物理实验讲义
- 格式:doc
- 大小:208.50 KB
- 文档页数:5
电子与场带电粒子在电场和磁场中运动是在近代科学技术应用的许多领域中都经常遇到的一种物理现象。
在下面的实验中,主要研究电子在各种电场和磁场中的运动规律。
在这个实验中,把电子看作是遵从牛顿运动定律的经典粒子。
因为在下面实验中,电子的运动速度总是远小于光速(3.00×108 m/s),所以不必考虑相对论效应,而且由于实验中电子运动的空间范围远比原子的尺度要大,也可不必考虑量子效应。
【实验目的】1.了解示波管的构造和工作原理,研究静电场对电子的加速作用。
2.定量分析电子束在横向匀强电场作用下的偏转情况。
3.定量分析电子束在横向磁场作用下的偏转。
4.定量分析电子束在纵向磁场作用下螺旋运动,测定荷质比。
【实验仪器】DH4521电子束测试仪、电源线、10芯专用电缆、52尼康线。
【实验原理】1.小型电子示波管的构造阴极射线管中,电子示波管的构造如图1所示。
包括下面几个部分:图 1 示波管结构图F-灯丝K-阴极G1,G2- 控制栅极A1-第一阳极A2-第二阳极Y-竖直偏转板X-水平偏转板电子枪,它的作用是发射电子,把它加速到一定速度并聚成一细束;偏转系统,由两对平板电极构成。
一对上下放置的Y轴偏转板(或称垂直偏转板),一对左右放置的X轴偏转板(或称水平偏转板);荧光屏,用以显示电子束打在示波管端面的位置。
以上这几部分都密封在一只玻璃壳之中。
玻璃壳内抽成高真空,以免电子穿越整个管长时与气体分子发生碰撞,故管内的残余气压不超过610-大气压。
电子枪的内部构造如图2所示。
电子源是阴极,图中用字母K 表示。
它是一只金属圆柱筒,里面装有加热用的灯丝,两者之间用陶瓷套管绝缘。
当灯丝通电时可把阴极加热到很高温度。
在圆柱筒端部涂有钡和锶氧化物,此材料中的电子在加热时较容易逸出表面,并能在阴极周围空间自由运动,这种过程叫热电子发射。
与阴极共轴布置着的还有四个圆筒状电极,电极1G 离阴极最近,称为控制栅,正常工作时加有相对于阴极K 大约-5~-20伏的负电压,它产生的电场是要把阴极发射出来的电子推回到阴极去。
物理光学实验讲义实验⼀薄透镜成像及其焦距的测量⼀、实验⽬的1、通过实验进⼀步理解透镜的成像规律。
2、掌握测量透镜焦距的⼏种⽅法。
3、掌握和理解光学系统共轴调节的⽅法。
⼆、实验原理1、薄透镜成像原理及其成像公式将玻璃等⼀些透明的物质磨成薄⽚,其表⾯都是球⾯或有⼀⾯为平⾯的就成了透镜,有中央厚、边缘薄的凸透镜和边缘厚、中央薄的凹透镜两⼤类。
称连接透镜两球⾯曲率中⼼的直线叫做透镜的主光轴,透镜两表⾯在其主轴上的间距叫透镜厚度。
厚度与球⾯的曲率半径相⽐可以忽略不计的透镜称为薄透镜。
薄透镜两球⾯的曲率中⼼⼏乎重合为⼀点,这个点叫做透镜的光⼼。
实验中透镜两边媒质皆为空⽓。
凸透镜亦称为会聚透镜,凹透镜亦称为发散透镜。
如图1所⽰,平⾏于凸透镜主光轴的⼀束光⼊射凸透镜,折射后会聚于主光轴上,会聚的光线与主光轴的交点即为凸透镜的焦点,焦点到光⼼的距离为焦距。
如图2所⽰,平⾏于凹透镜主光轴的⼀束光⼊射凹透镜折射后成为发散光,发散光线的反向延长线与主光轴的交点即为凹透镜的焦点,与凹透镜光⼼的距离为焦距。
在近轴光线条件下,薄透镜的成像公式为:式中为物距,为像距为焦距,对于凸透镜、凹透镜⽽⾔,恒为正值,像为实像时为正,像为虚像时为负,对于凸透镜恒为正,凹透镜恒为负。
2、测量凸透镜焦距的原理(1)⾃准法位于凸透镜焦平⾯上的物体上(实验中⽤⼀个圆内三个圆⼼⾓为的扇形)各点发出的光线,经透镜折射后成为平⾏光束(包括不同⽅向的平⾏光),由平⾯镜反射回去仍为平⾏光束,经透镜会聚必成⼀个倒⽴等⼤的实像于原焦平⾯上,这时像的中⼼与透镜光⼼的距离就是焦距(如图3)。
(2)共轭法(位移法)由图4可见,物屏和像屏距离为(),凸透镜在、两个位置分别在像屏上成放⼤和缩⼩的像,由凸透镜成像公式可得:成放⼤的像时,有成缩⼩的像时,有⼜由于可得3、测量凹透镜焦距的原理(1)⾃准法通常凹透镜所成的是虚像,像屏接收不到,只有与凸透镜组合起来才可能成实像。
凹透镜的发散作⽤同凸透镜的会聚特性结合得好时,屏上才会出现清晰的像,如图5所⽰。
固体与液体介电常数的测量一、实验目的:运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。
二、实验原理:介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系:SCdr 00εεεε==式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120-⨯=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。
替代法:替代法的电路图如下图所示。
此时电路测量精度与标准电容箱的精度密切相关。
实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。
