分子印迹聚合物简介教学提纲
- 格式:ppt
- 大小:2.19 MB
- 文档页数:27
分子印迹聚合物的制备方法及展望摘要:本文主要介绍了分子印迹聚合物的原理以及分子印迹聚合物的制备技术,并展望了分子印迹聚合物的发展前景。
关键字:分子印迹;分子印迹聚合物;制备技术分子印迹技术(molecular imprinting technique ,MIT) 又称分子烙印,是将高分子科学、材料科学、生物化学、化学工程等学科有机结合在一起,为获得在空间结构和结合位点上与模板分子完全匹配的聚合物(即分子印迹聚合物,molecular imprinting polymer ,MIP) 的一种新型实验制备技术。
1、分子印迹的基本原理由Pauling理论出发,当模板分子与聚合物单体接触时应尽可能的与单体形成多重作用点,如果通过聚合,这种作用会被固定下来,当模板分子被除去后,聚合物中就形成了与模板分子空间匹配的具有多重作用点的空穴,这样的空穴对模板分子具有选择性,这就是分子印迹的原理。
分子的印迹过程可由下列三步所组成:(1)在功能单体[1]和模板分子之间制备出共价的配合物,或形成非共价的加成产物[2]。
(2)对这种单体-模板配合物(或加成物)进行聚合。
(3)将模板分子从聚合物中除去。
分子印迹技术是20 世纪末出现的一种高选择性分离技术,通过印迹、聚合、去除印迹分子三步制备分子印迹聚合物(MIPs)[3],以其特定的分离机理而具有极高的选择性,可以作为高度专一的固相萃取材料。
2、分子印迹聚合物制备研究进展近年来,分子印迹技术受到了人们越来越多的关注,分子印迹聚合物的制备研究获得了很大的发展。
分子印迹聚合物的制备方法大致有:本体聚合、原位聚合、悬浮聚合、乳液聚合、溶胀聚合,表面聚合[4]。
2.1本体聚合[5]在早期大都分都采用本体聚合法制备MIPs,即把印迹分子、功能单体、交联剂和引发剂按一定比例溶于惰性溶剂,密封在一个真空的安培管中,经聚合制得棒状聚合物,经粉碎、过筛、洗脱等得到所需粒状MIPs。
邓茜珊等[6]采用分子印迹方法,以橙皮素为模板分子,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,本体聚合方式制备了橙皮素分子印迹聚合物。
分子印迹聚合物论文:分子印迹聚合物芹菜素固相萃取吸附特性高效液相色谱【中文摘要】分子印迹技术是以目标分子为模板分子,加入交联剂,使得功能单体与模板分子进行聚合反应,反应完成后将模板分子洗脱除去,获得对模板分子具有高度选择性的一种交联高聚物,这种交联高聚物称为分子印迹聚合物(Molecular Imprinting Polymers,MIPs)。
因其卓越的识别性和选择性被广泛应用于环境、药物、化工、食品卫生等众多领域,近年来在天然产物活性成分分离中的应用也越来越受到人们的关注。
1.采用本体聚合法合成芹菜素(Apigenin,API)分子印迹聚合物,优化其制备工艺条件,发现以a-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,四氢呋喃:丙酮(V/V, 8:2)为致孔剂制得的印迹聚合物对底物有很好的选择性,得到最佳的聚合配比为n(API):n(MAA):n(EDMA)=1:8:70,在此基础上研究了模板聚合物的结合动力学、吸附热力学和选择特性,Scatchard方程分析得在研究的浓度范围内形成了二类不同的结合位点,经计算其平衡离解常数分别为6.60×10-5和1.74×10-4mol/L,对模板分子的最大表观结合量分别12.90和28.30umol/g。
