南农大-高数试卷13-14
- 格式:pdf
- 大小:106.89 KB
- 文档页数:4
南京农业大学独自考试一试题111 政治(单) 2004-2005211 英语(单) 2004-2005213 日语(单) 2004农学院③311 高等数学 2004-2005312 化学 2004-2005④401 生物化学 2004-2005402 植物生理学 2004-2005④403 农业生态学 2004-2005④404 遗传学 2004-2005农业概论 2004作物育种学2004植物保护学院③311 高等数学 2004-2005312 化学 2004-2005④401 生物化学 2004-2005405 剖析化学 2004-2005动物学 2004资源与环境科学学院③311 高等数学 2004-2005312 化学 2004-2005④406 一般生态学 2004-2005③407 环境化学 2004-2005④408 微生物学 2004-2005409 环境科学导论2004-2005④410 土壤学 2004-2005④402 植物生理学 2004-2005土壤农化剖析2004园艺学院③311 高等数学 2004-2005312 化学 2004-2005④402 植物生理学 2004-2005③404 遗传学 2004-2005③324 园林史 2004-2005④401 生物化学 2004-2005411 园林规划设计 2004-2005动物科技学院③311 高等数学 2004-2005312 化学 2004-2005④412 动物生理生化 2004-2005③403 农业生态学 2004-2005经济与贸易学院④413 西方经济学 2004-2005动物医学院③312 化学 2004-2005④414 动物生物化学 2004-2005动物生理学2004食品科技学院③312 化学 2004-2005④401 生物化学 2004-2005食品工程原理2004公共管理学院④415 资源与环境经济学2005③311 高等数学 2004-2005④416 地理信息系统 2004-2005325 政治学 2004-2005④417 管理学基础 2004-2005413 西方经济学 2004-2005④418 土地经济学 2004-2005人文学院③321 哲学基础 2004-2005④430 管理学概论 2005③322 社会学研究方法 2004-2005④419 社会学理论 2004-2005③323 中国通史 2001-2002 ,2004-2005④420 古代汉语 2004-2005④421 科学技术史 2004-2005公共行政学2004理学院③328 数学剖析 2004-2005④422 高等代数 2004-2005③311 高等数学 2004-2005④423 物理学 2004-2005424 电子技术 2004④425 有机化学 2004-2005概率统计 2004无机化学 2004工学院④427 理论力学 2004429 电路 2004312 化学 2004-2005④409 环境科学导论 2004-2005渔业学院③311 高等数学 2004-2005312 化学 2004-2005④414 动物生物化学 2004-2005431 水生生物学 2004-2005信息科学技术学院③329 文件信息学 2004-2005④432 文件分类编目 2004-2005④433 信息检索 2004-2005外国语学院②221 英语二外 2004-2005②223 日语二外 2004-2005224 法语二外 2005222 俄语二外 2004-2005225 德语二外 2004-2005③326 基础英语 2004-2005④434 英汉互译 2004-2005③327 日语专业基础综合 2004-2005④435 日语读解与写作 2004生命科学学院③311 高等数学 2004-2005④401 生物化学 2004-2005402 植物生理学 2004-2005③312 化学 2004-2005。
2023-2024学年江苏省连云港市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足(1+i )•z =i ,则此复数z 的虚部为( ) A .12B .−12C .12iD .−12i2.已知集合S ={x |x =k −12,k ∈Z },T ={x |x =2k +12,k ∈Z },则S ∩T =( )A .SB .TC .ZD .R3.随机变量X ~N (2,σ2),若P (X ≤1.5)=m ,P (2≤X ≤2.5)=1﹣3m ,则P (X ≤2.5)=( ) A .0.25B .0.5C .0.75D .0.854.图1是蜂房正对着蜜蜂巢穴开口的截面图,它是由许多个正六边形互相紧挨在一起构成.可以看出蜂房的底部是由三个大小相同的菱形组成,且这三个菱形不在一个平面上.