用公式法解下列列方程
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
10道公式法解一元二次方程练习题及答案公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。
专题:一元二次方程的八种解法方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤:(1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式;(2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式;(3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.1.用直接开平方法解下列方程:(1)x2-25=0; (2)4x2=1;(3)81x2-25=0; (4)(2y-3)2-64=0;(5)3(x+1)2=13; (6)(3x+2)2=25;(7)(x+1)2-4=0; (8)(2-x)2-9=0.方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法”(1)移项:使方程的左边为二次项和一次项,右边为常数项.(2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1.(3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式.(4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解.(5)求解:解所得到的一元一次方程,求出原方程的解.2.用配方法解下列方程:(1)x2-2x-2=0; (2)x2-10x+29=0;(3)x2+2x=2; (4)x2-6x+1=2x-15;3.用配方法解下列方程:(1)3x 2+6x -5=0; (2)12x 2-6x -7=0.(3)x 2+16x -13=0; (4)2x 2-3x -6=0;方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解用因式分解法解一元二次方程的“四步法”(“右化零,左分解,两因式,各求解”)4.用因式分解法解下列方程:(1)x 2-8x =0; (2)5x 2+20x +20=0;。
专题2.4 用公式法求解一元二次方程-重难点题型【北师大版】【题型1 用公式法解一元二次方程】【例1】(2021春•淮北月考)用公式法解方程:x 2﹣5x ﹣1=0. 【变式1-1】(2020秋•朝阳区期中)用公式法解方程:3x 2﹣x ﹣1=0. 【变式1-2】(2020春•江干区期末)解下列一元二次方程:34x 2−2x −12=0(公式法).【变式1-3】(2020秋•达川区期末)解方程:3x 2﹣4√3x +2=0(用公式法解).【题型2 求根公式的应用】【例2】(2020秋•和平区期中)若一元二次方程x 2+bx +4=0的两个实数根中较小的一个根是m (m ≠0),则b +√b 2−16=( ) A .mB .﹣mC .2mD .﹣2m【变式2-1】(2020•福州模拟)关于x 的一元二次方程ax 2+bx +c =0的两根分别为x 1=−b+√b 2+42,x 2=−b−√b 2+42,下列判断一定正确的是( ) A .a =﹣1 B .c =1 C .ac =﹣1 D .ca=−1【变式2-2】(2020秋•宜兴市校级月考)已知a 是一元二次方程x 2﹣4x +2=0的两个实数根中较小的根, (1)求a 2﹣4a +2013的值; (2)化简求值:√a 2−2a+1a−1−1−2a+a 2a−1.【变式2-3】先阅读下列材料,然后回答问题:在一元二次方程ax 2+bx +c =0(a ≠0)中,若各项的系数之和为零,即a +b +c =0,则有一根为1,另一根为ca .证明:设方程的两根为x 1,x 2,由a +b +c =0, 知b =﹣(a +c ),∵x =−b±√b 2−4ac 2a =(a+c)±√(a+c)2−4ac 2a =(a+c)±(a−c)2a∴x 1=1,x 2=ca .(1)若一元二次方程ax 2+bx +c =0(a ≠0)的各项系数满足a ﹣b +c =0,则两根的情况怎样,试说明你的结论;(2)已知方程(ac ﹣bc )x 2+(bc ﹣ab )x +(ab ﹣ac )=0(abc ≠0)有两个相等的实数根,运用上述结论证明:2b =1a+1c.【题型3 应用根的判别式判断方程根的情况】【例3】(2021•河南模拟)下列关于x 的方程有两个不相等的实数根的是( )A.x2﹣2x+2=0B.x(x﹣2)=﹣1C.