高分子凝胶
- 格式:docx
- 大小:104.93 KB
- 文档页数:13
凝胶的作用与功能主治1. 什么是凝胶凝胶是一种具有胶态特性的物质,通常由多个分子或粒子通过化学或物理相互作用而形成的三维网络结构。
凝胶的特点是具有固态的形态稳定性和流体的流动性。
凝胶可以是天然的,例如琼脂、果冻等,也可以是人工合成的,例如聚合物凝胶、纳米凝胶等。
2. 凝胶的作用凝胶在许多领域都有广泛的应用,主要有以下几个方面的作用:2.1 高分子凝胶的作用高分子凝胶是指由高分子聚合物构成的凝胶。
其作用主要有以下几个方面:•吸附和分离:高分子凝胶具有良好的吸附性能,可以用于水处理、污水处理、生物医学等领域的分离和纯化。
•控释和缓释:高分子凝胶可以作为药物载体,实现药物的控释和缓释,提高药物的疗效。
•支架和修复:高分子凝胶可以作为细胞载体,在组织工程和再生医学中用于支持和修复受损组织。
2.2 纳米凝胶的作用纳米凝胶是指由纳米粒子构成的凝胶。
其作用主要有以下几个方面:•催化和催化剂载体:纳米凝胶具有大比表面积和高反应活性,可以用于催化和催化剂的载体。
•传感和检测:纳米凝胶可以通过改变凝胶内部的粒子排列和间距来实现对外界信号的传感和检测。
•纳米药物输送:纳米凝胶可以作为药物的载体和传输介质,提高药物的溶解度和生物利用度。
2.3 天然凝胶的作用天然凝胶是指由天然物质构成的凝胶。
其作用主要有以下几个方面:•食品和药品的增稠剂:天然凝胶如琼脂、果胶等可以作为食品和药品的增稠剂,改善口感和药物的服用性。
•伤口敷料和美容品的成分:天然凝胶如芦荟凝胶等可以作为伤口敷料和美容品的成分,具有促进伤口愈合和保湿美容的作用。
3. 凝胶的功能主治凝胶在医学、食品、化妆品等领域有不同的功能主治:3.1 医学领域•高分子凝胶可以用于药物控释和组织工程,治疗心血管疾病、癌症、骨折等疾病。
•天然凝胶如芦荟凝胶可以用于皮肤愈合和烧伤创面的保护。
•纳米凝胶可以用于药物传递和癌症治疗。
3.2 食品领域•天然凝胶如琼脂可以作为果冻、布丁等食品的增稠剂,改善食品的质感和口感。
高分子水凝胶凝胶是指溶胀的三维网状结构高分子。
即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。
药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。
水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。
水凝胶中的水有两种存在状态。
靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。
影响水凝胶形成的主要因素有浓度、温度和电解质。
每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。
对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。
电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。
水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。
根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。
不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等:(一)溶胀性:水凝胶在水中可显著溶胀。
溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。
新型高分子凝胶材料在医用药剂控释方面的应用前景分析新型高分子凝胶材料在医用药剂控释方面的应用前景分析随着科技的不断进步和人们对生活质量要求的提高,医学领域也在不断发展和创新。
其中,药物控释技术是医药领域发展中一项重要且前景广阔的技术。
药物控释技术可以增加治疗效果,减少药物剂量和次数,提高患者的治疗便利性和生活质量。
而在药物控释技术中,新型高分子凝胶材料的应用前景引人注目。
新型高分子凝胶材料是一种能够携带和释放药物的材料,具有良好的生物相容性和生物降解性。
它的应用在医用药剂控释方面具有以下几个方面的优势。
