军用车载导航系统国外发展现状
- 格式:docx
- 大小:72.48 KB
- 文档页数:5
智能自动化2019年第2期中国机械MACHINE CHINA0引言导航技术是一门将导航对象从起始点导引运动到目标点的技术,导航主要是通过惯性导航系统来实现。
惯性导航系统(Inertial Navigation System,INS)是通过安装在导航对象上的惯性器件(即陀螺仪和加速度计)来测取导航对象的实时角速度和线加速度信息,从而解算出它当前时刻的速度、当前所处的位置与当前的姿态。
捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)是惯性导航系统中应用非常广泛的一类,这类系统多采用光学陀螺(激光陀螺或光纤陀螺)和加速度计构成惯性测量单元(IMU)。
SINS 具有自主性强、重量轻、携带方便、价格适中、不易损坏等优点,在车辆导航系统中应用越来越广泛。
在军事领域,在当前信息化战争条件下,为了使武器系统在战场上不依赖于外部参考信息,缩短武器系统的发射准备时间,从而使武器系统在战场上占据主动,提高其在战场上的生存能力和战斗力,武器系统的载车通常都装备有自主导航定位系统。
导弹武器系统作为国家所依靠的重要军事力量,更是如此,必须能够实现快速自主定位和发射,从而能够及时发挥其威力。
如何实现导弹武器系统发射车的快速自主导航定位是长时间以来军事领域的一个非常有战略意义的热点问题之一。
1车载导航定位定向系统硬件设计车载武器系统自主导航定位方式有多种,如GPS 全球定位系统(Global Position System)、SINS、由里程计或测速仪实现的航位推算系统(Dead Reckoning System,DR)等。
但是每种方式都有各自的优点和不足,比如GPS 导航定位精度高,但是没有自主性,战时易受控制;我国自主研制的“北斗”卫星导航定位系统,目前还不够完善,另外卫星导航在遇到大型障碍物时会出现信号中断,影响导航精度;SINS 自主性强,但是导航误差随着时间而积累;DR 系统导航精度取决于陀螺仪和测速设备速度测量的精度,并且由于积分的特性,误差随时间不断累积,这主要由于不含DR 绝对位置信息,故需要利用其他方式实时校正DR 定位结果。
四大卫星导航定位系统应用发展现状四大卫星导航定位系统指的是全球定位系统(GPS)、格洛纳斯导航卫星系统(GLONASS)、欧洲伽利略导航系统(Galileo)和中国北斗卫星导航系统(BeiDou)。
这四个系统已经成为现代定位导航领域的重要基础设施,广泛应用于交通运输、航空航天、军事安全、地质勘探等领域。
以下是四大卫星导航定位系统应用发展现状的详细介绍。
首先,全球定位系统(GPS)是最早投入实际应用的卫星导航定位系统,也是最为广泛使用的系统之一、GPS系统的应用领域非常广泛,包括车辆导航、航空导航、海洋导航、农业精准作业、物流管理等。
在汽车导航方面,GPS系统已经成为现代汽车标配的功能之一,帮助司机实现准确导航、避免道路拥堵等。
在航空航天领域,GPS系统被广泛应用于飞行导航、航空交通管制等关键系统中。
此外,GPS系统在灾害救援、军事安全等领域也发挥着重要作用。
其次,格洛纳斯导航卫星系统(GLONASS)是由俄罗斯开发的卫星导航定位系统。
GLONASS系统的应用领域与GPS系统类似,主要包括车辆导航、航空导航、海洋导航、农业精准作业等。
在车辆导航方面,GLONASS 系统在俄罗斯地区的普及程度较高,许多车辆配备了GLONASS导航设备。
在农业领域,GLONASS系统可实现农机作业的精准导航和监控,提高农机作业效率和农田管理水平。
此外,GLONASS系统还在俄罗斯的国防安全等重要领域起到了关键作用。
第三,欧洲伽利略导航系统(Galileo)是由欧洲航天局和欧盟共同建设的卫星导航定位系统。
Galileo系统目前正在逐步建设中,预计于2024年前后完全建成并投入商业应用。
Galileo系统的主要特点是定位精度高、服务质量可靠,并且具备高度的覆盖能力。
Galileo系统的应用领域包括车辆导航、航空导航、海洋导航等。
在车辆导航方面,Galileo系统可以提供更准确的位置信息,帮助司机更精确地进行导航和路径规划。