研究表明蜂房底部的菱形相似于菱形十二面体的表面菱形,图2是一个菱形十二面体,它是由十二个相同的菱形围成的几何体,也可以看作正方体的各个正方形面上扣上一个正四棱锥(如图3),且平面ABCD 与平面ATBS 的夹角为45°,则cos ∠ASB =( )A .√22B .√32 C .13D .2√235.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有( ) A .108种B .90种C .72种D .36种6.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左顶点为M ,左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线交C 于A ,B 两点,若∠AMB 为锐角,则C 的离心率的取值范围是( ) A .(1,√3)B .(1,2)C .(√3,+∞)D .(2,+∞)7.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =4,A =π3,且BE 为边AC 上的高,AD 为边BC 上的中线,则AD →•BE →的值为( )A .2B .﹣2C .6D .﹣68.已知a =ln 3,b =log 2e ,c =6(2−ln2)e,则a ,b ,c 的大小关系是( ) A .a <b <cB .b <c <aC .c <a <bD .a <c <b二、选择题:本题共4小题,每小题5分,共20分。
2023-2024学年江苏省南京市高一(上)期末数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 1.已知集合M ={﹣1,0,1},N ={0,1,2},则M ∪N =( ) A .{﹣1,0,1,2} B .{﹣1,0,1} C .{﹣1,0,2}D .{0,1}2.命题“∀x ∈R ,x +2≤0”的否定是( ) A .∃x ∈R ,x +2>0 B .∃x ∈R ,x +2≤0 C .∀x ∈R ,x +2>0D .∀x ∉R ,x +2>0 3.若函数f (x )=x 2﹣mx +3在区间(﹣∞,2)上单调递减,则实数m 的取值范围是( ) A .(﹣∞,2]B .[2,+∞)C .(﹣∞,4]D .[4,+∞)4.已知角θ的终边经过点P (x ,﹣5),且tanθ=512,则x 的值是( ) A .﹣13B .﹣12C .12D .135.已知a =log 0.32,b =log 0.33,c =log 32,则下列结论正确的是( ) A .a <b <cB .a <c <bC .c <a <bD .b <a <c6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣17.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√328.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( )A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab10.已知关于x 的不等式ax 2+bx +c >0的解集是{x |1<x <3},则( ) A .a <0B .a +b +c =0C .4a +2b +c <0D .不等式cx 2﹣bx +a <0的解集是{x |x <﹣1或x >−13}11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f (x )=cot x ,其中cotx =tan(π2−x),则下列关于余切函数的说法正确的是( )A .定义域为{x |x ≠k π,k ∈Z }B .在区间(π2,π)上单调递增C .与正切函数有相同的对称中心D .将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =cot x 的图象12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 . 14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 .15.已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数,若f (lgx )<f (1),则实数x 的取值范围是 .16.已知函数f(x)=log 9x +12x −1的零点为x 1.若x 1∈(k ,k +1)(k ∈Z ),则k 的值是 ;若函数g (x )=3x +x ﹣2的零点为x 2,则x 1+x 2的值是 .四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明, 17.(10分)(1)已知a +a﹣1=3,求a 12+a−12的值;(2)求值:e ln 2+(lg 5)2+lg 5lg 2+lg 20.18.