首先,新型高分子凝胶材料具有较好的控释性能。
通过调整材料的化学组成、结构和形态,可以实现不同时间段内的药物缓慢释放。
这种控释性能可以增加药物在体内的持续时间,减少药物峰值浓度和通常与峰值浓度相关的副作用。
例如,将药物包装在含有高分子凝胶材料的微球中,可以实现药物在体内的持续释放,减少药物剂量和次数,提高治疗效果。
其次,新型高分子凝胶材料具有较好的稳定性和可控性。
由于高分子凝胶材料的特殊结构和物理性质,可以稳定地包裹药物,并控制其释放速率。
这种稳定性和可控性可以避免药物在体内的过早释放,保护药物结构和活性。
同时,可以通过改变材料的物理性质,如形状、大小、孔径等,来调整药物的释放速率和方式。
例如,纳米凝胶材料可以实现更精确和定向的药物控释。
第三,新型高分子凝胶材料具有较好的多功能性。
高分子凝胶材料可以不仅用于药物控释,还可以用于药物输送、组织工程、生物传感和图像引导等多个领域。
例如,可以将药物包装在高分子凝胶材料中,然后通过药物输送系统将药物输送到特定部位,实现靶向治疗。
此外,还可以通过在高分子凝胶材料中引入功能性分子或引发剂,实现药物释放的外部或内部控制。
这种多功能性有助于提高药物治疗的准确性和个体化。
综上所述,新型高分子凝胶材料在医用药剂控释方面具有很大的应用前景。
随着生物医学领域的发展和人们对治疗效果和生活质量要求的不断提高,对于更安全、有效和方便的药物控释技术的需求也在增加。
高分子凝胶在药剂学中的应用高分子凝胶是一种高分子化合物的网络结构,其具有水含量高、机械强度好、可逆相互作用等特点,因此在药剂学中有着广泛的应用。
下面将从递送系统、生物传感器和组织工程方面介绍高分子凝胶在药剂学中的应用。
首先,高分子凝胶在药剂学中递送系统的应用非常广泛。
递送系统是指将药物包装在适当的载体中,通过控制释放速率和递送路径,实现药物的定点、定时和定量递送。
高分子凝胶作为一种载体材料,可以有效地控制药物的释放速率和递送路径。
例如,聚甲基丙烯酸钠(sodium polyacrylate,SPA)凝胶常用于制备透明、柔软的眼药水凝胶,可以在眼球表面形成一层保护膜,延长眼药水在眼睛上停留的时间,提高药物的疗效。
另外,聚乙烯醇(polyvinyl alcohol,PVA)凝胶也被广泛应用于递送系统的制备,可以通过调节PVA的交联度和浓度来控制药物的释放速率。
这些高分子凝胶递送系统在药物治疗方面具有很大的潜力,可以提高药物的生物利用度和疗效。
其次,高分子凝胶还被应用于生物传感器领域。
生物传感器是一种能够检测生物分子或生物过程的装置,用于诊断、监测和治疗疾病。
高分子凝胶作为生物传感器的载体,可以稳定地固定生物分子,保证其在传感器表面的稳定存在,并能够实现生物分子与检测系统之间的良好质子传导。
例如,刚性的聚丙烯酸甲酯(polymethyl methacrylate,PMMA)凝胶可以用于制备离子选择电极,用于检测不同离子的浓度变化。
另外,聚丙烯酸(polyacrylic acid,PAA)凝胶可以被修饰为具有生物亲和性的表面,用于固定生物分子,并在传感器中实现生物分子的检测。
这些高分子凝胶生物传感器具有灵敏度高、稳定性好的特点,具有很大的应用潜力。
最后,高分子凝胶还被广泛应用于组织工程领域。
组织工程是一种将细胞和支架材料结合起来,用于修复和重建缺损组织的技术。
高分子凝胶可以被用作组织工程支架的基础材料,为细胞提供生长、附着和分化的环境。
高分子水凝胶综述摘要在这篇综述中,笔者以高分子水凝胶为探究的领域,围绕其产生、发展、应用等诸方面,浅层次地加以论述。
论文大体的探讨方式是这样:首先以高分子水凝胶的出现为基点,考察其定义的由来以及与吸水树脂之间的关系;然后以高分子水凝胶潜在应用价值的属性为导向线,对其进行分类,讨论相应的制备方法和水凝胶性能各类表征方法;接着突出强调环境敏感性水凝胶的制备及响应原理;而水凝胶实际应用及缺陷则作为最后系统概括。
关键词:高分子水凝胶应用性能制备产生、定义与比较高分子水凝胶的合成可以追溯到20世纪50年代后期,Wichterle和Lim合成了第一个医用甲基丙烯酸羟乙酯(HEMA)水凝胶[1]。
对于高分子水凝胶的定义,各个文献报道的都很接近,即由带有化学或物理交联的亲水性高分子链形成的三维固体网络[2],在水环境下高分子水凝胶能够发生吸水溶胀,甚至有的吸水能超过其自重好多倍(图1)图1凝胶吸水溶胀前与溶胀后的比较(左侧为吸水溶胀后,右侧为吸水溶胀前)同时,笔者发现,高分子水凝胶与吸水树脂之间的关联需要被加以认知。
