第5-6章 谱仪放大器与多道脉冲分析系统
- 格式:ppt
- 大小:2.49 MB
- 文档页数:40
习题解答第一章绪论1、核信息的获取与处理主要包括哪些方面的?①时间测量。
核信息出现的时间间隔是测定核粒子的寿命或飞行速度的基本参数,目前直接测量核信息出现的时间间隔已达到皮秒级。
②核辐射强度测量。
核辐射强度是指单位时间内核信息出现的概率,对于低辐射强度的测量,要求测量仪器具有低的噪声本底,否则核信息将淹没于噪声之中而无法测量。
对于高辐射强度的测量,由于核信息十分密集,如果信号在测量仪器中堆积,有可能使一部分信号丢失而测量不到,因此要求仪器具有良好的抗信号堆积性能。
对于待测核信息的辐射强度变化范围很大的情况(如核试验物理诊断中信号强度变化范围可达105倍),如测量仪器的量程设置太小,高辐射强度的信号可能饱和;反之,如量程设置太大,低辐射强度的信号又测不到,因此对于这种场合的测量则要求测量仪器量程可自动变换。
③能谱测量。
辐射能谱上的特征是核能级跃迁及核同位素差异的重要标志,核能谱也是核辐射的基本测量内容。
精确的能谱测量要求仪器工作稳定、能量分辨力达到几个电子伏特,并具有抑制计数速率引起的峰位和能量分辨力变化等性能。
④位置测量。
基本粒子的径迹及空间位置的精确测定是判别基本粒子的种类及其主要参数的重要手段。
目前空间定位的精度可达到微米级。
⑤波形测量。
核信息波形的变化往往反映了某些核反应过程的变化,因此核信息波形的测量是研究核爆炸反应过程的重要手段,而该波形的测量往往是单次且快速(纳秒至皮秒级)的。
⑥图像测量。
核辐射信息的二维空间图像测量是近年来发展起来的新技术。
辐射图像的测量方法可分为两类:第一种是利用辐射源进行透视以摄取被测物体的图像;第二种是利用被测目标体的自身辐射(如裂变反应产生的辐射)以反映目标体本身的图像。
图像测量利用计算机对摄取的图像信息进行处理与重建,以便更准确地反映实际和提高清晰度。
CT技术就是这种处理方法的代表。
2、抗辐射加固主要涉及哪些方面?抗辐射加固的研究重点最初是寻找能减弱核辐射效应的屏蔽材料,后来在电路上采取某些抗辐射加固措施,然后逐渐将研究重点转向对器件的抗辐射加固。
基于DSP的多道脉冲幅度分析系统硬件设计 Hardware Design of DSP Based Multi-channel Pulse Altitude Analyzer程敬海 应启戛(上海理工大学医疗器械学院,上海 200093)摘 要介绍了一种以数字信号处理器(DSP)为核心的多道脉冲幅度分析器,它能够进行核信号的采集、处理以及传输,然后经过上位机的处理实现对射线能量和强度的分析。
DSP的采用保证了信号处理的实时性。
关键词 DSP MCA A/D转换D/A转换探测器高压Abstract A DSP based multi-channel pulse altitude analyzer is described. It can offer nuclear signal acquisition, process and transmission, then implement ray energy and intensity analysis through the host computer. The use of DSP can ensure its real time signal process.Keywords DSP MCA A/D conversion Detector High voltage0 引言多道脉冲幅度分析系统(MCA)是通用的核能谱数据获取和处理仪器,用途十分广泛。
目前,我国的多道系统主要通过单片机实现对核信号的数据采集、存储、能谱显示或传入上位机作进一步的分析。
因此,基于单片机控制的MCA需要大量的外设及接口电路进行数据的存储和传输,整个系统十分复杂。
现在,随着DSP技术的发展,其高性能的数据处理能力和内部存储器以及各种功能模块,使其在处理此类分析系统时,功能更加强大,而系统的组成却更加简单。
1 系统概述1.1 系统组成系统硬件框图如图1所示。