(12分)设全集U =R ,已知集合A ={x |x 2﹣5x +4≤0},B ={x |m ≤x ≤m +1}. (1)若A ∩B =∅,求实数m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分条件,求实数m 的取值范围.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值; (2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.2023-2024学年江苏省南京市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符1.已知集合M={﹣1,0,1},N={0,1,2},则M∪N=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{﹣1,0,2}D.{0,1}解:因为集合M={﹣1,0,1},N={0,1,2},所以M∪N={﹣1,0,1,2},故选:A.2.命题“∀x∈R,x+2≤0”的否定是()A.∃x∈R,x+2>0B.∃x∈R,x+2≤0C.∀x∈R,x+2>0D.∀x∉R,x+2>0解:命题为全称命题,则命题的否定为“∃x∈R,x+2>0”.故选:A.3.若函数f(x)=x2﹣mx+3在区间(﹣∞,2)上单调递减,则实数m的取值范围是()A.(﹣∞,2]B.[2,+∞)C.(﹣∞,4]D.[4,+∞)解:函数f(x)=x2﹣mx+3开口向上,对称轴方程为x=m 2,所以函数的单调递减区间为(﹣∞,m2 ],要使在区间(﹣∞,2)上单调递减,则m2≥2,解得m≥4.即m的范围为[4,+∞).故选:D.4.已知角θ的终边经过点P(x,﹣5),且tanθ=512,则x的值是()A.﹣13B.﹣12C.12D.13解:由题意得,tanθ=512=−5x,故x=﹣12.故选:B.5.已知a=log0.32,b=log0.33,c=log32,则下列结论正确的是()A.a<b<c B.a<c<b C.c<a<b D.b<a<c解:∵log0.33<log0.32<log0.31=0,∴b<a<0,∵log32>log31=0,∴c>0,∴b<a<c.故选:D.6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣1解:由题意知火箭的最大速度v 达到10km /s ,故10=2ln(1+M m ),即1+Mm =e 5,∴M m =e 5−1. 故选:B .7.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√32解:定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)=f(83π)=f(5π3)=f(2π3)=f(−π3)=cos(−π3)=12. 故选:C .8.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)解:因为x y =10,(x >0且x ≠1),所以lgx y =lg 10=1,即ylgx =1, 所以y =f (x )=1lgx,所以函数f (x )在(0,1),(1,+∞)上单调递减, 若f (m 2)>f (2m ),则0<m 2<2m <1,或1<m 2<2m ,解得0<m <12或1<m <2.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( ) A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab解:对于A ,由a <b ,两边都加上c ,可得a +c <b +c ,故A 正确; 对于B ,a <b <0,两边都乘以b ,可得ab >b 2,故B 不正确; 对于C ,a <b <0,则1a −1b =b−a ab >0,可知1a >1b,故C 不正确;对于D,a<b<0,则ba −ab=b2−a2ab=(b+a)(b−a)ab<0,可得ba<ab,故D正确.故选:AD.10.已知关于x的不等式ax2+bx+c>0的解集是{x|1<x<3},则()A.a<0B.a+b+c=0C.4a+2b+c<0D.不等式cx2﹣bx+a<0的解集是{x|x<﹣1或x>−13}解:因为不等式ax2+bx+c>0的解集是{x|1<x<3},所以a<0且1,3为方程ax2+bx+c=0的两根,A正确;故{1+3=−ba1×3=ca,所以b=﹣4a,c=3a,所以a+b+c=a﹣4a+3a=0,B正确;4a+2b+c=4a﹣8a+3a=﹣a>0,C错误;由不等式cx2﹣bx+a=3ax2+4ax+a<0可得3x2+4x+1>0,解得x<﹣1或x>−13,D正确.故选:ABD.11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f(x)=cot x,其中cotx=tan(π2−x),则下列关于余切函数的说法正确的是()A.定义域为{x|x≠kπ,k∈Z}B.