(x﹣k)(x+k)=2x+1D.x2+1=0【变式3-1】(2021•滨城区一模)关于x的一元二次方程x2+(﹣k+2)x﹣4+k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【变式3-2】(2021•凉山州)函数y=kx+b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【变式3-3】(2021春•鹿城区校级期中)已知a,b,c分别是△ABC的边长,则一元二次方程(a+b)x2+2cx+a+b =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【题型4 已知方程根的情况求字母系数的值或范围】【例4】(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k>14且k≠1B.k≥14且k≠1C.k>14D.k≥14【变式4-1】(2021•广安)关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是()A.a≤14且a≠﹣2B.a≤14C.a<14且a≠﹣2D.a<14【变式4-2】(2021春•台江区校级月考)若关于x 的方程x 2−√m x +n =0有两个相等的实根,则m n= .【变式4-3】(2021•海门市模拟)关于x 的方程x 2+bx +c =0有两个相等的实数根,x 取m 和m +2时,代数式x 2+bx +c 的值都等于n ,则n = .【题型5 根的判别式的综合应用】【例5】(2021•海淀区二模)关于x 的一元二次方程x 2﹣mx +2m ﹣4=0. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求m 的取值范围.【变式5-1】(2021春•萧山区期中)已知:关于x 的方程kx 2﹣(4k ﹣3)x +3k ﹣3=0 (1)求证:无论k 取何值,方程都有实根; (2)若x =﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k 的值(k 为整数).【变式5-2】(2021•广东模拟)已知关于x 的一元二次方程x 2﹣(k +2)x +2k =0. (1)若x =1是这个方程的一个根,求k 的值和它的另一根; (2)求证:无论k 取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长. 【变式5-3】(2020秋•安居区期末)已知关于x 的方程x 2﹣(m +3)x +4m ﹣4=0的两个实数根. (1)求证:无论m 取何值,这个方程总有实数根.(2)若等腰三角形ABC 的一边长a =5,另两边b ,c 的长度恰好是这个方程的两个根,求△ABC 的周长.【题型6 根的判别式中新定义问题】【例6】(2021•郑州模拟)定义新运算“a *b ”:对于任意实数a ,b ,都有a *b =a 2+b 2﹣2ab ﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x *k =xk (k 为实数)是关于x的方程,则方程的根的情况为()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【变式6-1】(2020春•瑶海区期末)对于实数a、b,定义运算“★”:a★b={a2−b(a≤b)b2−a(a>b),关于x的方程(2x+1)★(2x﹣3)=t恰好有两个不相等的实数根,则t的取值范围是()A.t<154B.t>154C.t<−174D.t>−174【变式6-2】(2021春•瑶海区期中)对于实数m、n,定义一种运算:m△n=mn+n.(1)求﹣2△√32得值;(2)如果关于x的方程x△(a△x)=−14有两个相等的实数根,求实数a的值.【变式6-3】(2020春•丽水期中)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是全等的Rt△ABC和Rt△BED的边长,易知AE=√2c,这时我们把关于x的形如ax2+√2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)求证:关于x的“勾系一元二次方程”ax2+√2cx+b=0必有实数根;(2)若x=﹣1是“勾系一元二次方程”ax2+√2cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC的面积.。
10道公式法解一元二次方程练习题公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二?b?2?4ac2次方程ax?bx?c?0的求根公式:x?。