谐振法:1、交流谐振电路:在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。
若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。
RLC 串联谐振电路如下图所示:图一:RLC 串联谐振电路其中电源和电阻两端接双踪示波器。
电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π,如图二。
图二:电阻R 、电容C 和电感L 的电压矢量图电路总阻抗:Z ==L V →-RV →回路电流:V I Z==电流与信号源电压之间的位相差:1arctan i L C R ωωϕ⎛⎫- ⎪=-⎪ ⎪⎝⎭找到RLC 串联电路的谐振频率,如果已知L 的值,就可以得出C 的大小。
2、谐振法测量电容谐振法测量电容的原理图见上图一,由已知电感L ,电阻R 待测电容C x 组成振荡电路,改变信号源频率使RLC 回路谐振,使得双踪示波器两个频道的波形相位相同,电阻上电压最大,则电容可由下式求出:L f C X 2241π=式中f 为频率,L 为已知电感,C x 为待测电容。
大学物理学实验(讲稿)(力、热、光、电)**: ***授课时间:所在院系: 物理与电子信息学院预备知识:不确定度的概念:不确定度是由于测量误差的存在而造成对被测量值不能确定的程度。
因此,我们应将测量中的不可靠量值叫误差,导致测量结果的不可靠量值叫不确定度。
一、 直接测量量的不确定度计算:A 类不确定度:(随机误差))1()(2--=∑N N x xu iA (通用式)B 类不确定度:(未定系统误差)3仪∆=B u (p=0.683) (通用式)总不确定度:22B A u u u +=(通用式)仪∆获得的三个途径:(1)由仪器或说明书给出(指以前称为仪器误差)。
(2)由仪器的准确度等级给出:100量程)(等级仪⨯=∆(3)估计连续读数的仪器:分度值仪21=∆;非连续读数的仪器:分度值仪=∆; 数子式仪器:仪∆取末位数字的21±±或。
单次测量的不确定度计算:由于00)(==-A i u x x 故,3仪∆==B u u二、 间接测量量的不确定度计算:设:...),,(z y x f N = 传递公式:...)()()(222222+∂∂+∂∂+∂∂=z y x N u zf u y f u x f u 例如:园柱体的密度公式为h d m v m 24πρ==则222)()2()()(hu d u m u u h d m ++=ρρ ρρρρ⨯=)()(u u (单位)式中:—待测物体的直径。
—d —待测物体的高度。
—h —待测物体的质量。
—m三、 测量结果表示:3)18.091.8()(cm g u ±=±=ρρρ (第一位为1时可多取1位)3)05.080.7()(cm gu ±=±=ρρρ (测量值不足两位补零与不确定度位数对齐)实验一 单摆一、实验目的1、用单摆测定本地的重力加速度;2、掌握用作图法验证理论公式;3、了解测量中主要误差来源及处理方法。
物理演示实验讲义物理实验教学中心编二零零八年六月目录糖溶液旋光 2 白光全息 3 太阳能应用 4 法拉第笼 5 能量穿梭机 6 超导磁悬浮列车7 电磁炮8 飞机的升力9 激光倍频10 魔灯——等离子球11 氢燃料电池12 三相旋转磁场13 锥体上滚14阿贝成像和空间滤波15超声雾化16傅科摆17光学分形18光学幻影19红绿立体图20混沌摆21家用冰箱空调制冷系统原理22龙卷风23茹可夫斯基凳24陀螺仪25雅格布天梯26长余辉材料27海市蜃楼28直升飞机29糖溶液旋光【实验目的】演示糖溶液的旋光色散现象【实验原理】线偏振光在某些介质中传播时,出射光振动面会转过一定角度,这种现象称为旋光性。
线偏振光可分解成左旋和右旋圆偏振光。
两种圆偏振光在介质中传速不同,但通过一定距离后,两种圆偏振光合成后仍为线偏振光,只是振动面转过一定角度θ。
在溶液传播时,转角θ大小为:θ=,其中l为液体的长度,D为溶液的浓度,c为溶液的旋光率。
cDlc是偏振光波长λ的函数。
由此,当白色线偏振光通过旋光物质后,不同波长的线偏振光振动面旋转的角度不同,各色光的振动面随之相互分开。
这种现象称为旋光色散。
【实验操作】在仪器的后方加上第二个某单色偏振片,转动第1个偏振片,使该色光的振动面与第二个偏振片的偏振化方向一致,则此色光可全部通过,此色光的光强最大,其余色光成分按马吕斯定律为部分通过,旋转偏振片可见透射光的主色调周期性变化。
白光全息白光全息是指在普通白光照射下再现的立体全息。
当记录介质的感光厚度远大于干涉条纹的间距时,在其厚度方向形成三维干涉图样。
如图示白光再现全息照相光路,激光束经过扩束后,再经反射镜反射,设该光为参考光,参考光穿过全息干版后,投射到物体表面后反射,此光为物光。
参考光和物光形成三维空间干涉条纹,如用白光再现,则各色光全息像完全分开,全息再现像十分清楚。
太阳能应用——神州号飞船仿真模型某些半导体物质,在光照的情况下可以产生电动势,将光能转化为电能。