吸水树脂本身就是一种新型功能高分子材料,具有亲水基团,能吸收大量水分而又能保持水分不外流。
当水分子通过扩散作用及毛细作用进入到树脂中时,形成的树脂即称为高分子水凝胶。
也就是说,吸水树脂是高分子水凝胶的前身,且当树脂经吸水后才成为水凝胶。
此外,对于高分子水凝胶的吸水并且保水的机理也需要加以阐述。
从化学结构上来分析,凝胶是分子中含有亲水性基团和疏水性基团的交联型高分子。
在凝胶的交联网格里,必然存在很多疏水性基团朝外,亲水性基团朝里的结构,在这样的结构下,亲水性基团与水分子以氢键等方式进行结合,疏水性基团在外头形成的屏障可以有效地间隔不同的内亲水网格,起到容纳水分子容器的作用(图2)。
OOH R O H R OO H R O OH RO OH R O OHR OOH R OHH图2 凝胶保持水分子示意图图2中,右下侧的疏水性基团是朝内的,这表明凝胶亲水性网格结构内部也是含有非亲水性基团的;而水分子与亲水链上的氧之间形成了氢键。
高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用一、本文概述随着科技的不断进步,柔性可穿戴电子设备已成为当前研究的热点。
这类设备以其独特的柔韧性、可穿戴性和舒适性,为人们的日常生活带来了极大的便利。
然而,其性能的稳定性和持久性仍然是制约其进一步发展的关键因素。
高分子导电水凝胶作为一种新兴的材料,因其良好的导电性、生物相容性和高柔韧性,在柔性可穿戴电子设备中具有广阔的应用前景。
本文旨在探讨高分子导电水凝胶的制备方法,并分析其在柔性可穿戴电子设备中的应用,以期为未来该领域的研究提供参考和借鉴。
文章首先将对高分子导电水凝胶的基本概念和特性进行介绍,阐述其在柔性可穿戴电子设备中的潜在优势。
随后,将详细介绍高分子导电水凝胶的制备方法,包括原材料的选择、反应条件的优化以及后处理工艺的改进等。
在此基础上,文章将重点探讨高分子导电水凝胶在柔性可穿戴电子设备中的应用,如柔性传感器、柔性显示屏和柔性电池等。
还将对高分子导电水凝胶在实际应用中面临的挑战和问题进行深入分析和讨论。
文章将总结高分子导电水凝胶在柔性可穿戴电子设备中的研究现状和发展趋势,展望其未来的应用前景。
通过本文的阐述,旨在推动高分子导电水凝胶在柔性可穿戴电子设备领域的研究和发展,为相关领域的科研人员和企业提供参考和指导。
二、高分子导电水凝胶的制备高分子导电水凝胶的制备主要涉及到聚合物的合成、交联反应以及导电物质的引入等步骤。
选择适合的聚合物前驱体,这些前驱体通常具有良好的水溶性或水溶胀性,如聚丙烯酸(PAA)、聚甲基丙烯酸(PMAA)等。
然后,在适当的条件下进行聚合反应,如自由基聚合、离子聚合等,形成聚合物的三维网络结构。
在聚合过程中,需要引入交联剂以增强水凝胶的机械强度和网络稳定性。
常用的交联剂包括乙二醇二甲基丙烯酸酯(EDMA)、N,N'-亚甲基双丙烯酰胺(MBA)等。
这些交联剂能够与聚合物链发生共价键合,形成稳定的交联网络。
接下来,为了赋予水凝胶导电性,需要将导电物质引入聚合物网络中。
医用退热凝胶的种类
退热凝胶有多种种类,如新型高分子凝胶、传统医用退热贴所采用的水凝胶等。
这些种类的凝胶都可以被制成降温产品,利用其挥发散热的原理辅助退热。
对于新型高分子凝胶,其特点在于采用水凝胶、对羟基苯甲酸、水、亲水性高分子物质(包含甘油)为主要成分,将其涂抹于患者额头、太阳穴、大椎穴、腋窝、腘窝(膝盖内侧)、大腿和小腿内侧等部位的皮肤表面,利用凝胶挥发散热的原理,对局部降温来实行辅助退热。
而传统的医用退热贴所采用的水凝胶,其成分通常比较昏暗浑浊,含水量少且水分不易蒸发,退热效果差、退热时间短。
总的来说,医用退热凝胶的种类会因采用的成分和制作工艺不同而有所区别。
高分子的凝胶含量测定方法
高分子的凝胶含量测定是通过测量高分子材料中凝胶的含量来得出的。
以下是一种常用的测定方法:
1. 准备样品:将需要测定的高分子材料样品切成小块,并且将其干燥,以去除水分。
2. 凝胶提取:将干燥的高分子样品放入适当的溶剂中,使其溶解。
溶剂的选择应该能够使凝胶溶解,但不会对高分子材料产生影响。
3. 高分子溶液离心:将溶解后的高分子样品离心,以分离出其中的凝胶。