信号通过DSP的ADC模块转化成数字量,经过串行接口RS -232与计算机进行通信,实现数字的传输和上位机对系统参数的设定。
第七章谱仪放大器和弱电流放大器本章讨论用于射线能量分析的谱仪放大器和用于射线强度分析的弱电流放大器。
在时间分析中通常要使用快放大器——宽带放大器,这类放大器的一些具体电路及分析可参阅资料[1-4];低噪声快放大器则可见本书第五章第三节中关于低噪声电流灵敏前置放大器的讨论。
第一节谱仪放大器7.1.1 概述如第五章图5-1-1所示,测量核辐射用的脉冲放大器常分为前置放大器与主放大器两部分。
用于脉冲幅度分析、亦即射线能量分析的主放大器称为谱仪放大器,其作用是将前置放大器输出信号加以放大和滤波成形。
显然,这种放大器输出信号的幅度与输入信号的幅度应保持正比关系,即放大器的幅度特性具有良好的线性。
鉴予这一特点,这种放大器又称为线性脉冲放大器或线性放大器。
图7-1-1是谱仪放大器的方框图。
图中极性选择开关适应不同极性的输入,例如正脉冲或负脉冲输入时,通过选择开关都可输出正极性脉冲。
微分网络和积分网络构成放大器的滤波成形电路。
微分网络通常是具有极零相消的C-R微分网络;积分网络可以是无源的,也可以是有源的,后者还可能同时兼有放大作用。
因为放大器为一线性系统,所以微分网络以及积分网络的前后位置不改变放大器对信号——————————————[1]Harbort Stelzer,Nucl.Iustr.and Meth.,133,409(1976).[2]M.Moore et al.,Nucl.Iustr.and Meth.,115,181(1974).[3]J.S.Lunsford,Rev.Sci.Instr.,35,1483(1964)[4]C.J.Rush,Rev,Sci.Instr.,35,149(1964)1)谱仪放大器——Spectroscopy amplifier.的响应。
但是在计数率高时,为了防止信号堆积的电压过高而使放大器超出其线性工作范围,微分网络应靠近放大器的输入端。
从噪声性能考虑,则微分网络宜靠近输出端,因为这样可以衰减它前面所有电路在输出端产生的低频噪声。
第五章X射线衍射实验⽅法第五章 X射线衍射实验⽅法常⽤的实验⽅法1.按成相原理分:单晶劳埃法、多晶粉末法、周转晶体法2.按记录⽅式分:照相法:⽤照相底⽚记录衍射花样衍射仪法:⽤各种辐射探测器和电⼦仪表记录。
、第⼀节粉末照相法1.粉末照相法是⽤单⾊X射线照射转动(或固定)多晶体试样,并⽤照相底⽚记录衍射花样的⼀种实验⽅法。
试样可为块、板、丝等形状,但最常⽤粉末,故称粉末法。
2.粉末法成相原理:粉末试样是由数⽬极多的⼩晶粒组成,且晶粒取向完全⽆规则,各晶粒中d值相同的晶⾯取向随机分布于空间任意⽅向,这些晶⾯对应的倒易⽮量也分布于整个倒易空间的各个⽅向,它们的倒易阵点则布满在以倒易⽮量的长度为半径的倒易球⾯上.由于等同晶⾯族{HKL}的⾯间距相等,所以,等同晶⾯族的倒易阵点都分布在同⼀个倒易球⾯上,各等同晶⾯族的倒易阵点分别分布图5-1 粉末法成相原理图在以倒易点阵原点为中⼼的同⼼倒易球⾯上.在满⾜衍射条件时,根据厄⽡尔德原理,反射球与倒易球相交,其交线为⼀毓垂直于⼊射线的圆,从反射球中⼼向这些圆周连线级成数个以⼊射线为公共轴的共顶圆锥,圆锥的母线就是衍射线的⽅向,锥顶⾓等于4θ.这样的圆锥称为衍射圆锥.1.1 德拜照相法(1)德拜照相法(2)圆筒底⽚摄照⽰意图1.2 聚焦照相法o是利⽤发散度较⼤的⼊射线,照射到试样的较⼤区域,由这个区域发射的衍射线⼜能重新聚焦,这种衍射⽅法称为聚焦法。
聚焦相机的基本特征是狭缝光阑、试样和条状底⽚三者位于同⼀个聚焦圆上。
它所依据的⼏何原理是同⼀圆周上的同弧圆周⾓相等,并等于同弧圆⼼⾓的⼀半。
按照这样的⼏何原理,让狭缝光阑、试样和条状底⽚三者采取不同的布置,便可设计出各种不同类型的聚焦相机。
塞曼-波林相机的内壁圆周为聚焦圆,狭缝光阑s、试样表⾯AB和条状底⽚MN三者准确地安置在同⼀个聚焦圆上。
狭缝光阑相当X射线的虚光源,实际光源为x射线管的焦点。