公式法2a2的步骤:就是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项为c1.一般地,对于一元二次方程ax2+bx+c=0,当b2-4ac≥0时,它的根是_____ 当b-4ac 2.方程ax2+bx+c=0有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.3.不解方程,判断方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有个4.已知一个矩形的长比宽多2cm,其面积为8cm,则此长方形的周长为________.1?x2x2?x?15.当x=_____ __时,代数式与的值互为相反数.426.若方程x-4x+a=0的两根之差为0,则a的值为________.7.若方程3x2+bx+1=0无解,则b应满足的条件是________.8.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.9.一元二次方程x2-2x-m=0可以用公式法解,则m=. A.0B.1C.-1D.±110.用公式法解方程4y2=12y+3,得到A.B.y= C.D.11.已知a、b、c是△ABC的三边长,且方程a+2bx-c=0的两根相等,则△ABC为A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形12. 用公式法解下列方程:112x2-3x-5=02t2+3=7t x2+x-=03222x??2?0 x?6x?12?0 x=4x+222-3x+22x-24=0 x=x- x+5=02=44x-2=0x+x-35=013. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4?×2?×6=48求3※5的值;求x※x+2※x-2※4=0中x的值;若无论x是什么数,总有a※x=x,求a的值.用公式法解一元二次方程练习题姓名______________一.填空题。
初中数学例题:公式法解一元二次方程1.用公式法解下列方程.(1) x 2+3x+1=0; (2); (3) 2x 2+3x-1=0.【答案与解析】(1) a=1,b=3,c=1∴x==. ∴x 1=,x 2=.(2)原方程化为一般形式,得.∵,,,∴.∴,即,. (3) ∵a=2,b=3,c=﹣1∴b 2﹣4ac=17>0∴x=∴x 1=,x 2=.【总结升华】用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程:(2014•武汉模拟)x 2﹣3x ﹣2=0. 2241x x =-22410x x -+=2a =4b =-1c =224(4)42180b ac -=--⨯⨯=>1x ==±11x =21x =24b ac -24b ac -【答案】解:∵a=1,b=﹣3,c=﹣2;∵b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∵x==,∵x1=,x2=.2.用公式法解下列方程:(1)(2014•武汉模拟)2x2+x=2; (2)(2014秋•开县期末)3x2﹣6x﹣2=0;(3)(2015•黄陂区校级模拟)x2﹣3x﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】解:(1)∵2x2+x﹣2=0,∵a=2,b=1,c=﹣2,∵x===,∵x1=,x2=.(2)∵a=3,b=﹣6,c=﹣2,∵b2﹣4ac=36+24=60>0,∵x=,∵x1=,x2=(3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x== , 解得 x 1=,x 2=. 【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.举一反三:【变式】用公式法解下列方程: ;【答案】解:移项,得.∵ ,,,,∴ , ∴ ,. 240b ac -≥2221x x +=22210x x +-=2a =2b =1c =-224242(1)120b ac -=-⨯⨯-=>21222x -±-==⨯112x -=212x -+=。
2.2 一元二次方程的解法(1)【例1】用开平方法解下列方程:(1) 3x 2-4=0; (2) (2x -1)2-9=0. 【变式训练】1. 用开平方法解下列方程: (1) x 2-2=0;(2) 4(6x -1)2=36.【例2】用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为………………( )A. 44)2(22mn m x -=+B.44)2(22n mm x -=+C.24)2(22n mm x -=+ D.24)2(22mn m x -=+【变式训练】2. 用配方法解方程:x 2+2x -2=0.【例3】用配方法证明对于任何实数x ,二次三项式x 2-22x +5-2的值恒大于零. 【变式训练】3. 求二次三项式x 2+5x +7的最小值. 练习:1.一元二次方程(x -1)2=2的解是……………………………………( )A. x 1=-1-2,x 2=-1+2B. x 1=1-2,x 2=1+2C. x 1=3,x 2=-1D. x 1=1,x 2=-32. 下列一元二次方程中,能直接用开平方法解的是……………………………( ) A. (2x +3)2=2008 B. (x -1)2=1+x C. x 2=x D. x 2+1=03. 