吸附动力学方程式可用Lagergren二级速率方程表示,并且吸附速率常数随着温度的升高而增大。
等温吸附规律可用Freundlich方程表示,适当地升高温度有利于吸附,吸附过程为熵驱动的吸热、熵增的自发过程,属物理吸附范畴。
2.西芹和本芹的叶片与叶柄经甲醇回流提取,高效液相色谱(HPLC)分析知西芹叶片、叶柄中芹菜素的含量分别为8.635mg/100g、1.348mg/100g,本芹叶片、叶柄中芹菜素的含量分别为1.734mg/100g、0.567mg/100g。
采用回流、索式、超声三种提取方法对西芹叶片中芹菜素进行提取,比较不同的提取方法对提取物中芹菜素含量的影响,结果发现,经超声提取的西芹叶片中芹菜素含量为9.316mg/100g,提取效率明显高于其它两种方法。
分子印迹聚合物的原理和作用方式MIPs是以某种化合物的分子结构为模板合成的聚合物。
在印迹分子存在的条件下,将带有特殊官能团的单体与大量的基质单体在适当的介质中进行模板聚合反应,两者之间发生相互作用,如共价和分子间作用力。
由于印迹分子的存在,因此在聚合过程中,单体分子本身所带的官能团会根据与印迹分子相互作用的需要, 在分子印迹分子周围按一定的取向和排列形成分子聚合物,形成特定的空间构象,得到高度交联的聚合物。
聚合结束后通过洗脱等方法除去聚合物上结合的印迹分子,聚合物主体上就形成了与印迹分子空间结构匹配的具有多重作用位点的“空穴”结构。
这种具有“记忆”效应的印迹聚合物对印迹分子及其它与印迹分子结构相似的客体分子具有较高的特异性结合能力,类似于酶-底物的“钥匙-锁”相互作用,依赖于印迹聚合物和客体分子大小及形状的匹配。
如图1所示:根据模板分子和功能单体形成复合物时作用力的性质,分子印迹可分为共价型和非共价型两种。
两种印迹类型的印迹过程如图2所示。
共价键法在共价型印迹过程中,印迹分子与官能团单体以共价键形式结合而形成印迹分子的衍生物,该衍生物在交联剂的存在下连接到聚合物的基质上。
在印迹聚合物形成后,再将与印迹分子连接的这些共价键打断,并将印迹分子洗脱出来,从而形成具有吸附活性的印迹聚合物。
在共价键法中,所采用的单体通常为低分子化合物,在选择时应考虑该单体与印迹分子形成的共价键键能要适当,达到在聚合时能牢固结合,在聚合后又能完全脱除的目的;另外还要考虑该单体与客体印迹分子有良好的相互作用。
目前,共价键结合作用包括硼酸酯、西佛碱、缩醛(酮)、酯、螯合键作用等。
非共价键法把适当比例的印迹分子与官能团单体和交联剂混合,通过非共价键结合在一起制成非共价键印迹分子聚合物。
这些非共价键包括离子键、氢键、偶极作用、疏水作用、静电作用以及范德华力等。
由于这种方法与溶剂的极性密切有关,所以印迹高聚物的形成是在有机溶剂中完成的。
分子印迹聚合物的制备及其应用分子印迹聚合物,简称MIP,是一种高分子材料,它的制备方法类似于钥匙和锁的关系。
利用特定的分子作为模板,在聚合物的结构中留下“钥匙孔”,这些孔可以高度选择性地识别和结合相应的分子。
因此,MIP具有广泛的应用领域,包括化学分析、生物医药、环境监测等。
一、分子印迹聚合物的制备MIP的制备通常涉及以下步骤:1. 模板选择。
选择适当的模板分子,考虑分子的大小、结构、稳定性等因素。
常用的模板分子包括小分子、蛋白质、药物、环境污染物等。
2. 功能单体选择。
功能单体是聚合物中可与模板分子相互作用的单体,通常选择与模板分子具有亲和性的单体作为功能单体。
3. 交联剂选择。
