法常用于解决大规模问题,例如快速排序、归并排序、最近点对等。
2. 贪心法贪心法(Greedy Algorithm)是一种构造性的算法设计方法,它每次以最优的策略选择当前的最佳解,从而得到问题的整体最优解。
贪心法常用于最优化问题,例如最小生成树、哈夫曼编码等。
3. 动态规划动态规划(Dynamic Programming)是一种通过将问题分解为更小的子问题来解决复杂问题的算法设计方法。
动态规划通过存储子问题的解以减少重复计算,能够有效解决一些复杂的优化问题,例如背包问题、最长公共子序列等。
4. 回溯法回溯法(Backtracking)是一种通过不断试探和放弃来寻找问题解空间的算法设计方法。
回溯法常用于解决一些搜索和排列组合问题,例如全排列、N皇后问题等。
5. 分析设计算法的分析设计是指分析问题的特性和要求,设计出合适的算法来解决问题。
它是算法设计的关键环节,需要充分考虑问题的复杂度、特性和约束条件,从而选择合适的算法设计方法。
三、算法的复杂度分析1. 时间复杂度时间复杂度是算法执行所需时间的度量,它用大O表示法(O)来描述算法执行时间与输入规模之间的关系。
3.2算法3.2.1算法的概念3.2.1.1 什么叫算法算法(Algorithm)是解题的步骤,可以把算法定义成解一确定类问题的任意一种特殊的方法。
在计算机科学中,算法要用计算机算法语言描述,算法代表用计算机解一类问题的精确、有效的方法。
算法+数据结构=程序,求解一个给定的可计算或可解的问题,不同的人可以编写出不同的程序,来解决同一个问题,这里存在两个问题:一是与计算方法密切相关的算法问题;二是程序设计的技术问题。
算法和程序之间存在密切的关系。
算法是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算,是对解题方案的准确与完整的描述。
制定一个算法,一般要经过设计、确认、分析、编码、测试、调试、计时等阶段。
对算法的学习包括五个方面的内容:①设计算法。
算法设计工作是不可能完全自动化的,应学习了解已经被实践证明是有用的一些基本的算法设计方法,这些基本的设计方法不仅适用于计算机科学,而且适用于电气工程、运筹学等领域;②表示算法。
描述算法的方法有多种形式,例如自然语言和算法语言,各自有适用的环境和特点;③确认算法。
算法确认的目的是使人们确信这一算法能够正确无误地工作,即该算法具有可计算性。
正确的算法用计算机算法语言描述,构成计算机程序,计算机程序在计算机上运行,得到算法运算的结果;④分析算法。
算法分析是对一个算法需要多少计算时间和存储空间作定量的分析。
分析算法可以预测这一算法适合在什么样的环境中有效地运行,对解决同一问题的不同算法的有效性作出比较;⑤验证算法。
用计算机语言描述的算法是否可计算、有效合理,须对程序进行测试,测试程序的工作由调试和作时空分布图组成。
3.2.1.2算法的特性算法的特性包括:①确定性。
算法的每一种运算必须有确定的意义,该种运算应执行何种动作应无二义性,目的明确;②能行性。
要求算法中有待实现的运算都是基本的,每种运算至少在原理上能由人用纸和笔在有限的时间内完成;③输入。
一个算法有0个或多个输入,在算法运算开始之前给出算法所需数据的初值,这些输入取自特定的对象集合;④输出。
作为算法运算的结果,一个算法产生一个或多个输出,输出是同输入有某种特定关系的量;⑤有穷性。
一个算法总是在执行了有穷步的运算后终止,即该算法是可达的。
满足前四个特性的一组规则不能称为算法,只能称为计算过程,操作系统是计算过程的一个例子,操作系统用来管理计算机资源,控制作业的运行,没有作业运行时,计算过程并不停止,而是处于等待状态。
3.2.2算法的描述算法的描述方法可以归纳为以下几种:(1 自然语言;(2 图形,如N S图、流程图,图的描述与算法语言的描述对应;(3 算法语言,即计算机语言、程序设计语言、伪代码;(4 形式语言,用数学的方法,可以避免自然语言的二义性。