如果x 2+bx+c =(x -32)2,则b ,c 的值是…………………………………………( )A. b =34,c =94 B. b =32-,c =94 C. b =34-,c =94 D. b =34-,c =94-4. 已知关于x 的一元二次方程(x +m )2=n 有实数根,则…………………………( ) A. n >0 B. n ≥0 C. n ≠0 D. n 为任何实数5. 如果关于x 的方程x 2+kx =2配方后得到(x -1)2=3,那么k 的值为 . 6. 若2(x 2+3)的值与3(1-x 2)的值互为相反数,则x 的值为 . 7. 选择适当的方法解下列一元二次方程:(1) x 2+2x =0; (2) x 2+4x -1=0; (3) (x -3)2=(5x +2)2.8. 若(x 2+y 2-5)2=4,则x 2+y 2= .9. 如果关于x 的二次三项式x 2+mx+m 是一个完全平方式,求m 的值.10. 已知代数式x 2+y 2+22x -4y +42,这个代数式是否存在最大值或最小值?请说明理由.11.用长为23cm 的铁丝围成一个面积为S(c m 2)的矩形. (1)设矩形的长为xcm ,写出用x 的代数式表示S 的等式; (2)求当x 为多少时,S 最大,其最大值是多少?12.填上适当的数,使下列等式成立,然后与O 比较大小:(1)∵x 2-2x +3=(x -______)2+______, ∴x 2--2x +3______0; (2)∵2x 2+8x +8=2(x +______)2,∴2x 2+8x +8______0.13.一块长方形草地,长比宽多5m ,面积是104m 2,设草地宽为xm ,依题意列得方程为 __________________,解得它的长为______m ,宽为______m .2.2 一元二次方程的解法(2)【例1】用配方法解方程:2x 2-x -1=0. 【变式训练】1. 用配方法解方程:2x 2+5x -3=0.【例2】阅读下面的材料,然后再解答后面的问题: 例:解方程:x 2-|x |-2=0.解:(1) 当x ≥0时,原方程化为x 2-x -2=0,解得x 1=2,x 2=-1(不合题意,舍去); (2) 当x <0时,原方程化为x 2+x -2=0,解得x 1=-2,x 2=1(不合题意,舍去); ∴原方程的解是x 1=2,x 2=-2.请参照原方程的解法,解方程:x 2-|x -1|-1=0. 【变式训练】2.阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ……①,那么原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4. 当y =1时,x 2-1=1,∴x 2=2,∴x =2±;当y =4时,x 2-1=4,∴x 2=5,∴x =5±,故原方程的解为x 1=2,x 2=2-,x 3=5,x 4=5-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用_________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x 4-x 2-6=0. 练习1. 将二次三项式3x 2+8x -3配方,结果为………………………………………( )A. 3(x +38)2+355 B. 3(x +34)2-3 C. 3(x +34)2325-D. (3x +4)2-192. 如果ax 2+4x +c =(2x +m )2,则a ,c ,m 的值分别为………………………( ) A. a =4,c =12,m =14B. a =4,c =1,m =1C. a =4,c =12,m =1 D. a =1,c =4,m =13. 已知(x +y )(x +y -2)-8=0,则x+y 的值是…………………………( ) A. –4或2 B. –2或0 C. 2或-3 D. 4或-24. 已知三角形的两边长分别是2,3,第三边的长是方程x 2-5x +4=0的根,那么这个三角形的周长为……………………………………………………………………( )A. 1或4B. 6或9C. 6D. 95.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( )A .x(x +1)=1035;B .x(x -1)=1035×2;C .x(x -1)=1035;D .2x(x +1)=1035 6.一块长方形草地,长比宽多5m ,面积是104m 2,设草地宽为xm ,依题意列得方程为 __________________,解得它的长为______m ,宽为______m . 7. 用配方法解下列一元二次方程: (1) x 2-x -1=0;(2) 3x 2-5x +1=0.8. 在正数范围内定义一种新运算“★”,其规则为:a ★b =ab+a+b . 根据这个规则,请你求方程x ★(x +1)=11的解.9. 用换元法解方程11+-+x x xx +3=0时,设xx 1+=y ,则原方程可化为…………( )A. y 2-y +3=0B. y 2+3y -1=0C. 3y 2+y -1=0D. 3y 2-y +1=0 10. 