在区间(π2,π)上单调递增C.与正切函数有相同的对称中心D.将函数y=﹣tan x的图象向右平移π2个单位可得到函数y=cot x的图象解:根据cotx=tan(π2−x),所以余切函数的图象如图所示:对于A:函数的定义域为{x|x≠kπ,k∈Z},故A正确;对于B:在区间(π2,π)上单调递减,故B错误;对于C :与正切函数有相同的对称中心,都为(kπ2,0)(k ∈Z ),故C 正确;对于D :将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =﹣tan (x −π2)=cot x 的图象,故D 正确. 故选:ACD .12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12解:因为扇形的半径为r ,弧长为l ,所以扇形的周长为2r +l ,面积为12lr ;因为2r +l =2×12lr ,所以l =2rr−1,且r >1;所以扇形的面积为S =12×2r r−1×r =r 2r−1=(r−1)2+2(r−1)+1r−1=(r ﹣1)+1r−1+2≥2√(r −1)⋅1r−1+2=4,当且仅当r ﹣1=1r−1,即r =2时取等号,所以选项A 错误; 扇形的周长为L =2r +2r r−1=2(r ﹣1)+2r−1+4≥2√2(r −1)⋅2r−1+4=8, 当且仅当2(r ﹣1)=2r−1,即r =2时取等号,此时圆心角为|α|=l r =42=2,α=±2,选项B 错误; r +2l =r +4r r−1=r +4+4r−1=(r ﹣1)+4r−1+5≥2√(r −1)⋅4r−1+5=9, 当且仅当r ﹣1=4r−1,即r =3时取等号,选项C 正确; 1r 2+4l 2=1r 2+(r−1)2r 2=1−2r +2r 2=2(1r −12)2+14]≥12,当r =2时取等号,所以选项D 正确.故选:CD .三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 2√2 . 解:根据幂函数f (x )=x α的图象经过点(9,3),可得9α=3,求得α=12,故f (x )=x 12=√x .故f (8)=√8=2√2.故答案为:2√2.14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 89 .解:∵cos (π3−x )=sin(x +π6)=13,∴sin2(π3−x)=1﹣cos2(π3−x)=1−19=89.故答案为:8 9.15.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是110<x<10.解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数∴f(x)中(﹣∞,0)上是减函数又f(lgx)<f(1)∴﹣1<lgx<1∴110<x<10故答案为:110<x<1016.已知函数f(x)=log9x+12x−1的零点为x1.若x1∈(k,k+1)(k∈Z),则k的值是1;若函数g (x)=3x+x﹣2的零点为x2,则x1+x2的值是2.解:函数f(x)=log9x+12x−1是增函数,f(1)=−12<0,f(2)=log92>0,满足f(1)f(2)<0,所以函数的零点x1∈(1,2),所以k的值为1.函数f(x)=log9x+12x−1=12(log3x+x﹣2),函数的零点是y=log3x与y=2﹣x两个函数的图象的交点的横坐标x1,函数g(x)=3x+x﹣2的零点为x2,是函数y=3x与y=2﹣x图象交点的横坐标,由于y=log3x与y=3x是反函数,关于y=x对称,并且y=2﹣x与y=x垂直,交点坐标(1,1),所以x1+x2的值是2.故答案为:1;2.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,17.(10分)(1)已知a+a﹣1=3,求a 12+a−12的值;(2)求值:e ln2+(lg5)2+lg5lg2+lg20.解:(1)因为(a 12+a−12)2=a+a﹣1+2=3+2=5,又因为a 12+a−12>0,所以a12+a−12=√5;(2)e ln2+(lg5)2+lg5lg2+lg20=2+1g5(lg5+1g2)+1g2+1=2+1g5+1g2+1=2+1+1=4.18.(12分)设全集U=R,已知集合A={x|x2﹣5x+4≤0},B={x|m≤x≤m+1}.(1)若A∩B=∅,求实数m的取值范围;(2)若“x∈B”是“x∈A”的充分条件,求实数m的取值范围.解:(1)由x 2﹣5x +4≤0,解得1≤x ≤4,所以A ={x |1≤x ≤4}. 因为A ∩B =∅,且B ≠∅,所以m +1<1或m >4,得m <0或m >4, 所以实数m 的取值范围是{m |m <0或m >4}.(2)因为“x ∈B ”是“x ∈A ”的充分条件,所以B ⊆A , 所以{m ≥1m +1≤4,解得1≤m ≤3,所以实数m 的取值范围是{m |1≤m ≤3}.