4. 凝胶沉降:将凝胶从上述离心溶液中分离出来,可以通过将其沉积在管底或过滤来实现。
5. 重量测定:将分离出的凝胶放入干燥器中,使其彻底干燥。
然后使用天平测量干燥后的凝胶的质量。
6. 计算凝胶含量:将凝胶的质量除以样品的总质量,并将结果乘以100,可以得到凝胶的含量。
这种方法可以用于测定不同类型和形状的高分子材料的凝胶含量。
但需要注意的是,在实际操作中,可能会因为实验条件的不同而出现一些误差,因此在进行测定时需要进行实验控制和重复实验,以获得准确的结果。
高分子溶胶凝胶制备技术是一种将高分子材料制备成颗粒状或膜状的新型技术,具有广泛的应用前景。
本文将从基本概念、制备方法、影响因素、应用前景几个方面进行论述。
一、基本概念高分子溶胶凝胶是指在适宜的条件下,通过添加适量的交联剂使高分子材料在液态状态下形成网状结构,形成颗粒状或膜状的固体材料。
相比传统高分子材料,具有更高的表面积、更好的可控性和更好的性能稳定性。
同时,还可以通过改变制备条件和交联剂种类来调节其吸附性质和催化性质等特性。
二、制备方法高分子溶胶凝胶制备方法较多,一般包括以下几类:(1)洛伦兹方程制法:通过溶剂蒸发或反应溶液中高分子形成具有孔隙结构的凝胶。
此方法适合制备多孔材料,如具有蓝颜色的钴铝水滑石、锆焙烧土、锰氧化物等。
(2)凝胶离子交换法:将离子交换树脂等通过孔壁无机杂化剂交换,从而形成具有阳离子交换性质或阴离子交换性质的凝胶材料。
适合制备离子交换树脂。
(3)原位凝胶化法:在反应溶液中加入适量的交联剂,通过反应生成凝胶。
(4)前体凝胶法:通过合成银凝胶、锡凝胶等先进前体化学,制备具有光、电、磁、催化等多种性质的杂化材料。
(5)凝胶自组装法:通过自组装能力提高凝胶机械性能和比表面积。
以上制备方法各有特点,选择合适的制备方法可以得到特定性质的高分子溶胶凝胶材料。
三、影响因素高分子溶胶凝胶材料的制备受多种因素的影响,包括材料的性质、制备方法、交联剂和模板剂等。
其中重要因素如下:(1)材料性质:材料的分子量、亲水/疏水性、官能团等特性会直接影响凝胶的结构和孔径大小。
(2)制备方法:不同的制备方法会直接影响凝胶的形态和孔径大小。
(3)交联剂:交联剂的种类和浓度会对凝胶的孔径大小、形态和机械性质等产生影响。
(4)模板剂:适当的模板剂可以提高凝胶材料的比表面积和特定性质。
四、应用前景高分子溶胶凝胶材料的应用前景十分广泛。
其中,一些重要的应用包括但不限于:(1)传感器:通过选择合适的功能化基团,可以制备出具有高灵敏度和高选择性的传感器。
姓名:王敏学校:南通大学学院:化学化工学院专业:高分子材料与工程指导老师:陆亚请目录2、智能高分子凝胶的介绍..........................................3、智能凝胶的体积相变原理........................................4、智能高分子凝胶对各种外界刺激的晌应性..........................4.1溶剂组成..................................................4.2温度.....................................................4.3pH值.....................................................4.4光.......................................................4.5电场.....................................................4.6磁场.....................................................4.7化学物质..................................................4.8表面活性剂................................................4.9温度与PH双重性...........................................5、智能凝胶的应用................................................