若方程2x 2-8x +7=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是 .11.将进货单价为40元的商品按50元出售时,能卖出500个,已知这样商品每个涨价1元,其销售量就减少10个,则为了赚得8000元利润,售价应是为多少?12.已知x 1,x 2 是关于x 的方程(x -2)(x -m )=(p -2)(p -m )的两个实数根. (1)求x 1,x 2 的值;(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.2.2 一元二次方程的解法(3)【例1】用公式法解下列方程:(1) x 2-3x +2=0; (2) 2x 2-6=2x . 【变式训练】1. 用公式法解下列方程:(1) x 2-2x -3=0; (2) 4x 224-x =-2. 【例2】给下列方程选择适当的方法:(1)32312=⎪⎭⎫ ⎝⎛-y 可选用 法;(2) 5x 22-x =0可选用 法; (3) x 2-2x =9999可选用 法; (4)(5x -1)2=3(5x -1) 可选用 法; (5)5x 2-11x +5=0可选用 法. 【变式训练】2. 用适当的方法解下列方程: (1) 2x 2+12x =0; (2) 4(x +3)2=(x -2)2; (3) x 2+4x =21.【例3】若关于x 的一元二次方程x 2+2x -k =0没有实数根,求k 的取值范围. 【变式训练】3. 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是……………( )A. 210x +=B.2210x x ++=C. 2230x x ++=D. 2230x x +-=练习1.方程x(x 2+1)=0的实数根的个数是 ( ) A .1 B .2 C .3 D. 02.在方程ax 2+bx +c =0(a≠0)中,当b 2-4ac =0时,方程的解是( ) A .±b 2a B .±b a C .-b 2aD .b2a3. 一种药品经两次降价,由每盒50元调至40.5元,则每次降价的百分率是 ( ) A. 5% B .10% C .15% D .20% 4.已知(x 2+y 2+1)2=4,则x 2+y 2=______.5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值是( )A. 1m <B. 1m >-C.1m >D.1m <- 6. 如果方程x 2+bx+c =0的两根互为相反数,那么…………………………………( ) A. b =0 B. c =0 C. b =0,c <0 D. b =0,c >07. 一元二次方程2210x x --=的根的情况为………………………………( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根8. 选择适当的方法解下列方程:(1) (2)(3)20x x ++=; (2) x 2+3=3(x +1); (3) (x -1)2-5=0.9. 若x =0是方程0823)2(22=-+++-m m x x m 的解,则m = . 10. 先阅读,再填空解答:方程x 2-3x -4=0的根是:x 1=-1,x 2=4,则x 1+x 2=3,x 1x 2=-4; 方程3x 2+10x +8=0的根是:x 1=-2,x 2=34-,则x 1+x 2=310-,x 1x 2=38.(1) 方程2x 2+x -3=0的根是:x 1= ,x 2= ,则x 1+x 2= ,x 1x 2= ;(2) 若x 1,x 2是关于x 的一元二次方程ax 2+bx+c =0 (a ≠0,且a ,b ,c 为常数)的两个实数根,那么x 1+x 2,x 1x 2与系数a ,b ,c 的关系是:x 1+x 2= ,x 1x 2= ;(3) 如果12x x ,是方程x 2+x -3=0的两个根,根据(2)所得结论,求x 12+x 22的值.11. 甲、乙两同学分别解同一道一元二次方程,甲把一次项系数看错了,解得方程的两根为-2和3,乙把常数项看错了,解得两根为31-,则原方程是…………()1+和3A. x2+2x-6=0B. x2-2x+6=0C. x2+2x+6=0D. x2-2x-6=0 12.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-l=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①解得y1=1,y2=4当y=1时,x2-1=1.∴x2=2.∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5。