用各种算法描述方法所描述的同一算法,该算法的功用是一样的,允许在算法的描述和实现方法上有所不同。
人们的生产活动和日常生活离不开算法,都在自觉不自觉地使用算法,例如人们到商店购买物品,会首先确定购买哪些物品,准备好所需的钱,然后确定到哪些商场选购、怎样去商场、行走的路线,若物品的质量好如何处理,对物品不满意又怎样处理,购买物品后做什么等。
以上购物的算法是用自然语言描述的,也可以用其他描述方法描述该算法。
图3.3用流程图描述算法的例子,其函数为:图3.3是用流程图图形描述算法3.2.3算法的复杂性算法的复杂性是算法效率的度量,在评价算法性能时,复杂性是一个重要的依据。
算法的复杂性的程度与运行该算法所需要的计算机资源的多少有关,所需要的资源越多,表明该算法的复杂性越高;所需要的资源越少,表明该算法的复杂性越低。
计算机的资源,最重要的是运算所需的时间和存储程序和数据所需的空间资源,算法的复杂性有时间复杂性和空间复杂性之分。
算法在计算机上执行运算,需要一定的存储空间存放描述算法的程序和算法所需的数据,计算机完成运算任务需要一定的时间。
根据不同的算法写出的程序放在计算机上运算时,所需要的时间和空间是不同的,算法的复杂性是对算法运算所需时间和空间的一种度量。
不同的计算机其运算速度相差很大,在衡量一个算法的复杂性要注意到这一点。
对于任意给定的问题,设计出复杂性尽可能低的算法是在设计算法时考虑的一个重要目标。
另外,当给定的问题已有多种算法时,选择其中复杂性最低者,是在选用算法时应遵循的一个重要准则。
因此,算法的复杂性分析对算法的设计或选用有着重要的指导意义和实用价值。
在讨论算法的复杂性时,有两个问题要弄清楚:(1 一个算法的复杂性用怎样的一个量来表达;(2 怎样计算一个给定算法的复杂性。
找到求解一个问题的算法后,接着就是该算法的实现,至于是否可以找到实现的方法,取决于算法的可计算性和计算的复杂性,该问题是否存在求解算法,能否提供算法所需要的时间资源和空间资源。
第二章数据处理与误差分析一切科学实验都要进行测量,总会记录大量的数据。
所有的测量均存在误差,大学物理实验当然也不例外。
误差理论和数据处理是每一个实验都会遇到的问题,两者是不可分割的有机整体,已经成为一门广受科技界重视的科学。
限于篇幅和学时,本章只介绍误差理论与数据处理的初步知识,有的只引用它的结论和计算公式,以满足大学物理实验的基本要求。
§2—1 测量与误差1. 直接测量和间接测量在大学物理实验中,我们不仅要定性地观察和描述物理现象及其变化,还要定量地测量某些物理量的值。
研究物理现象、了解物质的性质及验证物理原理都离不开测量。
所谓测量就是将被测的物理量与同类已知物理量进行比较,用已知量来表示被测量。
这些已知量称作计量单位。
测量时,待测量与已知量比较得到的倍数称为测量值。
例如某一物体的长度是单位米的 1.1196倍,则该物体的测量值为 1.1196米。
在人类历史的不同时期、不同国家乃至不同地区,同一物理量有许多不同的计量单位。
为了便于国际贸易以及科技文化的交流,国际计量大会于1960年确定了国际单位制,其国际代号为SI 。
国际单位制中有七个基本单位,它们分别是长度单位米(m ,质量单位千克(kg ,时间单位秒(s ,电流强度单位安培(A ,热力学温度单位开尔文(K ,物质的量单位摩尔(mol ,发光强度单位坎德拉(cd 。
测量可分为直接测量和间接测量两类。
直接测量是指某些物理量可以通过相应的测量仪器直接得到被测量的量值的方法。
如用米尺量长度,用天平和砝码测物体的质量,用电桥或欧姆表测导体的电阻等。
间接测量是指利用直接测得量与被测量之间已知的函数关系,经过计算而得到被测量值的方法。
例如,用单摆测量重力加速度g 时,先直接测出摆长L 和摆动周期T ,再依据公式g =4π2L/T 2进行计算,求出g 值。
再如要测量导体的电阻R ,可用电压表测量导体两端的电压U ,用电流表测量通过该导体的电流I ,然后用公式R = U/I 计算出导体的电阻。