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.解:(1)由图可知A =2,T =4×(π3−π12)=π,所以ω=2πT=2.∵f (x )=2sin (2x +φ)的图象经过点(π12,2), ∴π6+φ=π2+2kπ,k ∈Z ,即φ=π3+2kπ,k ∈Z .∵0<φ<π,所以φ=π3,∴f(x)=2sin(2x +π3).(2)令π2+2kπ≤2x +π3≤3π2+2kπ,k ∈Z ,解得π12+kπ≤x ≤7π12+kπ,k ∈Z ,∴f(x)=2sin(2x +π3)的减区间为[π12+kπ,7π12+kπ],k ∈Z ,∴f(x)=2sin(2x +π3)在[﹣π,0]上的减区间为[−11π12,−5π12].20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.解:(1)由 f (0)=0,得a =1,此时f(x)=2x−12x +1.因为f(−x)=2−x−12−x +1=1−2x1+2x =−f(x),所以f (x )为奇函数,故a =1. 证明:(2)当a =3时,f(x)=3⋅2x−12x +1=3−42x +1.任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=42x 2+1−42x 1+1=4(2x1−2x2)(1+2x 1)(1+2x 2), 因为x 1<x 2,所以2x 1<2x 2,2x 1+1>0,2x 2+1>0, 所以4(2x 1−2x 2)(1+2x 1)(1+2x 2)<0,即f (x 1)<f (x 2),所以函数f(x)=a⋅2x−12x +1在R 上单调递增.解:(3)y =f (x )﹣2x 有两个不同的零点,等价于(2x )2+(1﹣a )2x +1=0有两个不同的实数解. 令t =2x (t >0),则t 2+(1﹣a )t +1=0在(0,+∞)有两个不同的实数解, 所以{(1−a)2−4>0a −1>0,解得a >3.所以a 的取值范围为(3,+∞).21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.解:由题可得,AB =ℎ2sinα,AC =ℎ1cosα. (1)当α=30°时,AB =2h 2,AC =2√31, 所以S △ABC =12AB ⋅AC =2√31ℎ2,又因为h 1+h 2=30,h 1,h 2≥0, 所以S △ABC =√31ℎ2≤√3(ℎ1+ℎ22)2=150√3,当且仅当h 1=h 2=15时取等号.所以荷花种植区域面积的最大值为150√3m 2.(2)因为h 1+h 2=30,h 2=4h 1,所以h 1=6,h 2=24,故AB =24sinα,AC =6cosα,α∈(0,π2), 从而S △ABC =12AB ⋅AC =72sinαcosα=150, 所以sinαcosα=1225,① 所以(sinα+cosα)2=1+2sinαcosα=4925. 又因为α∈[0,π2],所以sinα+cosα=75,② 由①②解得:sinα=35或45. 22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值;(2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.解:(1)由f (x )=2x 是(a ,1)型函数,得f (x )•f (2a ﹣x )=2x •22a ﹣x =1,即22a =1,所以a =0. (2)由g(x)=e 1x是(a ,b )型函数,得g(x)⋅g(2a −x)=e 1x ⋅e 12ax −x =b ,则1x +12a−x =lnb ,因此x 2lnb ﹣2axlnb +2a =0对定义域{x |x ≠0}内任意x 恒成立,于是{lnb =02alnb =02a =0,解得a =0,b =1,所以a =0,b =1.(3)由h (x )是(1,4)型函数,得h (x )•h (2﹣x )=4,(1)当x =1时,h (1)•h (1)=4,而h (x )>0,则h (1)=2,满足h (x )≥1;(2)当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2≥1恒成立,令log 2x =t ,则当t ∈(0,2]时,﹣t 2+mt +2≥1恒成立,于是m ≥t −1t 恒成立,而函数y =t −1t在(0,2]单调递增,则t −1t ≤32,当且仅当t =2时取等号,因此m ≥32; (3)当x ∈[﹣2,1)时,2﹣x ∈(1,4],则ℎ(x)=4ℎ(2−x)=4−[log 2(2−x)]2+m⋅log 2(2−x)+2,由h (x )≥1,得0<−[log 2(2−x)]2+m ⋅log 2(2−x)+2≤4,令log 2(2﹣x )=u ,则当u ∈(0,2]时,0<﹣u 2+mu +2≤4,由(2)知﹣u 2+mu +2≥1,则只需u ∈(0,2]时,﹣u 2+mu +2≤4恒成立,即m ≤2u +u 恒成立,又u +2u≥2√u ⋅2u =2√2,当且仅当u =√2时取等号,因此m ≤2√2, 所以实数m 的取值范围是:[32,2√2].。