交联剂是聚合物化学反应中将各个单体交联成结构稳定的键,单体与交联剂的比例很重要,过多会导致聚合物不稳定,过少则容易失去亲和性。
4. 聚合反应。
在功能单体与交联剂的作用下,聚合物会自然形成具有特定的孔道结构,从而构建出“钥匙孔”,具有选择性识别和结合模板分子的能力。
二、分子印迹聚合物的应用1. 化学分析MIP具有高度选择性,可以识别和结合具有相似结构的分子,因此在化学分析中有广泛的应用,包括药物分析、环境检测等。
例如,MIP可以用于乃米西星的抗体分析,其分析结果与一般的酶标测定法相当,但是其特异性更强,同时不会被其他具有相似结构的分子所干扰。
在环境检测中,MIP可以用于检测废水中的有机污染物。
2. 生物医药MIP还可以作为药物传递系统的载体。
例如,可以将药物分子作为模板,制备出具有选择性识别和释放药物分子的聚合物,从而提高药物的疗效和降低不良反应发生的风险。
此外,MIP还可以用于诊断,可以作为医学影像材料,进行生物分子或细胞标记和成像等。
3. 环境监测MIP具有高灵敏度和选择性,可以用于检测或去除废水中的有机污染物,包括防止水源污染、地下水中有毒物质的检测等。
例如,MIP可以制备出特异性识别苯酚的聚合物,可以用于苯酚的去除和检测;同时可以制备出特性识别多环芳烃类环境污染物的聚合物,从而减轻环境污染对生态的影响。
分子印迹聚合物的基质
分子印迹聚合物是一种特殊的合成材料,具有高度特异性的识别能力。
它的制备过程中主要涉及三个关键组分:模板分子、功能单体和交联剂。
首先,选择一个适当的模板分子作为聚合物制备的目标分子。
这个模板分子可以是任何具有特定生物活性或化学性质的化合物,如有机小分子、药物、激素等。
模板分子的选择要根据实际需要,确保聚合物在后续使用中能够准确识别和捕获目标分子。
然后,选择功能单体。
功能单体是构建聚合物骨架的关键成分,它们与模板分子发生相互作用,从而形成特异性的识别位点。
功能单体通常是含有特定功能官能团的单体,如亲合性基团、离子基团等。
这些特定的官能团与目标分子之间存在相互作用,从而实现分子的选择性捕获和识别。
最后,选择适当的交联剂。
交联剂是用来将功能单体连接起来形成高分子网络结构的成分。
它可以是双官能团化合物,通过与功能单体中的官能团反应,形成交联结构。
通过调节交联剂的使用量和反应条件,可以控制聚合物的孔径大小和孔道结构,进而调节聚合物的吸附和识别性能。
综上所述,分子印迹聚合物的制备过程涉及模板分子、功能单体和交联剂三个关键组分的选择和反应。
通过精确控制这些组分的种类和比例,可以制备出具有高度特异性识别能力的聚合物材料。
这些分子印迹聚合物在化学、生物、环境等领域的分子识别、分离和传感等应用具有广阔的前景。
分子印迹聚合物材料的合成与应用研究分子印迹聚合物材料作为一种重要的分离技术和分析方法,近年来引起了广泛的关注。
它通过特制的模板分子与功能单体的相互作用,形成高选择性和高专一性的分子识别材料,可用于药物分离纯化、环境监测、化学传感和生物医学等领域。
本文将从分子印迹聚合物的合成和应用两方面进行具体介绍。
一、分子印迹聚合物的合成分子印迹聚合物的合成是通过聚合反应将模板分子与功能单体以及交联剂共同聚合形成的。
首先,在反应体系中加入功能单体和模板分子,并通过一定的反应条件(如温度、pH等)促使它们发生相互作用,从而形成具有特定识别功能的复合物。
然后,加入交联剂,通过交联反应使复合物与聚合物链相互连接,完成聚合过程。
最后,通过去除模板分子,得到具有空位结构的分子印迹聚合物。
在分子印迹聚合物的合成中,功能单体的选择是至关重要的。