实验01 塞曼效应实验在物理学的发展过程中,人类为光本性的探讨经过了相当曲折的过程。
1845 年,法拉第发现光的振动面在磁场中发生旋转,揭示了光学现象与磁学现象之间存在联系,启发人类不能孤立地研究光,必须将光学现象和其它物理现象联系起来考虑。
1860 年,麦克斯韦的理论研究指出光的电磁本质,1892 年赫兹的实验证实了光是电磁波。
1896年塞曼(zeeman)在强磁场和精密的光谱仪器,使原子光谱分裂成数条完全偏振的光谱现象,此现象被称为塞曼效应,洛仑兹电子论对其的解释,使洛仑兹的“电子论取得了它最伟大的胜利”(劳厄)。
塞曼效应在对光本性认识中的作用被认为是继X光(1895)之后物理学最重要的发现之一。
1902 年塞曼因这一成就与洛仑兹共获诺贝尔物理奖。
塞曼效应是研究原子结构和能级参数的重要手段,也是激光技术、测量技术中的重要手段。
∆≤0.14cm-1),故采用法布里-玻罗标由于塞曼效应分裂谱线的间距极小(波数间距γ~∆值。
准具来分析谱线的精细结构,并用照相或摄谱装置记录测量塞曼分裂线的波数间距γ~【实验目的】1、观察汞546.1 nm 光谱线的塞曼效应;2、了解用法布里-波罗干涉仪测量波长差值的方法;3、测量汞546.1 nm 塞曼分裂光谱线的波长差,并且测定e /m的值。
【仪器用具】由笔形汞灯、汞灯支架、汞灯电源、可移动永久磁铁、聚光透镜、可切换滤光片盘、偏振片、FP标准具、成像透镜、观测目镜、测微千分表、CCD摄像头等部件组成三、实验原理1896年,塞曼(P. Zeeman)发现把光源放置于足够强的磁场中时,磁场作用于光体,使其光谱发生变化,可把每一条谱线分裂成几条偏振化的谱线,这种现象称为塞曼效应。
塞曼效应实验证实了原子具有磁矩和空间取向量子化,这一现象得到洛仑兹理论的解释。
1902年塞曼因这一发现与洛仑兹共享诺贝尔物理学奖。
1、原子的磁矩原子由原子核和电子组成,电子绕原子核具有轨道运动和自旋运动,相应的轨道角动量、轨道磁矩、自旋角动量及自旋磁矩可表示为:μL = eP L / 2m (1)P L = [ L (L+1)]1/2 h / 2π(2)μS = eP S / m (3)P S = [ S ( S +1)] h / 2π(4)式中L为轨道量子数,S 为自旋量子数,e为电子电荷,m为电子质量,h为普朗克常数。
高二物理(人教版)精品讲义—实验:用单摆测量重力加速度课程标准课标解读1.通过对单摆周期公式的分析,能够设计用单摆测量重力加速度的实验方案。
2.通过实验所测数据,能够用图像法进行相应处理。
3.通过练习,能够对题目中所给的实验方案进行分析与评价。
1.会用控制变量法探究单摆的周期与哪些因素有关.2.掌握单摆的周期公式,掌握用单摆测定重力加速度的原理和方法.知识点01测定当地的重力加速度1.原理:测出摆长l、周期T,代入公式g=4π2lT2,求出重力加速度g.2.器材:铁架台及铁夹,金属小球(有孔)、停表、细线(1m左右)、米尺、游标卡尺.3.实验步骤(1)让细线穿过金属小球上的小孔,在细线的一端打一个稍大一些的线结,制成一个单摆.(2)将铁夹固定在铁架台上端,铁架台放在实验桌边,使铁夹伸出桌面之外,然后把单摆上端固定在铁夹上,使摆球自由下垂.在单摆平衡位置处做上标记.(3)用米尺量出悬线长l′(准确到mm),用米尺和三角板(或游标卡尺)测出摆球的直径d(准确到mm),然后计算出悬点到球心的距离l=l′+d2即为摆长.(4)把此单摆从平衡位置拉开一个角度,并使这个角度不大于5°,再释放小球.当小球摆动稳定以后,经过最低位置时,用停表开始计时,测量单摆全振动30次(或50次)的时间,求出一次全振动的时间,即单摆的振动周期.(5)改变摆长,反复测量三次,算出周期T及测得的摆长l代入公式g=4π2lT2,求出重力加速度g的值,然后求g的平均值,即为当地的重力加速度的值.4.五点注意(1)选择材料时应选择细而不易伸长的线,比如用单根尼龙丝、丝线等,长度一般不应短于1m,小球应选用密度较大的金属球,直径应较小,最好不超过2cm.(2)单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象.(3)注意摆动时控制摆线偏离竖直方向的角度应很小.(4)小球摆动时,要使之保持在同一竖直平面内,不要形成圆锥摆.方法是将小球拉到一定位置后由静止释放.(5)计算单摆的振动次数时,应从摆球通过最低位置时开始计时,以后摆球应从同一方向通过最低点时计数,要多测几次(如30次或50次)全振动的时间,用取平均值的办法求周期.【即学即练1】在“探究单摆摆长与周期关系”的实验中,某同学的主要操作步骤如下:A.取一根符合实验要求的摆线,下端系一金属小球,上端固定在O点;B.在小球静止悬挂时测量出O点到小球球心的距离L;C.拉动小球使细线偏离竖直方向一个不大的角度(约5°),然后由静止释放小球;D.用秒表记录小球完成n次全振动所用的时间t(1)用所测物理量的符号表示重力加速度的测量值,其表达式为g=___________ _;(2)若测得的重力加速度数值大于当地的重力加速度的实际值,造成这一情况的原因可能是______(选填下列选项前的序号)A.