2024-2025学年第一学期六校联合体10月联合调研高三数学参考答案 2024.10一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.C 2.C 3.A 4.B 5.D 6.D 7.B 8.D二.选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,不选或有选错的得0分.9. AC 10.ACD 11.ABD三、填空题:本大题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上. 12.0 13.8 14.y =32x +32四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(本小题满分13分)解:(1)∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD AD =,且AB AD ⊥,AB ⊂平面ABCD ,∴AB ⊥平面PAD ,………………...........................2分∵PD ⊂平面PAD ,∴AB PD ⊥,又PD PA ⊥,且PA AB A = ,,PA AB ⊂平面PAB ,∴PD ⊥平面PAB ;…………................................……..4分又PD ⊂平面PAD ,所以平面⊥PCD 平面PAB ………………..6分(2)取AD 中点为O ,连接CO ,PO又因为PD PA =,所以AD PO ⊥则4==PO AO因为5==CD AC ,所以AD CO ⊥,则322=−=AO AC CO以O 为坐标原点,分别以OP OA OC ,,所在直线为z y x ,,轴,建立如图所示的空间直角坐标系xyz O − 则)4,0,0(),0,4,0(),0,0,3(),0,4,2(),0,4,0(P D C B A −,)4,4,0(),4,0,3(−−=−=PD PC ,)4,4,2(−=PB ......................................……..8分设),,(z y x n =是平面PCD 的一个法向量,则,00 =⋅=⋅PD n PC n 得=+=−0043z y z x ,令,3=z 则3,4−==y x , 所以)3,3,4(−=n ……………............................................…..10分设PB 与平面PCD 所成的角为θ则51344sin θ所以PB 与平面PCD 所成的角的正弦值为51344………………..13分16.(本小题满分15分)解:因为2cos 2b Ac =,所以2sin cos 2sin B A C A =2sin cos 2sin()2sin cos 2cos sin B A A B A A B A B A =+−=+所以B A A cos sin 2sin 3=…………..3分在ABC ∆中,0sin ≠A ,所以23cos =B ,所以6π=B …………..5分 (2)由1sin cos −=C A ,得1sin -65cos −=C C )(π, 1sin sin 65sin cos 65cos−=+C C C ππ,1)3sin(=+πC ………..7分 因为π<<C 0,所以3433πππ<+<C ,所以23ππ=+C ,所以6π=C …………..9分 所以c b A ==,32π 在ABD ∆中, ,4CD CA =所以b AD 43= A AD AB AD AB BD cos 237222⋅−+==)21(43216922−⋅⋅−+=b b b b , 得4==c b ,…………………………………………………………....13分所以ABC ∆的面积.34234421sin 21=⋅⋅⋅=⋅=A AC AB S ………………..15分17.(本小题满分15分) (1)由题可知X 的所有取值为1,2,3,4,P (X =1)=C 15C 33C 48=570=114P (X =2)=C 25C 23C 48=3070=37P (X =3)=C 35C 13C 48=3070=37P (X =4)=C 45C 03C 48=570=114,………………………………8分 故X 的分布列为: 则E (X )=1×114+2×37+3×37+4×114=52.………………………………9分(2)记“输入的问题没有语法错误”为事件A ,记“输入的问题有语法错误”为事件B ,记“回答被采纳”为事件C ,…………………………………………………………10分由已知得,P (C )=0.7,P (C |A )=0.8,P (C |B )=0.4,P (B )=p ,P (A )=1-p ,所以由全概率公式得P (C )=P (A )·P (C |A )+P (B )·P (C |B )=0.8(1-p )+0.4p =0.8-0.4p =0.7,…………14分 解得p =0.25.