2024年无线电导航设备市场发展现状1. 引言无线电导航设备是一种使用无线电信号来确定位置和导航的技术设备。
这些设备通过接收和解码来自卫星系统的信号,可以提供准确的导航信息,为用户提供位置、速度和方向等相关数据。
无线电导航设备在各种应用领域都有广泛的应用,包括航空、航海、汽车、军事等。
本文将分析无线电导航设备市场的发展现状,并展望未来的趋势。
2. 市场规模和增长趋势据市场研究公司的数据显示,无线电导航设备市场在过去几年中保持了稳定增长的态势。
全球范围内,无线电导航设备市场的规模已经逐渐扩大,并且未来几年还将继续增长。
主要推动市场增长的因素包括: - 高精度导航需求的增加:随着技术的进步和应用需求的扩展,越来越多的行业对高精度导航设备的需求不断增加。
例如,在航空航天领域,高精度导航设备可以提供更精确的位置信息,改善航行安全性。
- 智能交通的发展:无线电导航设备在汽车领域的应用越来越普及,智能交通系统的发展促使无线电导航设备的市场需求不断增加。
- 应急救援和军事领域的需求:无线电导航设备在应急救援和军事领域的需求也在增加。
这些领域对准确的位置和导航信息要求非常高,无线电导航设备可以满足这些需求。
3. 市场竞争格局无线电导航设备市场的竞争格局相对较为分散,市场上存在许多不同规模和特点的厂商。
主要的竞争者包括: - 老牌导航设备供应商:一些老牌的导航设备供应商,如Garmin、Trimble等,拥有丰富的经验和技术积累,具有一定的市场份额和品牌优势。
- 技术创新型企业:随着技术的进步,一些技术创新型企业正在崭露头角。
它们通过引进新的技术和解决方案,不断推出更具竞争力的产品,挑战传统供应商的地位。
- 本土企业:在一些发展中国家,本土导航设备企业也开始崛起。
这些企业通常具有地理优势和市场了解度,并且以低成本产品在本地市场竞争。
4. 技术发展趋势无线电导航设备技术在不断发展创新,以下是一些主要的技术发展趋势: - 多频段定位技术:多频段定位技术可以提高定位精度,减少信号干扰。
2024年GPS系统市场发展现状前言GPS(全球定位系统)是一种由美国政府发展的全球导航定位系统,已经成为现代社会不可或缺的一部分。
GPS系统的市场发展一直在不断演进,并呈现出一些显著的趋势和现状。
本文将重点介绍GPS系统市场的发展现状,探讨其未来发展方向。
1. GPS系统市场规模及增长率GPS系统市场在过去几年中呈现出强劲的增长态势。
根据市场研究机构的数据,2019年全球GPS系统市场总规模约为XX亿美元,预计到2025年将达到XX亿美元。
市场增长率在过去几年中平均为XX%。
2. 主要应用领域GPS系统在诸多领域具有广泛的应用,其中一些主要领域如下:2.1 汽车导航领域汽车导航一直是GPS系统应用的主要领域之一。
现代汽车普遍配备了GPS导航设备,使驾驶员能够准确地定位和导航。
随着智能车辆的发展,GPS系统在汽车导航领域的需求将继续增长。
2.2 航空航天领域GPS系统在航空航天领域具有重要的作用。
航空公司使用GPS来导航飞机,提高飞行的精确性和安全性。
此外,航空航天领域的研究和开发也需要精确的定位和导航系统。
2.3 物流和运输领域物流和运输领域也是GPS系统的重要应用领域之一。
物流公司利用GPS系统来跟踪货物的位置和运输进度,提高物流的效率和可靠性。
此外,GPS系统还可以帮助车队管理和路线规划。
2.4 个人定位和运动追踪随着智能手机和可穿戴设备的普及,个人定位和运动追踪成为了GPS系统的另一个重要应用领域。
人们可以使用GPS来定位自己的位置并记录行走、跑步等运动数据。
3. GPS技术的进展GPS技术在过去的几十年中得到了显著的进步,主要体现在如下几个方面:3.1 定位精度的提高GPS系统的定位精度逐渐提高,从最初的十几米到现在的几米甚至更低。
这使得GPS系统在更多的领域得到了应用,如精确定位、智能车辆和无人驾驶等。
3.2 多模式导航功能现代GPS系统不仅能够提供基本的定位和导航功能,还可以结合其他传感器和地图数据提供更多的导航功能。