测量摆长时,把摆线的长度当成了摆长B.摆线上端未牢固地固定于O点,振动中出现松动,使摆线越摆越长C.测量周期时,误将摆球(n-1)次全振动的时间t记为了n次全振动的时间,并由计算式T=求得周期D.摆球的质量过大(3)用游标上有10个小格的游标卡尺测量摆球直径如图1所示,摆球直径为____ __cm.然后用秒表记录了单摆振动50次所用的时间如图2所示,秒表读数为___ ___s.图1图2【答案】(1)(2)C(3)2.06100.0【解析】(1)单摆的周期T=,根据T=2π得,g==.(2)根据T=2π得,g=,测量摆长时,把摆线的长度当成了摆长,则摆长的测量值偏小,导致重力加速度的测量值偏小,故A错误.摆线上端未牢固地固定于O点,振动中出现松动,使摆线越摆越长,知摆长的测量值偏小,导致重力加速度测量值偏小,故B错误.测量周期时,误将摆球(n-1)次全振动的时间t记为了n次全振动的时间,则周期的测量值偏小,导致重力加速度的测量值偏大,故C正确.摆球的质量过大,不影响重力加速度的测量,故D错误.故选C.(3)游标卡尺的主尺读数为20mm,游标读数为0.1×6mm=0.6mm,则最终读数为20.6mm=2.06cm.秒表的小盘读数为90s,大盘读数为10.0s,则秒表读数为100.0s.【即学即练2】用单摆测定重力加速度的实验装置如图所示.(1)(多选)组装单摆时,应在下列器材中选用______(选填选项前的字母).A.长度为1m左右的细线B.长度为30cm左右的细线C.直径为1.8cm的塑料球D.直径为1.8cm的铁球(2)测出悬点O到小球球心的距离(摆长)L及单摆完成n次全振动所用的时间t,则重力加速度g=__________(用L、n、t表示).(3)下表是某同学记录的3组实验数据,并做了部分计算处理.请计算出第3组实验中的T=______s,g=______m/s2.【答案】(1)AD(2)(3)2.019.76【解析】(1)为减小实验误差,应选择1m左右的摆线,故选A,为减小空气阻力影响,摆球应选质量大而体积小的金属球,故选D,因此需要的实验器材是A、D.(2)单摆的周期:T=,由单摆周期公式:T=2π,解得:g==.(3)由表中实验数据可知,第三组实验中,周期:T=s=2.01s,代入数据有:g===9.76m/s2.考法01用单摆测量重力加速度的数据处理与误差分析1、数据处理(1)公式法:根据公式g=4π2n2lt2,将每次实验的l、n、t数值代入,计算重力加速度g,然后取平均值.(2)图像法:作出T2l图像,由T2=4π2lg可知T2l图线是一条过原点的直线,其斜率k=4π2g,求出k,可得g=4π2k.2、误差分析(1)本实验系统误差主要来源于单摆模型本身是否符合要求,即悬点是否固定;球、线是否符合要求;振动是圆锥摆还是同一竖直平面内的振动以及测量哪段长度作为摆长等等.(2)本实验偶然误差主要来自时间(即单摆周期)的测量上.要从摆球通过平衡位置开始计时,并采用倒数计时计数的方法,不能多记或漏记振动次数.为了减小偶然误差,进行多次测量后取平均值.(3)本实验中在长度(摆线长、摆球的直径)的测量时,读数读到毫米即可(即使用游标卡尺测摆球直径也只需读到毫米);在时间的测量中,秒表读数的有效数字的末位在秒的十分位即可.【典例1】在“用单摆测定重力加速度”的实验中(1)以下关于本实验的措施中正确的是________.A.摆角应尽量大些B.摆线应适当长些C.摆球应选择密度较大的实心金属小球D.用停表测量周期时,应从摆球摆至最高点时开始计时(2)用50分度的游标卡尺测量小球的直径,如图所示的读数是________mm,用停表记录了单摆振动50次所用的时间如图所示,停表读数为________s.(3)考虑到单摆振动时空气浮力的影响后,同学甲说:因为空气浮力与摆球重力方向相反,它对球的作用相当于重力加速度变小,因此振动周期变大,乙同学说:浮力对摆球的影响好像用一个轻一些的摆球做实验,因此振动周期不变,这两个同学的说法中________.A.甲正确B.乙正确C.都错误【答案】(1)BC(2)17.50100.2(3)A【解析】(1)在摆角小于5°的情况下单摆的运动可以看做简谐运动,实验时摆角不能太大,不能超过5°,故A错误;实验中,摆线的长度应远远大于摆球的直径,适当增加摆线的长度,可以减小实验误差,故B正确;减小空气阻力的影响,选择密度较大的实心金属小球作为摆球,故C正确;用停表测量周期时,应从球到达平衡位置开始计时,这样误差小一些,故D错误.(2)由题图可看出,游标尺上的第25条刻度线与主尺上的4.2cm刻度线对齐了,则游标尺的零刻度线与此刻度线之间的距离为25×mm=24.5mm,因4.2cm-24.5mm=17.5mm,则游标尺的零刻度线应在17mm~18mm之间,游标尺读数为25×0.02mm=0.50mm;则游标卡尺读数为17mm+0.50mm=17.50mm;由图示秒表可知,分针示数超过了半刻线,秒表示数为:60s+40.2s=100.2s;(3)考虑到单摆振动时空气浮力的影响后,物体不只受重力了,加速度也不是重力加速度,实际加速度要减小,因此振动周期变大,甲同学说法正确.题组A基础过关练一、单选题1.在“用单摆测量重力加速度的大小”的实验中,摆球摆动稳定后,当它到达最低点时启动秒表开始计时,并记录此后摆球每次经过最低点的次数n(n=1、2、3...),当数到n=40时刚好停表,此时秒表读数为t。
