第7章-热传导
- 格式:pptx
- 大小:3.62 MB
- 文档页数:126
第三章 非稳态热传导一、名词解释非稳态导热:物体的温度随时间而变化的导热过程称为非稳态导热。
数Bi :Bi 数是物体内部导热热阻λδ与表面上换热热阻h 1之比的相对值,即:λδh Bi =o F 数:傅里叶准则数2τl a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。
二、解答题和分析题1、数Bi 、o F 数、时间常数c τ的公式及物理意义。
答:数Bi :λδh Bi =,表示固体内部导热热阻与界面上换热热阻之比。
2τl a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。
hA cVc ρτ=, c τ数值上等于过余温度为初始过余温度的36.8%时所经历的时间。
2、0→Bi 和∞→Bi 各代表什么样的换热条件?有人认为0→Bi 代表了绝热工况,是否正确,为什么?答:1)0→Bi 时,物体表面的换热热阻远大于物体内部导热热阻。
说明换热热阻主要在边界,物 体内部导热热阻几乎可以忽略,因而任一时刻物体内部的温度分布趋于均匀,并随时间的推移整体地下降。
可以用集总参数法进行分析求解。
2)∞→Bi 时,物体表面的换热热阻远小于物体内部导热热阻。
在这种情况下,非稳态导热过程刚开始进行的一瞬间,物体的表面温度就等于周围介质的温度。
但是,因为物体内部导热热阻较大,所以物体内部各处的温度相差较大,随着时间的推移,物体内部各点的温度逐渐下降。
在这种情况下,物体的冷却或加热过程的强度只决定于物体的性质和几何尺寸。
3)认为0→Bi 代表绝热工况是不正确的,0→Bi 的工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。
3、厚度为δ2,导热系数为λ,初始温度均匀并为0t 的无限大平板,两侧突然暴露在温度为∞t ,表面换热系数为h 的流体中。
试从热阻的角度分析0→Bi 、∞→Bi 平板内部温度如何变化,并定性画出此时平板内部的温度随时间的变化示意曲线。
答:1)0→Bi 时,平板表面的换热热阻远大于其内部导热热阻。
第6、7章 热力学第I 、第II 定律原理及应用热力学第I 定律就是能量守恒定律:各种形式能量间相互转化或传递,在转化或传递的过程中,总的能量数量是守恒的。
能量的表现方式一是物质自身的蓄能,如内能、动能、位能和焓、自由能等各种热力学能等,它们都是状态函数;二是以系统和环境间传递的方式表现出来,如热和功,它们均与变化所经历的过程有关,是过程函数。
热力学第II 定律揭示了热和功之间的转化规律。
能量不仅有数量多寡,而且有质量(品位)的高低之分。
从做功能力上看,功可以全部转化为热,而热只能部分变为功,热和功是两种不同品位的能量。
运用热力学第I 定律和第II 定律,研究化工过程中的能量变化,对化工过程的能量转化、传递、使用和损失情况进行分析,揭示能量消耗的大小、原因和部位,为改进工艺过程,提高能量的利用率指出方向和方法,这是过程热力学分析的核心内容。
本章学习要求本章要求学生掌握敞开系统的热力学第I 定律(即能量衡算方程)及其工程应用;热力学第II 定律三种定性表述方式和熵衡算方程,弄清一些基本概念,如系统与环境、环境状态、可逆的热功转换装置(即Carnot 循环)、理想功与损失功、有效能与无效能等,学会应用熵衡算方程、理想功与损失功的计算及有效能衡算方法对化工单元过程进行热力学分析,对能量的使用和消耗进行评价。
重点与难点6 热力学第I 定律及其工程应用6.1 封闭系统能量衡算方程系统在过程前后的能量变化E ∆应与系统在该过程中传递的热量Q 与功W 的代数和:21E E E Q W ∆=-=+(5-1)通常规定:系统吸热为正,放热为负;系统对环境作功,得功为负,式(5-1)即是热力学第I 定律的数学表达式。
6.2 敞开系统的热力学第I 定律22Si i i i j j j j i jW 11Q dE m (h gz u )m (h gz u )22dt dt dt ''δδ++-+++-=∑∑ (5-5)式(5-5)即为敞开系统的热力学第I 定律表达式,其中:i i i h U P V =+。
(完整版)传热学知识点传热学主要知识点1. 热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2. 导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3. 对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4 对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。
q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。
a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。
7. 导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1 度时、每单位壁面面积上、单位时间内所传递的热量。
影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
第一章导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。
傅立叶定律(导热基本定律):q ' = -k ?dT q ' = -k ?T = -k (i ?T + j ?T + k ?T) x ?dx ?x ?y ?zq ' = -k ?T n ?nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。
传热学第一章、绪论1.导热:物体的各个部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。
2.热流量:单位时间内通过某一给定面积的热量称为热流量。
3.热流密度:通过单位面积的热流量称为热流密度。
4.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移、冷热流体相互掺混所导致的热量传递过程。
5.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。
6.热辐射:因热的原因而发出的辐射的想象称为热辐射。
7.传热系数:传热系数树枝上等于冷热流体见温差℃1=∆t ,传热面积21m A =时的热流量值,是表征传热过程强度的标尺。
8.传热过程:我们将热量由壁面一侧流体通过壁面传递到另一侧流体的过程。
第二章、导热基本定律及稳态导热1.温度场:各个时刻物体中各点温度所组成的集合,又称为温度分布。
2.等温面:温度场中同一瞬间温度相同的各点连成的面。
3.傅里叶定律的文字表达:在导热过程中,单位时间内通过给定截面积的导热量,正比于垂直该界面方向上的温度变化率和截面面积,而热量的传递方向则与温度升高的方向相反。
4.热流线:热流线是一组与等温面处处垂直的的曲线,通过平面上人一点的热流线与改点热流密度矢量相切。
5.内热源:内热源值表示在单位时间内单位体积中产生或消耗的热量。
6.第一类边界条件:规定了边界点上的温度值。
第二类边界条件:规定了边界上的热流密度值。
.第三类边界条件:规定了边界上物体与周围流体间的表面传热系数h 及周围流体的温度ft 7.热扩散率a :ca ρλ=,a 越大,表示物体内部温度扯平的能力越大;a 越大,表示材料中温度变化传播的越迅速。
8.肋片:肋片是依附于基础表面上的扩展表面。
第三章、非稳态导热1.非稳态导热:物体的温度随时间的变化而变化的导热过程称为非稳态导热。
2.非正规状况阶段:温度分布主要受出事温度分布的控制,称为非稳态导热。