初中精品试卷2.2 一元二次方程的解法公式法一、填空题1.配方法解一元二次方程的基本思路是:(1)先将方程配方(2)如果方程左右两边均为非负数则两边同时开平方, 化为两个 __________(3)再解这两个 __________22.用配方法解一元二次方程 ax +bx+c=0(a ≠ 0)时:移项得 ________配方得 __________即( x+__________)2=__________当_________时,原方程化为两个一元一次方程 __________和 __________∴ x 1=_________,x 2=____________3.利用求根公式解一元二次方程时,首先要把方程化为__________,确定__________的值,当__________时,把 a,b,c 的值代入公式, x 1,2=____________ 求得方程的解 .方程 2-8=7x 化为一般形式是 _____,a=______,b=________,c=________, 4. 3x方程的根 x 1=________,x 2=________.二、选择题1.用公式法解方程 3x 2+4=12x ,下列代入公式正确的是()12 12 12 23 4A.x 、 =21 2 12 122 3 4B.x 、 =2C.x 1、 2= 12122 3 42D.x1、(12)(12) 2 4 34 2=232.方程 x2+3x=14 的解是()A.x= 365 B.x=36522 323D.x=323C.x=22下列各数中,是方程2)x+=0的解的有()-(1+553.x①1+ 5 ②1-5③1④-5A.0 个B.1 个C.2 个D.3 个4.方程 x2+(3 2 )x+ 6 =0的解是()A.x =1,x =6B.x=- 1,x =-61212C.x1= 2 ,x2= 3D.x1=-2 ,x2=-3三、用公式法解下列各方程1.5x2+2x-1=02.6y2+13y+6=03.x2+6x+9=7四、你能找到适当的x 的值使得多项式A=4x 2+2x-1 与 B=3x2-2 相等吗?参考答案一、 1.一元一次方程一元一次方程2.x2+ bx c0 x2+bx ca a a ax2b b)2c b2b b24acb2b b24ac x(a4a22a4a 24ac 0 x4a 2 a2a2ab b24ac b b24ac b b24acx4a22a2a2a3.一般形式二次项系数、一次项系数、常数项b2- 4ac≥0b b2 4ac2a4.3x2-7x- 8=0 3-7-87145 714566二、 1.D 2.B 3.B 4.D三、 1.解: a=5,b=2,c=-1∴Δ=b2-4ac=4+4×5×1=24>0∴x1·222416=105∴x116, x216=552.解: a=6,b=13,c=6∴Δ=b2-4ac=169-4×6×6=25>0∴x1·213 2513 5=1212∴x1=-3,x2=-2 233.解:整理,得: x2+6x+2=0∴a=1,b=6,c=2∴Δ=b2-4ac=36-4×1×2=28>0∴x1·2= 6 28=- 3±72∴x1=-3+ 7 ,x2=-3-7四、解:若 A=13,即 4x2+2x-1=3x2- 2整理,得 x2+2x+1=0∴(x+1)2=0,∴ x1 =x2=- 1∴当 x=- 1 时, A=13.。
一元二次方程的解法一例题:1. 解下列方程:(1)()922=+x (2)()05122=+--y (3)()322212=+t (4)()0412=+-x2. 用开平方法解下列方程:(1)022=-x (2)()361642=-x3. 用配方法解关于x 的方程02=++n mx x ,此方程可变形为( ) A. 44222m n m x -=⎪⎭⎫ ⎝⎛+ B. 44222n m m x -=⎪⎭⎫ ⎝⎛+ C. 24222n m m x -=⎪⎭⎫ ⎝⎛+ D. 24222m n m x -=⎪⎭⎫ ⎝⎛+ 4. 用配方法解方程:0222=-+x x练习:1. 方程0742=-x 的解是( )A. 47=xB. 47±=x C. 27±=x D. 47±=x 2. 一元二次方程()212=-x 的解是( )A. 21,2121+-=--=x xB. 21,2121+=-=x xC. 1,321-==x xD. 3,121-==x x3. 已知关于x 的一元二次方程()n m x =+2有实数根,则( ) A. 0>n B. 0≥n C. 0≠n D. 为任何实数n4. 如果04412=+-xx ,那么x 2的值是( ) A. -1 B. 1 C. 2 D. 1或25. 请写出一个两根互为相反数的一元二次方程_________6. 在下列各空白处填上适当的数,使等式成立。
(1)++x x 122______=()2____+x (2)++x x 312______=()2___+x (3)223191___⎪⎭⎫ ⎝⎛-=+-x x x 7. 若0>n ,对所有x ,式子()223369n x mx x +=++成立,则=-n m ________ 8. 解下列方程:(1)02522=⎪⎭⎫ ⎝⎛-x (2)()6232=-x (3)()01342=-+x (4)()()22431-=-x x9. 用配方法证明对于任意实数x ,二次三项式25222-+-x x 的值恒大于零。