图5-2 塞曼-波林相机的衍射⼏何1.3 平⾯底⽚照相法2.利⽤单⾊(标识)X射线、多晶体试样、平⾯底⽚和针孔光阑,故也称之为针孔法。
核电子学复习整理第一章一、名词解释探测效率:探测器探测到的粒子数与此时实际入射到探测器中的粒子总数的比值。
散粒噪声:(在电子器件或半导体探测器中)由于载流子产生和消失的随机涨落形成通过器件的电流的瞬时波动,或输出电压的波动,叫做散粒噪声。
分辨率:识别两个相邻的能量、时间、位置(空间)之间最小差值的能力。
(主要有能量分辨率、时间分辨率、空间分辨率)死时间校正:在监察信号的时间TIp内,如果再有信号输入都要被舍弃,因此监察时间就是堆积拒绝电路所产生的死时间。
计时电路就不应该把这个时间计入测量时间,而应从总的测量时间中扣除这个死时间得到活时间。
由测到的总计数除以活时间就是信号计数率。
这种办法称为死时间校正。
二、填空题1.核电子学是核科学与电子学相结合的产物;2.探测器按介质类型及作用机制主要分为:气体探测器、闪烁体探测器、半导体探测器;3.核电子学中主要的噪声指三类:散粒噪声、热噪声、低频噪声;4.核辐射探测器的输出信号特点是:随机分布的电荷或电流脉冲。
(时间特性、幅度上是非周期非等值的);5.功率谱密度为常数即S(W)=a的噪声为白噪声。
三、简答题1.简述核电子学的信号特点。
答:1.随机性;2.信号弱,跨度大;3.速度快。
2.简述白噪声与干扰以及两者的区别。
答:干扰:主要是指空间电磁波感应,工频交流电网的干扰,以及电源纹波干扰等外界因素。
(可在电路和工艺上予以减小或消除)噪声:是由所采用的元器件本身产生的。
(可以设法减小但无法消除)白噪声定义为功率谱密度为常数的噪声。
3.降低前置放大器噪声的措施有哪些?答:1.输入级采用低频噪声器件;2.低温运行;3.减少冷电容Cs;4.反馈电阻Rf和探测器负载电阻RD选用低噪声电阻,阻值一般在109欧~1020欧左右。
除此之外,用滤波网络来限制频带宽度,也可进一步抑制噪声。
4.构成核电子学的测量系统的三部分是哪些?答:1.模拟信号获取和处理,2.模数变换,3.数据的获取和处理三个部分5.简述前置放大器的作用。
多道幅度分析器原理在γ能谱测量中,线性脉冲放大器输出的脉冲幅度正比于入射射线的能量。
分析脉冲的幅度就可以了解入射射线的能量,分析脉冲幅度的电路称为脉冲幅度分析器。
其中,只测量一个幅度间隔内脉冲数的脉冲幅度分析器称为单道脉冲幅度分析器;可以同时测量多个幅度间隔内脉冲数的脉冲幅度分析器称为多道脉冲幅度分析器。
多道脉冲幅度分析器的原理框图,如图2.3所示。
它的原理是利用A/D转换将被测量的脉冲幅度范围平均分成2n个幅度间隔,从而把模拟脉冲信号转化成与其幅度对应的数字量,称之为“道址”。
在存储器空间里开辟一个数据区,在该数据区中有2n个计数器,每个计数器对应一个道址。
控制器每收到一个道址,控制器便将该道址对应的计数器加1,经过一段时间的累积,得到了输入脉冲幅度的分布数据,即谱线数据。
这里提到的幅度间隔的个数就是多道脉冲幅度分析器的道数,它由n值决定。
根据上述多道脉冲幅度分析器的原理,可以得出多道脉冲幅度分析器要做的具体工作一方面是把前向通道输出的模拟信号进行模一数转换,并将其转换结果进行处理、存储和显示。
一台完整的核地球物理仪器,常可分为两部分:核辐射探测器和嵌入式系统。
多道脉冲幅度分析器是嵌入式系统的核心部分。
多道脉冲幅度分析器一方面采集来自放大器的信号并进行模数转换,同时存储转换结果;另一方面将存储的转换结果进行数据分析,并直接显示谱线,或者通过计算机接口送给计算机进行数据处理和谱线显示。
图2.3 多道脉冲幅度分析器框图多道脉冲幅度分析器的原理结构框图如图2-2所示。
脉冲信号在通过甄别电路和控制电路时,甄别电路给出脉冲的过峰信息,并启动A/D转换。
A/D转换电路对脉冲信号峰值幅度进行模数转换,并将转换结果存储在片上Flash中,由微控制器进行相应的数据处理。
峰值检测电路峰值检测电路根据实际需求可分为两种类型:数字型和模拟型。
数字式峰值检测电路要以高速处理器为核心,结合高速ADC,在采样脉冲的控制下,对信号进行连续测量,得到原始测量数据,再通过一种算法,解算出脉冲峰值信息。