一方面,功能单体应具有与模板分子相互作用的特异性,以保证分子印迹聚合物对目标分子的高选择性。
另一方面,功能单体应具有良好的可聚合性和稳定性,以确保聚合反应的顺利进行。
目前常用的功能单体包括丙烯酸类、乙烯类、二烯基苯类等。
二、分子印迹聚合物的应用1. 药物分离纯化分子印迹聚合物在药物分离纯化领域具有重要的应用价值。
通过选择适当的功能单体和模板分子,可以制备出对目标药物具有高选择性的分子印迹聚合物,实现对药物的分离纯化。
这对于提高药物的纯度和效率具有重要意义。
2. 环境监测分子印迹聚合物在环境监测领域的应用也引起了广泛关注。
通过选择适当的功能单体和模板分子,可以制备出对特定环境污染物具有高选择性和高灵敏度的分子印迹聚合物,用于环境监测和污染物的检测。
这对于保护环境和评估环境污染程度具有重要意义。
3. 化学传感分子印迹聚合物在化学传感领域的应用也具有潜力。
通过选择适当的功能单体和模板分子,可以制备出对目标分子具有高选择性和高灵敏度的分子印迹聚合物,用于化学传感和分析。
这对于实现化学分析的高灵敏度和高专一性具有重要意义。
,锌离子固相萃取,分子印迹聚合物(MIPs)小说func其他材料,可以用作清理和预浓缩的选择性吸着剂化合物从一个com -丛矩阵[1 - 7], 分子印迹聚合物(MIPs)很容易准备,稳定、廉价和molecu——lar识别的能力。
ion-imprinting过程涉及三个步骤:1络合模板(即。
polymerizable配体、金属离子)2这个复杂的聚合3聚合后删除模板. 因此,MIPs能够认识到模板从其他组件示例. 所需的等级的选择性可以获得使用列挤满了伴侣-里亚尔基于分子印迹聚合物的选择性吸附锌离子是最重要的一个必要的微量元素锌在人类营养。
人体锌的缺乏会导致一些疾病,但是过度摄入锌也导致各种急性和慢性副作用[8]。
据报道引起电解质失衡,锌,恶心、贫血和嗜睡。
所以微量锌的分离和浓缩在复杂矩阵应该考虑, 的净化处理含重金属离子液体需要更多的关注在这项研究中,一个ion-imprinted聚合物用于锌(II)的选择性提取和预浓缩离子合成。
8-Acryloyloxyquinoline(8-AOQ)被选为金属络合tem -板块聚合单体, 目标准备固相的锌(II)离子的高选择性。
锌(II)8-aoq复杂的单体(图1)是合成和聚合与交联剂乙二醇dimethacrylate(EGDMA)获得保利(EGDMA-8-AOQ /锌(II))。
锌(II)离子去除后,微压印的是用于预选由火焰和芹菜中锌浓度的测定原子吸收光谱法(FAAS)。
锌离子分子印迹聚合物固相萃取离子印迹低水平的Cr的分离和测定过程3 +硅胶表面铬离子,一般离子主要是基于一个合适的利用分离/预浓缩材料和技术。
precon -对中过程准确测量-是一个重要的步骤和分析痕量分析物的水平。
分子印迹是一个强大的技术来制备聚合物为各种物质材料与人工受体结合位点(1 - 4),分子印迹聚合物(MIPs)被利用材料的分子识别在很多科学和技术领域,如固相萃取、色谱分离、膜分离、传感器、药物释放、催化剂等[5 - 8]。
收稿日期:2007-01-10分子印迹聚合物简介及研究进展白 杨(江西蓝天学院瑶湖制造系江西南昌330098) 摘 要:本文概述了分子印迹聚合物的研究现状、制备原理、制备方法及理论模型。
介绍了分子印迹聚合物的应用领域,并展望了其研究发展方向。