实验一燃烧热的测定一、实验目的1.掌握燃烧热的定义,了解恒压燃烧热和恒容燃烧热的区别;2.学会使用弹式量热计测定萘的燃烧热;3. 了解量热计的原理和构造,并掌握其使用方法。
二、实验原理1mol物质完全氧化时的反应热称为燃烧热。
所谓完全氧化,在热力学上有明确的规定,如碳完全氧化的产物是二氧化碳而不是一氧化碳。
本实验采用量热法测定燃烧热,在恒容或恒压条件下,可以测定恒压燃烧热Q p和恒容燃烧热Q v。
根据热力学第一定律,恒压燃烧热Q p等于焓的增量(△H),而恒容燃烧热Q v等于内能的增量(△U)。
如果参加反应的气体和生成的气体都看成是理想气体的话,则有下面关系式:△H =△U +△(pV)Q p= Q v + △nRT式中,△n—燃烧前后反应物和生成物中气体的物质的量的变化;R—摩尔气体常数;T—反应时热力学温度。
氧氮量热计测量装置及氧氮剖面图如下图所示:图1、氧氮量热计测量装置及氧氮剖面图根据能量守恒定律,样品完全燃烧所释放的热量使得周围介质的温度的升高。
因此,只要测定燃烧前后温度的变化△T ,就可以求得恒容燃烧热,关系式如下所示:-- =+ TV l m Q lQ m C C M样计水水()式中m 样和M 分别为样品的质量和摩尔质量;Q v 为样品的恒容燃烧热;ι和Q l 为引燃丝的长度和单位长度燃烧热;m 水和C 水为水的质量和比热容;C 计为量热计的水当量,即除水之外,量热计升高1℃所需要的热量;△T 为燃烧前后水温的变化值。
实际上,氧弹式量热计不是严格的绝热系统,加之由于传热速度的限制,燃烧后由最低温度达最高温度须一定的时间,在这段时间里系统与环境难免发生热交换,因此从温度计上读得的温度就不是真实的温差△T 。
为此,必须对温差进行校正,通常用雷诺温度校正图进行校正。
将燃烧前后温度随时间的变化作图,可得下列曲线:图2、雷诺校正曲线图图中H点表示燃烧开始;D点为读得的最高温度;从相当于室温的J 作水平线交曲线于l点,过l点做垂线ab,在将FH、GD反向延长交ab于A、C两点,A、C两点的温度差即为校正后得温度差值。
课题高中物理实验总结教学目标掌握高中常见物理实验考点重点、难点实验原理的掌握、物理实验灵活运用教学内容方法指导:物理是以实验为基础的科学,实验能力是物理学科的重要能力,物理高考历来重视考查实验能力。
一、基本实验的复习要应对各类实验试题,包括高层次的实验试题,唯一正确的方法是把要求必做的学生实验真正做懂、做会,特别是在实验原理上要认真钻研,对每一个实验步骤都要问个为什么,即不但要记住怎样做,更应该知道为什么要这样做.对基本的实验,复习过程中要注意以下六个方面的问题:(1)实验原理中学要求必做的实验可以分为4个类型:练习型、测量型、验证型、探索型.对每一种类型都要把原理弄清楚. 应特别注意的问题:验证机械能守恒定律中不需要选择第一个间距等于2mm的纸带.这个实验的正确实验步骤是先闭合电源开关,启动打点计时器,待打点计时器的工作稳定后,再释放重锤,使它自由落下,同时纸带打出一系列点迹.按这种方法操作,在未释放纸带前,打点计时器已经在纸带上打出点迹,但都打在同一点上,这就是第一点.由于开始释放的时刻是不确定的,从开始释放到打第二个点的时间一定小于0.02s,但具体时间不确定,因此第一点与第二点的距离只能知道一定小于2mm(如果这段时间恰等于0.02s,则这段位移s=gt2/2=(10×0.022/2)m=2×10-3m=2mm),但不能知道它的确切数值,也不需要知道它的确切数值.不论第一点与第二点的间距是否等于2mm,它都是从打第一点处开始作自由落体运动的,因此只要测量出第一点O与后面某一点P间的距离h,再测出打P点时的速度v,如果:gh≈( ),就算验证了这个过程中机械能守恒.(2)实验仪器要求掌握的实验仪器主要有:刻度尺、游标卡尺、螺旋测微器(千分尺)、天平、停表(秒表)、打点计时器(电火花计时仪)、弹簧秤、温度表、电流表、电压表、多用电表、滑动变阻器、电阻箱,等等。
对于使用新教材的省市,还要加上示波器等。
实验一二组分金属相图的绘制一、实验目的1.用热分析法绘制二组分金属相图。
2.掌握数字控温仪和可控升降温电炉的基本原理和使用方法。
二、实验原理将纯Pb或纯Sn以及不同含量的Pb-Sn混合物熔化后,冷却的过程中温度-时间曲线(步冷曲线)斜率发生改变,表明有相变热放出。
根据相律F=C–P+2,压强一定,单组分发生相变时F=1–2+1=0,步冷曲线斜率发生改变处应为平台。
而双组分发生相变析出一种固体时,F=2–2+1=1;步冷曲线斜率发生改变处为转折,两种固体同时析出时,F=2–3+1=0,步冷曲线斜率发生改变处为平台。