一元二次方程解法————公式法1.解下列方程:(1)x2+2x﹣5=0(2)(x﹣2)2+x(x﹣2)=02.解方程(1)2y2+6y+5=0;(2)x(2x﹣5)=4x﹣10.3.解方程:(1)3x2﹣6x=2;(2)x(2x﹣5)=4x﹣10.4.解方程:(1)x2﹣4x+2=0;(2)(x﹣1)(x+2)=4.5.解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.6.解方程:(1)2x2+3x﹣4=0.(2)(x+3)(x﹣1)=5.7.解下列方程(1)x2﹣3x﹣2=0;(2)8﹣(x﹣1)(x+2)=4.8.用适当方法解方程(1)x2﹣3x﹣9=0;(2)﹣x2﹣x+2=﹣x+1.参考答案与试题解析一.解答题(共8小题)1.解下列方程:(1)x2+2x﹣5=0(2)(x﹣2)2+x(x﹣2)=0【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案.【解答】解:(1)∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=6,∴(x+1)2=6,∴x=﹣1±,∴x1=﹣1+,x2=﹣1﹣(2)∵(x﹣2)2+x(x﹣2)=0,∴(x﹣2)(x﹣2+x)=0,∴x﹣2=0或x﹣2+x=0,∴x1=2,x2=1.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.解方程(1)2y2+6y+5=0;(2)x(2x﹣5)=4x﹣10.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵a=2,b=6,c=5,∴Δ=62﹣4×2×5=﹣4<0,∴此方程无实数根;(2)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x1=2.5,x2=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.解方程:(1)3x2﹣6x=2;(2)x(2x﹣5)=4x﹣10.【分析】(1)根据公式法即可求出答案(2)根据因式分解法即可求出答案;【解答】解:(1)∵3x2﹣6x=2,∴a=3,b=﹣6,c=﹣2,∴△=36+24=60>0,∴x==,∴x1=,x2=(2)∵x(2x﹣5)=4x﹣10,∴x(2x﹣5)=2(2x﹣5),∴(x﹣2)(2x﹣5)=0,∴x﹣2=0或2x﹣5=0,∴x1=2,x2=.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.4.解方程:(1)x2﹣4x+2=0;(2)(x﹣1)(x+2)=4.【分析】根据根的判别式即可求出答案.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x+4=2,∴(x﹣2)2=2,∴x﹣2=±,∴;(2)∵(x﹣1)(x+2)=4,∴x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵2x2﹣6x﹣1=0,∴x2﹣3x=,∴(x﹣)2=,∴x=;(2)∵2y(y+2)﹣y=2,∴2y(y+2)﹣y﹣2=0,∴(y+2)(2y﹣1)=0,∴y+2=0或2y﹣1=0,∴y=﹣2或y=;【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.6.解方程:(1)2x2+3x﹣4=0.(2)(x+3)(x﹣1)=5.【分析】(1)确定a,b,c的值,然后代入求根公式计算即可;(2)先将方程整理成一般形式,然后用因式分解法解答即可.【解答】解:(1)2x2+3x﹣4=0,a=2,b=3,c=﹣4,Δ=b2﹣4ac=9﹣4×2×(﹣4)=41,x==,∴x1=,x;(2)(x+3)(x﹣1)=5,整理得,x2+2x﹣8=0,因式分解得,(x+4)(x﹣2)=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的各种解法.7.解下列方程(1)x2﹣3x﹣2=0;(2)8﹣(x﹣1)(x+2)=4.【分析】(1)先计算判别式的值,然后利用求根公式计算出方程的根;(2)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)∵a=1,b=﹣3,c=﹣2,∴Δ=b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=17>0,∴x=,∴x1=,x2=;(2)原方程化为x2+x﹣6=0,∵(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,∴x1=﹣3,x2=2.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.8.用适当方法解方程(1)x2﹣3x﹣9=0;(2)﹣x2﹣x+2=﹣x+1.【分析】(1)先确定a,b,c的值,然后利用公式法解答即可;(2)先化简方程,然后确定【解答】解:(1)x2﹣3x﹣9=0,a=1,b=﹣3,c=﹣9,Δ=b2﹣4ac=9﹣4×1×(﹣9)=45,x==,x1=,x2=;(2)﹣x2﹣x+2=﹣x+1,整理得,2x2+x﹣3=0,a=2,b=1,c=﹣3,Δ=b2﹣4ac=1﹣4×2×(﹣3)=25,x===,。