关键词:分子印迹技术 简介 研究中图分类号:069文献标识码:B 文章编号:192(2007)02-025-040 引言分子印迹技术也叫分子模板技术,最初源于20世纪40年代的免疫学,当时Pauling 首次提出抗体形成学说,认为抗体在形成时其三维结构会尽可能地同抗原形成多重作用位点,抗原作为一种模板就会“铸造”在抗体的结合部位[1]。
后来“克隆选择”理论否定了这一学说。
尽管如此,它却为分子印迹理论的产生奠定了基础。
从那时起,科学家对生物分子天然识别的模拟研究产生了浓厚兴趣,并由此对分子印迹进行了各种尝试。
分子印迹聚合物(molecularly imp rinted polymer ,简称M IP )是利用分子印迹技术制备的具有与模板分子在空间结构和结合位点上完全匹配的高分子聚合物。
1972年Wulff G [2、3]研究小组首次成功制备出M IP ,使这方面的研究产生了突破性进展。
80年代后非共价型模板聚合物的出现,尤其是1993年Mo sbach 等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,并由此使其成为化学和生物学交叉的新兴领域之一,得到世界注目并迅速发展。
M IP 的合成是通过以下方法实现的:首先模板分子与功能单体在反应混合溶液中通过化学键或氢键结合形成配合物;然后加入交联剂进行共聚形成聚合物,使功能单体上的功能基在空间排列和空间定向上固定下来;再用物理或化学方法洗去模板分子,得到具有一定大小和形状的孔穴及确定空间排列的功能基团的分子印迹聚合物。
(如图1)图1 印记聚合物合成示意图第2卷第2期2007年6月 江西蓝天学院学报J OU RNAL OF J IAN GXI BL U E S KY UN IV ERSIT Y Vo1.2No.2J une.2007白杨:分子印迹聚合物简介及研究进展(2007)M IP对模板分子具有专一的识别作用,与其他的分子识别材料相比,M IP有三大特点:一是预定性(predeterminatio n),即它可以根据不同的目的制备不同的M IP,以满足各种不同的需要;二是识别性(recognitio n),即M IP是按照模板分子定做的,可专一地识别模板分子;三是实用性(practicibility),即它可以与天然的生物分子识别系统如酶与底物、抗原与抗体、受体与激素相比拟,且由于它是由化学合成的方法制备的,因此又有天然分子识别系统所不具备的抗恶劣环境的能力,从而表现出高度的稳定性和长的使用寿命。
摘要:分子印迹技术是制备对特定目标分子具有特异性识别能力的高分子材料的技术,所制备的高分子材料被称为分子印迹聚合物.分子印迹聚合物因具有预定性、识别性和实用性三大优点己]’一泛应用于分离、模拟抗体与受体、催化剂以及仿生传感器等方面和领域,显示出了]’一泛的应用前景.作者对分子印迹技术的发展历史、基木原理、分类、应用现状以及一些新的研究热点进行了综述.关键词:分子印迹技术;分子印迹聚合物;研究进展1分子印迹技术的基本原理分子印迹是制备对特定目标分子具有特异性识别能力的高分子材料的过程,目标分子又叫作模板分子或者印迹分子.分子印迹技术则是指为了获得在空间和结合位点上与目标分子相匹配的高分子材料的制备技术川.分子印迹聚合物的制备过程一般包括三个过程:cm首先根据模板分子选择合适的功能单体,并在致孔溶剂中使功能单体与模板分子通过两者官能团之间的相互作用(包括共价、氢键及其他一些弱作用)形成某种可逆复合物;(2)加入交联剂,在引发剂的作用下引发单体进行光聚合或热聚合,将模板分子与功能单体形成的可逆复合物“冻结”起来,使得模板分子被包埋在所形成的刚性高分子材料内;(3)采用物理或化学的方法将模板分子从高分子材料中洗脱出来,在模板分子所占据的空间位置和结构处遗留下来一个三维孔穴,该孔穴在尺寸、形状和结构方而与模板分子相匹配,同时由于功能单体具有与模板分子官能团互补的功能性官能团,因此所合成的分子印迹聚合物能够特异性的与模板分子进行识别和结合(见图1).