因而,从步冷曲线上有无转折或平台就可知道系统在冷却过程中有无相变化。
测定一系列组成不同样品的步冷曲线,在其上面找出发生相变时的温度,就可绘出温度-组成图。
三、实验仪器和试剂1.KWL-09可控升降温电炉---金属固体的熔化与金属熔融液的冷却装置2.SWKY-ⅠA数字控温仪---金属固体的熔化温度控制与显示装置3.含Sn0%、20%、40%、61.9%、80%、100%的Pb-Sn六个样品管。
四、实验步骤(一)数字控温仪操作步骤1、接通电源2、按压“工作/置数”键,使“置数”灯亮。
(二)可控升降温电炉操作步骤1. 将数字控温仪与可控升降温电炉进行连接。
将―冷风量调节‖逆时针旋转到底;―加热量调节‖ 逆时针旋转到底。
将装有金属的样品管放到电炉样品管摆放区。
2. 将样品管插入控温区―7‖,温度传感器Ⅰ插入控温传感器插孔―6‖,温度传感器Ⅱ插入测试区炉膛内。
3. 按数字控温仪使用说明设置控制温度、定时。
4. 当温度显示I达到所设定的温度并稳定10分钟,把温度传感器Ⅱ放入样品管内,再稳定5分钟,待样品管内试剂完全熔化后,用钳子取出样品管连同温度传感器Ⅱ一起放入测试区炉膛内。
5. 采用自然降温法冷却样品,效果比较好。
6. 数字控温仪置于“置数”状态,设置控温仪的时间间隔(20秒)按设置的控温时间间隔记录温度,直到步冷曲线的平台(注意:含Sn20%、40%、80%的样品有拐点和平台各一个)以下20℃~30℃,结束一组实验,得出该配比样品的步冷曲线数据。
大学物理实验绪论课讲义(4课时)主讲教师:白光富一、绪论部分(阐明物理实验的地位和作用,引入测量与误差部分的内容)(10-15分钟)物理实验在物理学中的地位:人类认识自然界的三种基本方法:理论方法、实验方法、计算机模拟。
物理实验是联系现实世界与理论知识的桥梁。
大学物理实验在大学教育中的地位和任务:随着人类社会的进步,科学技术越来越发展,科学实验越来越重要,任何一种新技术,新材料,新工艺都必须通过实验才能获得,且对实验人员的素质要求越来越高,因此对大学生特别是理工科的大学生,需要在物理实验的基本理论、基本方法、基本手段上进行比较系统的训练。
具体来讲,学完该门课程后,同学们在以下方面应有提高:1)通过观察,测量的分析,加强对物理概念和理论的认识;2)学习物理实验的基本知识,基本方法和基本技能;3)培养严肃认真,实事求是的科学态度与工作作风。
物理实验课的过程:实验前(理论准备、仪器准备、观测的准备)实验中(核、调、测、记)实验后(数据的整理与分析)报告要做到简洁、规范。
特别是数据表达更需要规范,在中学物理实验中一般是将实验结果表达成xx,(先向学生提问,再写出)我们通过后面的介绍,大家将认识到这种表达=x∆±方法是不严格的,下面我们对误差处理的内容进行详细的讨论。
二、测量与误差(35-40分钟)测量:指的是借助一定的仪器、量具将待测的物理量,与选定的标准量进行比较的过程。
按测量次数分为单次、多次测量。
按是否能用测量仪器直接测得结果分直接、间接测量。
测量是人类主观认识客观的过程,必然与客观值之间有一定的偏差,这称为误差。
分析误差对于我们来说是很有意义的:1)认识与改造客观2)精确的组织实验3)评价与确保质量4)促进理论的发展(牛顿引力理论、雷诺惰性气体)按定义误差可分为以下几种:绝对误差:真值—给出值(真值又可以分为理论真值、计量真值、标准器真值等,给出值可分为测得值,实验值,标称值、示值等);相对误差:误差的绝对值/真值。
实验一、直导体外的磁场实验目的1、直导体附近磁场的磁感应强度与直导体中电流的函数关系;2、直导体附近磁场的磁感应强度与距直导体的距离的函数关系。
实验设备①各种形状导体4套;②大电流变压器;③电源15VAC/12VDC/5A ;④特斯拉表;⑤霍耳元件探针;⑥钳形电流计;⑦万用数字电表;⑧米尺;⑨支撑杆、连接导线等。
有关术语磁通量;电磁感应;磁场的叠加。
实验原理根据Biot-Savart 定律,一根长AB 的直导线通过的电流强度为I ,直导体外一点Q 处的磁感应强度为:)cos (cos 4210ϕϕπμ-=rIB 方向为右手定则或按电流I 方向与矢径r 方向的矢积方向决定。
当Q 点距离导线很近时,rI B πμ20= (1)图1.求载流直流导线的磁场实验内容1、实验设备安装与调节,满足可测的实验要求:实验设备如图安装,注意各个接头一定要接触紧密。
调节电源3中心的旋钮,改变通过导体的电流,从钳形电流计6所连接的万用电表(放在交流电压的200mv 档)可直接读出导体内的电流的大小(1mv =1安培)。
将霍耳元件探针5(注意不要将其与导线接触)放在距离导线的指定距离处在特斯拉计的显示窗口就可以读出该处的磁感应强度B 。
2、将霍耳元件放在距导线1cm 左右处,从0开始调节导线中的电流,从40安培开始每隔10 安培左右读一次磁感应强度的值,直到100安培。
自行设计表格记录下相应实验数据。
3、使电流保持在90安培,改变距离r (从10cm -0.5cm )。