一元二次方程的解法(三)--公式法,因式分解法—知识讲解(基础)【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 能应用根的判别式判断一元二次方程求根的情况,通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】要点一、公式法解一元二次方程 1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况. 3.一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0; (2)方程有两个相等的实数根⇒ac b 42-=0; (3)方程没有实数根⇒ac b 42-﹤0.要点诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件; (2)若一元二次方程有两个实数根则 ac b 42-≥0. 4.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b acx a a-+=. ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a-±-=.② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-. ③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1) x 2+3x+1=0; (2)2241x x =-; (3) 2x 2+3x-1=0.举一反三:【变式】用公式法解方程: x 2﹣3x ﹣2=0.2.用公式法解下列方程: (1) 2x 2+x=2; (2) 3x 2﹣6x ﹣2=0; (3)(黄陂区校级模拟)x 2﹣3x ﹣7=0.举一反三:【变式】用公式法解下列方程: 2221x x +=;类型二、因式分解法解一元二次方程3.(凉山州模拟)解方程:(1)2x 2﹣3x ﹣2=0 (2)x (2x+3)﹣2x ﹣3=0.4.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.举一反三:【变式】(泗洪县校级模拟)解方程:(1)2x 2﹣x ﹣1=0 (2)(x ﹣2)2=6﹣3x .5.探究下表中的奥秘,并完成填空: 一元二次方程 两个根二次三项式因式分解 x2﹣2x+1=0 x1=1,x2=1 x2﹣2x+1=(x ﹣1)(x ﹣1) x2﹣3x+2=0 x1=1,x2=2 x2﹣3x+2=(x ﹣1)(x ﹣2) 3x2+x ﹣2=0x1=,x2=﹣1 3x2+x ﹣2=3(x ﹣)(x+1)2x2+5x+2=0x1=﹣,x2=﹣2 2x2+5x+2=2(x+)(x+2)4x2+13x+3=0 x1= ,x2= 4x2+13x+3=4(x+ )(x+ )将你发现的结论一般化,并写出来.一元二次方程的解法(三)--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题1.下列方程适合用因式方程解法解的是( ) A .x 2﹣3x+2=0 B .2x 2=x+4 C .(x ﹣1)(x+2)=70 D .x 2﹣11x ﹣10=02.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =- 3.一元二次方程2340x x +-=的解是( )A .11x =;24x =-B .11x =-;24x =C .11x =-;24x =-D .11x =;24x = 4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =76.(河北模拟)已知等腰△ABC 的两条边的长度是一元二次方程x 2﹣6x+8=0的两根,则△ABC 的周长是( )A .10B .8C .6D .8或10二、填空题7.(厦门)方程x 2+x =0的解是___ _____.8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________. 12.已知y =(x-5)(x+2).(1)当x 为 值时,y 的值为0; (2)当x 为 值时,y 的值为5.三、解答题13.(曲靖一模)解下列方程:(1)2x 2﹣5x+1=0 (2)(x+4)2=2(x+4)14. 用因式分解法解方程(1)x 2-6x-16=0. (2) (2x+1)2+3(2x+1)+2=0.15.(1)利用求根公式完成下表:(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.。