因为分子印迹聚合物是根据模板分子“量身定做”的,因此分子印迹聚合物对模板分子(或结构类似物)具有较高的特异性识别能力,这种识别类似于生物学中酶和底物之间的相互作用,并且这种识别能力可以和(单克隆)抗体相媲美,分子印迹聚合物被MOSBACH教授形象地称为“塑料抗体”。
2分子印迹技术的分类按照功能单体与模板分子之间结合方式以及作用力的不同,分子印迹技术分为预组装法和自组装法两种(图2),在两者的基础上又衍生出了结合两种基本方法特点的结合法.2.i预组装法(又名共价法)在预组装法中,模板分子以可逆共价键的形式与功能单体结合并形成相应的复合物,复合物与交联剂交联聚合形成相应的高分子聚合物,最后通过化学方法使可逆共价键断裂而除去模板分子并得到相应的分子印迹聚合物.预组装法的优点是分子印迹聚合中的结合基团空间位置上精确固定并排列,使得所制备的分子印迹聚合物对目标化合物的结合力较强,专一性较高.其缺点是由于共价键作用较强,在分子识别和再生过程中结合和解离速度较慢,达到热力学平衡所需时间较长,不适于快速识别与分析.到目前为{卜,采用预组装的方法,研究人员己经成功制备腺A}吟、芳香化合物、糖类及其衍生物的分子印迹聚合物。
化学分子印迹技术的教学内容开发化学分子印迹技术是一项具有广泛应用前景的重要技术,在化学、生物、医学等领域发挥着越来越重要的作用。
然而,对于这一相对较新且复杂的技术,如何开发有效的教学内容,使其能够被学生清晰理解和掌握,是教育工作者面临的一项重要挑战。
一、化学分子印迹技术的基本原理在开发教学内容时,首先要清晰阐述化学分子印迹技术的基本原理。
分子印迹技术的核心思想是制备对特定目标分子具有特异性识别能力的聚合物材料。
这就像是为目标分子“量身定制”一个特殊的“口袋”,只有目标分子能够完美地匹配并进入这个“口袋”。
具体来说,其过程通常包括以下几个步骤:首先,选择合适的目标分子,也就是我们想要识别的“客人”。
然后,将目标分子与功能单体混合,这些功能单体就像是“建筑工人”,能够与目标分子通过共价键或非共价键相互作用,形成复合物。
接下来,加入交联剂,将这些复合物“固定”在一起,形成一个高度交联的聚合物网络。
最后,通过洗脱等方法去除目标分子,留下与目标分子形状、大小和功能基团互补的“印迹空腔”,这就是我们为目标分子打造的专属“房间”。
为了让学生更好地理解这一原理,可以通过形象的比喻和实例来进行讲解。
比如,可以将目标分子比作一把钥匙,而印迹空腔就是与之匹配的锁孔,只有这把特定的钥匙才能打开这把锁。
二、化学分子印迹技术的分类化学分子印迹技术根据不同的分类标准可以分为多种类型。
按照作用机制,可以分为共价型分子印迹和非共价型分子印迹。
共价型分子印迹中,目标分子与功能单体通过共价键结合,形成较为稳定的复合物,但这种方法合成过程相对复杂。
非共价型分子印迹则是通过氢键、静电作用、疏水作用等非共价键相互作用来实现,合成过程相对简单,但识别的特异性可能稍逊一筹。
另外,还可以根据聚合物的形态进行分类,如本体聚合、表面印迹聚合、悬浮聚合等。
本体聚合得到的聚合物通常需要经过研磨、筛分等繁琐的后处理步骤,而表面印迹聚合则可以在特定的载体表面直接形成印迹层,具有更好的传质性能。