4、作出以上两实验的曲线,用作图法或最小二乘法求出μ0的值(注意单位用SI 国际单位制)5、改变导线形状,再按上述步骤重复做实验,分析结果得出你的结论,并用理论拟合来说明结论的正确性。
(注:设备中还有3套导线,同学可以选一或二种,并自行设计实验)。
图2. 实验设备安装连线图 拓展实验:45326 189实验二、螺线管内的磁场的测量实验目的1、测量通电螺线管线圈内的磁感应强度,讨论通电螺线管线圈内部I 、L 、x 和B 之间关系;2、计算出真空中的磁导率。
大学物理实验讲义(密度测定)密度是物质的一种常用的物理量,是物质质量与体积之比。
在实验中,可以通过测定物质的重量和体积来求出其密度。
本实验利用吊秤法和水位计法分别测定不同物质的密度。
一、吊秤法测定密度实验器材:电子称、吊秤装置、砝码、试样(铁块、铜块、铝块、锌块等)。
实验原理:将试样通过挂钩架悬挂于天平下方,测得其重量;然后将试样完全浸入量满水的容器中,测出水位上升高度,根据密度的定义可以求得物质的密度。
实验步骤:1. 确定天平的零点,将待测试样挂于吊秤上,并测出其质量(m)。
2. 将已盛满水的容器放在桌面上,用木棍调整水平度并记录水位读数(h_1)。
3. 将试样放入容器中,让其完全浸入水中,此时水位上升高度为h_2。
4. 用吊秤将试样取出,记录重量(m_1)。
5. 计算物质密度ρ:ρ = m / (V_s - V_w )其中V_s为试样的体积,V_w为水的体积。
实验注意事项:1. 确保吊秤的准确性,及时校准天平的零点。
2. 确保试样完全浸入水中,避免空气被浸入水中影响实验结果。
3. 确保容器平衡稳定,避免水的波动和震动影响实验结果。
实验器材:水位计、烧杯、试样(木块、塑料块、泥土等)。
1. 用水注满烧杯,记录水面高度为h_1。
2. 将待测试样放置于水中,记录水位的高度为h_2。
1. 测量时注意正确读取水位计的读数,避免读错或者漏读。
本实验通过吊秤法和水位计法分别测定了不同物质的密度,验证了密度的定义。
实验中要注意保证实验器材的精度和稳定性,并严格按照实验步骤操作,避免误差的发生,从而取得高精度的实验结果。
实验 六 不良导体导热系数的测定
导热系数(又称热导率)是表征物质材料热传导性质的重要物理量。
材料结构的变化与所含杂质的不同对材料导热系数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。
1804年法国物理学家毕奥通过平壁导热实验的结果最早的表述了导热定律。
稍后,1822年法国的傅立叶运用数理的方法,更准确地把它表述为后来称之为傅立叶定律的微分形式,从而奠定了导热理论。
目前测量导热系数的方法都是建立在傅立叶导热定律的基础上。
从测量的方法来说可分为两类:一类是稳态法,另一类是动态法。
在稳态法中,先利用热源在待测样品内部形成稳定的温度分布,然后进行测量。
在动态法中,待测样品中的温度分布是随时间变化的。
例如呈周期性的变化等。
本实验采用稳态法进行测量。
【实验目的】
(1)学习用稳态法测定材料的导热系数;
(2)学习如何运用实验观测的手段,尽快找到最佳的实验条件和参数,正确测出所需
的实验结果的方法;
(3)学习用物体散热速率求热传导速率的实验方法; (4)学习温度传感器的测温原理和方法。
【实验原理】
(1) 傅立叶热传导方程
1882年法国数学、物理学家傅立叶给出了一个热导体的基本公式——傅立叶导热方程式。
该方程式指出,在物体内部,取两个垂直于热传导方向、彼此相距为h 、温度分别为1T 、
2T 的平行面(设 1T >2T ),若平面面积均为 S ,在d t 时间内通过面积S 的热量d Q 满足下
述表达式:
dt dQ
=h
T T S 21-λ, (1) 式中
dt
dQ
为热流量,λ为该物质的热导率(又称导热系数),表明物质导热的能力。
λ在
数值上等于相距单位长度的两平面的温度相差1个单位时,在单位时间内通过单位面积的
热量;其单位为)
K m (W
⋅。
(2)本实验装置为导热系数测定仪,如图1所示。
本仪器可用于稳态法测量不良导体、金属和气体的导热系数,采用电热板加热和温度传感器测温。
它由电加热板、铜加热盘A,样品圆盘B ,铜散热盘C 、样品支架及调节螺丝、风扇、温度传感器以及控温与测温器组成。
固定于底座上的三个调节螺丝,支撑着一个散
热铜盘C ,散热盘C 可以借助底座内的风扇,达到稳定有效的散热。
散热盘上安放面积相同的圆盘样品B,样品B 上放置一个圆盘状加热盘A ,加热盘A 由电加热板提供热量。
实验时电热板发出的热量直接通过加热盘A 由样品上表面传入样品,同时散热盘C 借电扇有效稳定地散热,使传入样品的热量不断往样品下表面散出。
当传入的热量等于散出的
热量时样品处于稳定导热状态,这时加热盘和散热盘各维持稳定的温度1T 、2T ,它们的数值分别用安插在A 、C 侧面深孔中的温度传感器B 1、B 2来测量。
由式(1)可知,单位时间内通过待测样品B 任一圆截面的热流量为
t dQ d =2
21B B