全球卫星导航系统GNSS技术现状与发展趋势全球卫星导航系统(Global Navigation Satellite System,GNSS)是一种由多个卫星组成的定位与导航系统,它能提供24小时全天候的导航、定位和时间服务。
GNSS技术广泛应用于交通、车辆管理、测绘、航空航天等领域,为人类日常生活和经济发展提供了很大的便利。
本文将介绍GNSS技术的现状与发展趋势。
一、 GNSS技术的现状目前主要使用的GNSS系统包括美国的GPS系统、俄罗斯的GLONASS系统、欧盟的伽利略系统以及中国的北斗系统。
这些系统均能够提供高精度的定位、导航和时间服务,但各自的性能略有不同。
GPS系统是最早建立和应用的GNSS系统,全球已有数十年的应用历史,准确性较高,可实现厘米级的位置测量。
在交通、车辆管理、航空等领域得到广泛应用,是全球范围内最受欢迎的GNSS系统之一。
GLONASS系统由俄罗斯建立,系统中的卫星数量较少,但其在北极地区的覆盖能力较强,适用于极地航行和勘探等领域。
伽利略系统是欧盟建立的独立GNSS系统,与GPS系统类似,但其准确度更高,可实现毫米级的精度测量,在测绘等精密领域应用广泛。
中国的北斗系统是近年来快速崛起的GNSS系统之一,其在亚洲地区获得了广泛的应用。
北斗系统在精度、可靠性和成本方面具有很大优势,适用于车辆管理、海洋渔业、港口物流等多个领域。
二、 GNSS技术的发展趋势随着GNSS技术的不断发展,其在精度、覆盖范围等方面得到不断提升,未来仍将有以下几个发展趋势:1. 精度提升:对于需要高精度的应用领域,如航空、海洋工程等,GNSS技术将不断追求更高的精度。
例如,目前正在研究的双星定位技术,能够在超过1000公里的距离上实现毫米级精度的定位测量。
2. 成本降低:随着GNSS技术的普及和应用领域的扩大,GNSS产品的价格将逐渐降低,特别是对于中小型企业和个人用户。
如现在广泛使用的GPS导航仪等产品,价格已经相对较低,未来还将越来越便宜。
依托民用技术发展中国军用汽车的研究作者:刘洪洋来源:《西部论丛》2017年第11期摘要:依托民用技术来发展我国军用汽车能够分担相关研发压力,同时拥有更多的资金提高研究效率和研究质量,本文就此进行了简单的分析。
文章首先介绍了国内外的研究现状,随后文章分析了关键的研究技术,最后文章介绍了智能汽车在军用领域中的研究前景,希望能给相关人士提供一些参考。
关键词:民用技术军用汽车发展前景引言军用汽车可以称作是汽车制造领域中的强者,自身带有一种硬汉形象,因为军用汽车其自身那种粗犷的外表,再加上十分出众的操作性能,使其成为汽车制造行业中一种雄壮而又独特的靓丽风景,本文就此分析了汽车的发展。
一、国内外研究现状(一)国外研究现状欧美等一些发达多家在二十世纪七十年代就开始了汽车在无人驾驶领域的研究,其中主要包括两种研究领域,分别是城市环境、高速道路环境和军事用途等。
在军事领域中,美国在八十年代初开始就对陆地自主车辆ALV进行了大量的资助。
在进入二十一世纪后,为了提高无人驾驶这一领域的研究,美国的国防部相关项目研究局还开展了机器车竞赛,主要是用来鼓励智能车辆制造技术之间的交流。
比如在第二届比赛中胜出的智能汽车,其中拥有六种奔腾处理器的计算机能够对竞赛过程中所有涉及程序进行全面、准确处理,在车辆运行过程中,车上所装备的一个单眼感知系统、一组立体摄像、一种雷达系统以及四种激光传感机器能够对周围环境进行全面系统的感知。
随后在德国的陆地机器人竞赛中,德国参赛汽车途锐能够利用具体影像来自己寻找道路,能够将附近的环境变成一种3D的图象,这款汽车主要是根据测距系统和光学定向等措施通过处理汇聚的信息,来实施导航决策,从而辨明树木和人的位置。
途锐依靠自主操作完成了百分之九十的路程,但是在十字路口等较为重要的位置依然需要进行手动操作。
(二)国内研究现状我国是从八十年代起进行汽车领域中无人驾驶的研究的,尽管和其他发达国家相比,存在一定距离,但是也获得了阶段成果,我国的天津军交学院、同济大学、吉林大学、上海交通、国防科技以及清华大学等都在开展无人驾驶方面的研究工作,其中,中科院的合肥研究院以及北京理工大学的无人驾驶技术在国际上已经处于一种领先水准,并经常以表演者身份参加各种无人驾驶竞赛。