5.1药物释放系统(DDS) ........................................5.2化学机械.................................................5.3化学阀...................................................5.4人工触觉系统.............................................5.5调光材料..................................................5.6组织工程..................................................5.7环境工程..................................................5.8智能膜....................................................5.9灵巧凝胶表面..............................................6、展望.......................................................... 致谢............................................................. 参考文献:.......................................................智能高分子凝胶刺激响应的分类与应用(南通大学化学化工学院王敏)摘要:当今世界,高分子材料被用于生产与储存、健康与医疗保健、通讯与信息处理、交通、建筑以及能源的生产和利用,还对人们的休闲和创造活动有影响。
在新的世纪里,人们对高分子材料依赖性会更大。
本文介绍了智能高分子凝胶的定义、分类、研究历史和体积相变原理。
按外界环境刺激因素如温度、pH值、光、电场和磁场等分类,介绍了智能高分子凝胶的特性,并展望了智能高分子凝胶的应用前景。
关键词:智能材料、凝胶、高分子材料、刺激响应性、应用正文1、前言智能高分子凝胶展现了具有传感、处理和执行三重功能的智能材料的特征,反映了信息科学与材料科学的融合。
今后,智能高分子凝胶的发展方向是利用仿生学的原理,以自然界中的生物体为蓝本,开发出在功能上接近甚至超过生物体组织的智能高分子凝胶。
刺激响应性高分子凝胶是结构、物理和或化学性质可以随外界环境改变而变化的一类智能材料。
根据凝胶高分子网络中所含液体的不同,有水凝胶和有机凝胶之分,水凝胶是最常见也是最重要的一种,绝大多数生物体内存在的天然凝胶均属于水凝胶。
由于响应性水凝胶在药物控释系统、记忆元件开关、人造肌肉、化工分离等领域的潜在应用价值,引起了国内外许多学者的广泛关注。
目前,对智能水凝胶的研究已成为功能高分子研究领域的一大热点,尤其是近年来,有关水凝胶的研究得到空前的发展,涌现出许多阶段性成果。
本文着重讲述刺激响应性水凝胶的刺激响应的分类与应用以及研究现状。
[1]2、智能高分子凝胶的介绍高分子凝胶是指三维高分子网络与溶剂组成的体系,网络交联结构使其不溶解而保持一定的形状,因为凝胶结构中含有亲溶剂性基团,使之可被因为凝胶结构中含有亲溶剂性基团,使之可被溶剂溶胀而达到平衡体。
[1]凝胶的大分子主链或侧链上含有离子解离性、极性或疏水性基团,对溶剂组分、温度、pH值、光、电场、磁场等的变化能产生可逆的、不连续(或连续)的体积变化,所以可以通过控制高分子凝胶网络的微观结构与形态,来影响其溶胀或伸缩性能,从而使凝胶对外界刺激作出灵敏的响应,表现出智能。
[2]凝胶的性质有:⑴触变性物理凝胶受外力作用,网状结构被破坏而变成流体,外部作用停止后,又恢复成半固体凝胶结构,这种凝胶与溶胶相互转化的过程,称为触变性。
⑵溶胀性凝胶吸收流体后自身体积明显增大的现象,是弹性凝胶的重要特性。
⑶脱水收缩性溶胀的凝胶在低蒸气压下保存,流体缓慢地自动从凝胶中分离出来的现象。
⑷透过性凝胶与流体性质相似,可以作为扩散介质。
[1]3、智能凝胶的体积相变原理吸水溶胀是水凝胶的一个重要特性,水凝胶的溶胀过程实际上是两个相反趋势的平衡结果一方面,溶剂力图渗人到网络内使体积溶胀,导致三维分子网络的伸展另一方面,交联点之间分子链的伸展降低了高聚物的构象嫡值,分子网络中的弹性收缩力力图使分子网络收缩,当这两种相反的趋势相互抵消时,就达到了溶胀平衡。