2. 测量误差及其表示方法任何测量过程中必然伴随有误差产生,这是因为任何测量仪器、测量方法都不可能绝对正确,测量环境不可能绝对稳定,测量者的观察能力和分辨能力也不可能绝对精细和严密。
因此,分析测量中可能产生的各种误差,尽可能地消除其影响,并对测量结果中未能消除的误差做出估计,是科学实验中不可缺少的工作。
为此,我们必须了解误差的概念、特性、产生的原因、消除的方法、以及对未能被消除的误差如何做出估计等有关知识。
1 误差的定义大学物理实验 8测量误差就是测量值x与被测量的真值μ之差值,若用δ表示,则有μδ−=x (2-1-1δ反映了测量值偏离真值的大小,即反映了测量结果的可靠程度。
所谓真值是指该物理量本身客观存在的真实量值,但由于客观实际的局限性,真值一般是不知道的。
通常我们只能测得物理量的近似真值,故对测量误差的量值范围也只能给予估计。
国际上规定用不确定度(Uncertainty)来表征测量误差可能出现的量值范围,它也是对被测量的真值所处的量值范围的评定。
有时为了使用上的需要,在实际测量中,常用被测量的实际值来代替真值。
而实际值是指满足规定精确度的用来代替真值使用的量值(又称约定真值)。
例如,在检定工作中,把高一等级精度的标准所测得的量值称为实际值。
如,用0.5级电流表来测得某电路的电流为2.100A,用0.2级电流表测得为2.102A,则后者视为实际值。
2 误差的表示方法误差δ常称为绝对误差,其大小不同,反映了测量结果的优劣不等,但它只能适用于同一物理量。
例如,20mm厚的平板,用千分尺测得的绝对误差分别为0.005mm和0.003mm,则显然后者优于前者。
但若要比较两个不同的物理量,如20mm和2mm厚的两块平板,用千分尺测得它们的绝对误差都为0.005mm,若用绝对误差来评价,则测量误差相同。
显然,用绝对误差表示没有能反映出它的本质特征。
另外,若要比较两类不同物理量的测量优劣,如某物长20mm,绝对误差为0.05mm,某物质量为17.03g,绝对误差为0.02g,因绝对误差数值与单位都不同而无法比较。
基于上述两种情况,还需引入相对误差的概念,即100%rEδμ=× (2-1-2所以相对误差也称为百分误差。
由上式可见相对误差是不带单位的一个纯数,所以它既可评价量值不同的同类物理量的测量,也可评价不同类物理量的测量,以判断它们之间的优劣。
3. 误差的分类及其处理方法按照误差的特点与性质,误差可分为系统误差、随机误差(也称偶然误差)和粗大误差三类。
1 系统误差在同一条件下(指方法、仪器、人员及环境不变),多次测量同一量值时,绝对值和符号保持不变的误差;或在条件改变时,按一定规律变化的误差,称为系统误差。
系统误差的来源大致有以下几个方面:§2—1 测量与误差9①仪器误差:由于仪器本身的缺陷或未按规定条件使用仪器而造成的误差。
如仪表指针在测量前没有调准到零位而带来的测量误差;米尺本身由于刻度划分得不准,或因环境温度的变化导致米尺本身长度的伸缩带来的测量误差均属于这一类型。
②理论或方法的误差:由于所依据的理论及公式本身的近似性、测量时未能达到公式理想化的条件或实验方法不完善而带来的误差。
如用伏安法测电阻,由于没有考虑电流表或电压表内阻带来的测量误差。
③环境误差:由于外界环境,如温度、湿度、电场、磁场和大气压强等因素的影响而带来的误差。
④个人误差:由于观测者本身的感官,特别是眼睛或其它器官的不完善以及心理因素而导致的习惯性误差。
这种误差,往往是因人而异,如停表计时,有人反应较慢,所以计时总是失之过长。
系统误差可以通过校准仪器、改进实验装置和实验方法,或对测量结果进行理论上的修正来加以消除或尽可能减小。
然而发现和减小实验中的系统误差并非易事,这需要实验者深入了解实验的原理、方法与步骤,熟悉所使用仪器的特点和性能,还要在实验中不断积累理论知识和实践经验,才能找出产生系统误差的原因以及消除、减小系统误差的方法。