+方志英Satellite& Military卫星军事美军改进军事定位、导航与授时的新举措随着基于卫星导航系统的问世和部署,定位、导航与授时也在发生革命性的变化。
1957年,约翰·霍普金斯大学的科学家们监测了来自苏联第一颗人造卫星的无线电传输信号,确定了一种基于无线电传输对物体进行精确定位的方法。
随后,经过多年的艰苦工作,第一个卫星导航系统“经纬仪”于1959年通过了美国海军的测试,1964年具备了运行能力。
“经纬仪”最后可提供的位置精度为200米、时间精度为50毫秒,这一能力在当时令人惊叹,以致后来连续地供给成千上万的军舰和远洋货轮使用,直到1991年,前后将近使用了30年。
后来,这一技术不断发展成熟,最后发展成为了今天的全球定位系统(GPS),这也是全球迄今为止最为复杂的技术创新之一。
GPS定位精度小于1米、时间精度小于100纳秒,现在不仅成为了消费者的电子产品以及从手机到电网等美国国家关键基础设施中一项无处不在的技术,而且也是全球军事用户和民事用户定位、导航与授时的黄金标准。
如今,GPS已经变得如此普及、如此简便易用,以至于很多人都忘记了支撑它的赋能要素以及它们面临的各种脆弱性,特别是安全性。
本文就美军如何改进军事定位、导航与授时功能而准备采取的新举措做一描述。
一、开发M代码技术目前,美国陆军正在开发M代码(M-code)技术,它将是下一版本军事GPS能力的关键,眼下正在进行技术成熟评估和风险降低的工作。
与当前P代码精度的军事信号相比,M代码的信号可得到极大改进,还可提供附加的信号功率和一种新的信号结构。
根据2011年1月7日生效的美国《公共法》111-383第913条规定,2017财年之后,除非得到国防部长的豁免,否则将不得使用采购资金来购买不具备M代码信号接收能力的GPS接收机。
又根据2013年5月1日生效的参联会主席6130.01E号指示的要求,到第24颗具备M代码能力的GPS卫星具备运行能力时,必须使用具备M代码能力的用户设备。
2023年车载信息服务(telematics)行业市场分析现状车载信息服务(telematics)是通过车载终端设备和无线通信技术将车辆和道路信息进行实时传输和处理的一种服务。
该服务可以为驾驶员提供导航、娱乐、安全和保养等功能,并帮助车主进行车辆监控和管理。
随着车辆技术的不断发展和人们对智能出行的需求增加,车载信息服务市场也呈现出快速发展的趋势。
车载信息服务市场的规模逐年扩大。
根据市场研究公司ABI Research的数据,全球车载信息服务市场在2019年达到了1440亿美元,并预计到2026年将达到3110亿美元。
市场规模的增长主要得益于以下几个因素:首先,智能出行需求的增加。
随着城市化进程的加快和车辆保有量的增加,人们对出行的安全、便利和舒适性的要求越来越高。
车载信息服务通过提供实时导航、交通信息、车况监控等功能,能够帮助驾驶员更加智能地规划路线,避免交通拥堵和事故,并提供个性化的出行体验,因此受到了越来越多人的关注和认可。
其次,车辆安全需求的增加。
近年来,汽车交通事故频发,给人民群众的生命财产安全带来了严重威胁。
车载信息服务通过提供预警、紧急救援和远程控制等功能,能够实时监测车辆和驾驶员的状态,并及时报警和采取措施,增强了车辆和驾驶员的安全性,因此备受车主的青睐。
另外,汽车厂商和互联网公司的积极布局也推动了车载信息服务市场的发展。
越来越多的汽车厂商将车载信息服务作为差异化竞争的一种手段,将其融入到车辆中,提供更加智能和定制化的功能,从而提升产品的竞争力。
同时,互联网公司也纷纷进军车载信息服务市场,通过与汽车厂商合作或自主开发产品,提供类似导航、支付、娱乐等服务,并将其与其它互联网服务相互融合,形成全新的出行生态系统。
然而,车载信息服务市场仍面临一些挑战。
首先,技术标准和互操作性的不一致阻碍了市场的规模化发展。
目前,车载信息服务市场存在多种不同的技术标准和协议,不同车型和系统之间无法互通,制约了服务的普及和用户的体验。
军用车载导航系统发展现状
一、国外发展概况
军用车载定位定向系统是在航空、航海惯导系统的基础上发展起来的,距今己有几十年的发展历史。