Tanaka曾发现渗透压是凝胶溶胀的推动力,渗透压二的大小可由着名的Flory--Huggins理论导出:[3]式中,R为气体常数,T 为绝对温度。
为溶剂的摩尔体积,为聚合物一水相互作用参数,代表网络的体积分数,表示无规线团聚合物链的体积分数,和,分别是凝胶和溶液中离子的总浓度。
V 则是时单位体积组成链的数目。
体积相转变是水凝胶的体积随外界环境因子的变化产生不连续变化的现象。
它可由溶胀相转变成收缩相,也可由收缩相转变成溶胀相。
发生体积相转变现象的原因是分子之间的范德华力、氢键、疏水相相互作用力和由聚合物链上带的电荷产生的静电作用力种相互作用力的结果。
[4]根据Flory--Huggins理论中凝胶平衡溶胀度与归一化温度的关系式可知,当每根分子链所带的电荷数为零或较少时,凝胶的体积随归一化的变化作连续的变化当增大到一定值后,凝胶的体积随的变化作不连续的变化,即发生体积相变。
[1]外界环境因子的变化。
44.1溶剂组成利用高分子与溶剂之间的相互作用力的变化、溶胀高分子凝胶的大分子链的线团一球的转变,使凝胶由溶胀状态急剧地转化为退溶胀状态,从而高分子凝胶表现出对溶剂组分变化的响应,这类材料可由聚乙烯醇、聚丙烯酰胺等制成。
如:聚丙烯酰胺(PAAM)纤维经环化处理后除去未环化的部分以及未参加反应的物质,干燥后即得到PAAM凝胶纤维。
这种纤维在水中伸长,在丙酮中收缩,而且其体积随溶剂体系中丙酮含量的增加发生连续的收缩。
如果在凝胶网络中引入电解质离子成部分离子化凝胶,则在某一溶剂组成时产生不连续的体积变化。
[2]4.2温度高分子凝胶对温度的响应性可分为三种:升温时凝胶收缩的称为低温溶解型;升温时凝胶溶胀的称为高温溶解型;具有两种相图的凝胶,即升温溶胀,再继续升温收缩的,叫做再回归型。
以聚异丙基丙烯酰胺为例,在某温度下。
水和/脱水的变化伴随急剧吸热或放热。
这类聚合物的溶胀温度响应性随其取代基种类而异,故可以利用引入共聚单体而调控温度依赖性。
根据研究,温度敏感凝胶在溶剂中溶胀时,凝胶体系与溶剂的相互作用决定其溶胀对温度的依赖性。
[1]聚N一异丙基丙烯酰胺凝胶属于低温溶解型,它在较小的温度范围内可表现出明显的亲水和疏水变化,其临界溶解温度下限在32C左右。
聚N一异丙基丙烯酰胺大分子链上存在着亲水和疏水基团的平衡,其热诱导相变的主要机理就是聚合物释放出了疏水界面上的水,从而引起了聚合物的析出。
Xiang—zhengzhang用体积比为1:1的水和三乙氧基甲烷作为NIPA氧化一还原聚合交联的混合溶剂,对该水凝胶进行重量分析表征,发现它比传统方法合成的产品具有更高的饱和溶胀度,且对温度变化的敏感性提高,具有很快的去溶胀率,在几分钟的时间里就可失去几乎所有的水分。
聚丙烯酸和聚,N,N一二甲基丙烯酞胺IPN水凝胶是低温收缩型的,低温下凝胶网络内形成氢键,体积收缩高温下氢键解离,凝胶溶胀。
[3]Yuzo等制备了一种新颖的接枝型水凝胶,该凝胶和传统水凝胶相比显示出非常快的温度响应性,该接枝型的聚合物水凝胶在温度升高到临界点时,自由运动的接枝链导致疏水性聚集.引起整个网络脱水,从而引起剧烈的收缩。
白渝平等采用化学交联和循环冰冻一解冻相结合的顺序逼近法,制备了聚乙烯醇/聚丙烯酸(PVA/PAA)IPN温敏水凝胶,发现通过调节凝胶中或交联剂的含量可以控制突变体积的大小,含量越高,凝胶的溶胀度越大,在30℃时,交联剂的含量1.0mol%为时水凝胶的溶胀度最大。
[4]Kimiko研究了不同温度下水凝胶在水中的溶胀和收缩性能。
他们认为水分子在水凝胶中有三种存在形式(1)吸附在聚合物疏水链附近的水化层(2)在较松散的聚合物网络里自由移动的水分子(3)通过氢键连接在亲水性基团上的水分子。
[1]4.3pH值在高分子凝胶网络上可以引入强电离基团(如磺酸基)或弱电离基团(如羧酸基)。
pH 值的变化不会改变强电解质凝胶的溶胀特性,但对弱电解质凝胶的溶胀则有很大影响。
这是因为pH值的变化会引起弱电解质凝胶中电荷密度发生变化。
从而改变凝胶的渗透压。
对pH值变化敏感的高分子凝胶为由聚电解质构成的凝胶,如聚丙烯酸系PAAC。
对于聚丙烯酸凝胶,pH≤3或pH≥11时,凝胶内外的pH值相等,凝胶内部处于自由离子状态。