R h T T πλ- (2)
式中B R 为圆盘样品的半径,B h 为样品厚度。
当传热达到稳定状态时,1T 和2T 的值不变,于是通过B 盘上表面的热流量与由散热铜盘C 向周围环境散热的速率相等。
因此,可通过散热铜盘C 在稳定温度2T 时的散热速率来求出热流量
dt
dQ。
实验中,在读得稳定时的1T 、
2T 后,即可将样品B 盘移去,而使加热盘A 的底面与散热铜盘C 直接接触。
当散热铜盘C
的温度上升到高于稳定时温度2T 若干摄氏度后,再将电热板移去,让散热铜盘C 自然冷却。
观测其温度T 随时间t 变化情况,然后由此求出散热铜盘C 在2T 的冷却速率
2
t
T T d dT
=,根
据比热容的定义,对温度均匀的物体,其散热速率
t
Q
δδ与冷却速率的关系为
t Q δδ=mc 2
t T T d dT
= (3) m 为黄铜盘C 的质量、c 为其比热容)就是黄铜盘在温度为2T 时的散热速率。
但须注意,这样求出的
t
Q δδ是黄铜盘的全部表面暴露于空气的散热速率,其散热表面积为22C R π+C C h R π2(其中C R 与C h 分别为黄铜盘的半径与厚度)。
然而,在观测样品稳态传热时,C 盘的上表面
(面积为2C R π)是被样品覆盖着的。
考虑到物体的散热速率与它的表面积成正比,则稳态
时铜盘散热速率的表达式应修正如下:
t Q d d = mc
)h R 2+R (2 )h R 2+R ( C C 2C C C 2
C
ππππdt dT 。
(4) 将式(4)代入式(2),得:
2
211
)()22()2(B
B C C C C R T T h h R h R dt dT mc
πλ-++=。
(5) (3)本实验的完成和实验结果的成败,关键是如何有效地控制实验条件与参数,尽快判定和最终达到样品内部温度分布的稳定状态。
在样品B 内完全达到稳定的温度分布,一般需要等待较长时间,且与1T 、2T 、加热的快慢、室温等等环境条件有关。
未开始实验时,A 、B 、C 盘的温度均与室温相等。
一开始加热,A 盘温度开始上升,上升的快慢与加热板的供电电压有关,电压高,加热快,A 盘温度上升快;随着A 盘温度的升高,热量开始通过样品B 传到C 盘,C 盘的温度开始上升,而上升的速度与C 盘的温度、C 盘本身的散热状态有关(物体的散热快慢决定于物体本身的温度与周围环境的温差)。
所以为了提高实验效率,缩短达到温度平衡状态的时间,必须有目的地控制实验条件。
一般是先加大电加热板的供电电压,使A 盘温度尽快上升至某一定值1T ,然后降低供电电压(根据A 盘温度的变化情况或降低或升高供电电压以使A 盘温度维持为定值1T ),观察A 盘和C 盘的温度变化情况确定加热电压的数值和持续时间,从而最有效地找到最佳的实验参数。
【实验装置】
导热系数测定仪、天平、游标卡尺、待测样品等。
【实验内容及步骤】
(1) 用游标卡尺测量样品盘B 和散热盘C 的半径B R 、C R 及厚度B h 、C h ,各测量一次。
用电子称称衡铜盘的质量m ,测量一次。
(2)安装、调整、熟悉整个实验装置:在支架上先后放上散热圆铜盘、待测橡胶样品和加热圆铜盘,并用固定螺母固定在支架上,调节三个调节螺丝,使样品盘的上下表面与加热盘和散热盘充分接触,但注意不宜过紧或过松。
(3) 接通电源电,用“升温”键设置加热盘温度为65.0℃,按“确定”键开始加热。
(4)当加热盘温度到达65.0±0.3℃时,每隔1min 读一下加热盘和散热盘的温度示值1t 、
2t ,如在10min 内样品上、下两盘的表面温度1t 、2t 示值都不变,即所记录的10组1t 、2t 数据都不变,即可认为系统已经达到稳定状态。
记住稳态时1t 、2t 值。
(5) 移去样品,用加热盘直接对散热盘进行加热。
使散热铜盘温度比稳态时的2t 高出15℃左右时,关闭加热盘电源,移去加热盘,让散热铜盘自然冷却。
冷却过程每隔30s 读一次散热铜盘的温度示值,直至散热铜盘温度比稳态时的温度2t 低出10℃左右为止。
【数据处理】
表1 每隔1min 读取的温度示值
表2 散热盘在稳态值2T 附近的散热速率
(1)用作图法求出散热盘的冷却速率
以时间t 为X 轴,温度3T 为Y 轴,用表2的数据绘制散热盘的冷却曲线。
然后画出曲线上温度2T 点的切线,求出此切线的斜率K ,K 的数值即为温度2T 时散热盘的冷却速率。
(2)把各数值代入式(4)求出橡胶的导热系数 。
【注意事项】
(1)将温度传感器插入小孔时,注意应将其插到洞孔底部,使测温端与铜盘接触良好。
(2)将样品抽出时,先断开加热电源,为防止高温烫伤要戴上手套,小心地升、降加热盘。
在测定散热盘的冷却过程时,加热盘(圆筒)移开后必须将它固定在基架上,并旋紧固定螺母,防止实验过程中下滑造成事故。
(3)当散热盘离开加热盘自然冷却时,冷却电扇应仍处于工作状态,以形成一个稳定的散热环境。
(4)实验过程中若发现读数呈不规则变化,请向教师及时报告。
(5)实验结束后,务必记得关闭电源,以免温度过高,造成危险。