20 世纪60 年代末,美国工程兵测绘研究所研制了第一台陆用惯性定位定向系统(Position and Azimuth Determination System,PADS)用于炮兵阵地联测,其定向精度为1 mil(RMS),水平位置精度为20 m(CEP),高程精度为10m(RMS)。
随后,英国Ferranti公司的FILS系列、美国Honeywell公司的GEO-SPIN 系列、法国Sagem 公司的ULISS30、俄罗斯的И21等陆用惯导系统相继问世[19-21]。
这一阶段的车载定位定向系统大多采用平台惯导,通过零速校正技术来抑制导航误差的累积趋势。
20世纪80年代,美国Honeywell公司研制出第一台激光陀螺捷联惯导系统:H-726方位位置系统(Modular Azimuth Position System, MAPS)[22]。
随后,美国、英国、德国、法国、加拿大等国的多家公司研制生产了多种型号的陆用捷联式导航系统,配备在自行榴弹炮、炮兵观察车、测地车、侦察车和机动导弹发射架上。
随着GPS系统的出现,后期的车载定位定向系统都具备SINS/GPS组合导航功能,这种组合形
式具有精度高、可靠性好、成本低、适应性强、快速反应性能好的特点。
但是为了保证武器系统的自主导航能力,许多车载导航系统都可不依赖于GPS独立工作,通过里程仪(Odometer, OD)或测速仪(Velocity-Measuring System, VMS)辅助实现高精度定位定向。
法国Sagem公司的SIGMA 30系列产品采用激光捷联惯导系统,专为炮兵需求设计,满足绝大多数炮兵装备的需求,如榴弹炮发射车、火箭炮发射车和迫击炮发射车等。
在无GPS信息的条件下,SIGMA 30系列产品通过INS/VMS组合导航可以实现如表1-1所列的性能指标。
美国Kearfott公司的KN-4050系列产品采用激光捷联惯导系统,可用于主战坦克、导弹发射车、无人驾驶车辆及雷达和无线电天线稳定。
在无GPS信息的条件下,KN-4050 系列产品可以实现如表1-2所示的性能指标。
美国Northrop Grumman公司的LN-270产品采用光纤捷联惯导系统,可在陆用炮兵车或水中兵器中使用。
在无GPS 信息的条件下,LN-270可通过SINS/OD组合导航实现如表1-3所示技术指标。
英国Selex公司的LINAPS产品采用激光捷联惯导系统,适用于各种陆地火炮发射车,已在英国、加拿大、阿联酋、阿曼、南非、马来西亚等国服役,并成功应用于英国和加拿大军队在海湾地区和阿富汗的军事行动。
当GPS不可信时,通过SINS/OD组合导航实现如表1-4所示的性能指标。
二、国内发展概况
国内对车载导航系统的研制工作始于20世纪80年代。
清华大学、国防科技大学、陕西苍松机械厂、航空618所和
船舶707所等单位先后研制了基于液浮陀螺或挠性陀螺的车载平台式惯导系统[25],其中以DC91-200炮兵测地车[26]上安装的定位定向系统为典型代表。
这类平台式车载导航系统采用零速校正技术保证定位精度,基本达到了美国PADS 系统的性能指标。
但这类平台式导航系统的固有缺点在于:成本高,可靠性低,初始准备时间长,频繁停车零速校正影响了载车的机动性能。
随着捷联惯导技术的发展,平台式车载导航系统正在逐步退出历史舞台。
近年来,随着国产激光陀螺和光纤陀螺的日益成熟,兵器工业导控所、船舶717所、船舶707所、船舶453厂、航天33所、航天15所、航天16所、航天13所、重庆航天新世纪、清华大学、北京理工大学、国防科技大学、西北工业大学等众多科研院所投入到新一代车载定位定向系统的研制工作中。
这类捷联惯导系统在里程计、气压高度计等设备的辅助下实现自主导航,近年来在中低精度的应用场合已有定型产品,但与SIGMA 30这样的成熟系统相比还有一定差距。
2000~2014年间,国产PLZ-45型155毫米自行火炮凭借优异的性能远销科威特、沙特和阿尔及利亚等国家[27]。
PLZ-45是一种具有高度机动性和远程精确打击能力的压制性火炮系统,整体性能与美国M109A6、德国PzH2000和英国AS90相当,但该出口型自行火炮在过去相当长的时间内仍然
依赖SIGMA 30定位定向系统。