……………………………………………………………………15分18.(本小题满分17分)解:(1) h ′(x )=ln x +1(x >0)令h ′(x )=0则x =1e……………………………………………………………2分 所以在(0,1e)上h ′(x ) <0,h (x )递减; 在(1e,+∞)上,h ′(x )>0,h (x )递增; 所以函数h (x )有极小值h (1e)=-1e ,函数没有极大值.(未写极大值扣1分)…………4分 (2)设m (x )=ln(x +1)-ax (x ≥0),m (0)=0m ′(x )=1x +1-a 当a ≤0时, m ′(x )>0, m (x )单调递增,m (x )≥0,显然不满足. …………………………6分 当0<a <1时,令 m ′(x ) =0, ∃x 0使m ′(x 0)=0,在(0,x 0)上,m (x )单调递增;在( x 0,+∞)上,m (x )单调递减,显然不成立;…………………………………………………………8分当a ≥1时,m ′(x )<0,m (x )单调递减,m (x )≤m (0)=0;…………………………………10分 综上:a ≥1. ………………………………………………………………………………11分(3)没有上界,理由如下:由(1)可知,ln(x +1)≤x 在[0,+∞)上恒成立,令x =1n ,则ln(1n +1)≤1n,…………………………………………………………………13分 所以ln(11+1)<11,ln(12+1)<12,ln(13+1)<13...ln(1n +1)<1n,…………………………15分 将上式相加,ln(n +1)<1+12+13+..+1n=g (n ) 由于ln(n +1)没有上界,故g (n )也没有上界. …………………………………………17分19.(本小题满分17分)解:(1)由离心率为12,得b 2 a 2=34,由DE =3得2b 2a =3, 解得a =2,b = 3所以故椭圆C 的方程为x 24+y 23=1…………………………………………………………3分 (2)由(1)可得A 2(2,0),连接MA 2,因为S 1-S 2=S △MA 1A 2-S △MNA 2=32,S △MA 1O =32,所以S △NGA 2=S △MOG ,得S △NMA 2=S △MOA 2;所以ON ∥MA 2,所以直线ON 的方程为,y =-32x ,……………………………………6分由y =-32x ,x 24+y23=1.得N (1,-32),N (-1,32)(舍去). 所以|MN |=3 …………………………………………………8分(3)设直线MN :y =kx +m ,M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),H (x 0,y 0)则Q (-x 3,-y 3).联立y =kx +m ,x 24+y 23=1.可得,(3+4k 2)x 2+8mkx+4m 2-12=0,所以,x 1+x 2=-8mk 4k 2+3,x 1x 2=4m 2-124k 2+3,………………………………………10分 y 1+y 2=k (x 1+x 2)+2m =6m 4k 2+3Δ=64m 2k 2+16(m 2-3)(4k 2+3)>0,得m 2-3-4k 2<0.所以中点H 的坐标为(-4mk 4k 2+3,3m 4k 2+3),所以k OH =-34k, 故直线OH :y =-34k x. ………………………………………12分由P ,Q ,M ,N 四点共圆,则|HM |·|HN |=|HP |·|HQ |,………………………………14分由|HM |·|HN |=14|MN |2=14(1+k 2)[(x 1+x 2)2-x 1x 2]=12(1+k 2).4k 2+3-m 2(4k 2+3)2; 联立y =-34k x ,x 24+y 23=1.可得,x 2=16k 24k 2+3,所以x 23=16k 24k 2+3, 所以|HP |·|HQ |=(1+916k 2)|x 20-x 23|=(9+16k 2).4k 2+3-m 2(4k 2+3)2,所以12(1+k 2)=9+16k 2得,k =±32……………………………………………………16分 所有m 2<3+4k 2=6,得m ∈(- 6 ,6),|MN |2=48(1+k 2).4k 2+3-m 2(4k 2+3)2=42-7m 23≤14 即|MN |≤14…………………………………………………………………………17分。
南京师范大学《高等数学》(下册)期末考试试卷1(6学时)学号 姓名 班级 成绩 一、填空题(4'⨯8=32'):1、,,,a b c →→→为单位向量,且满足0a b c →→→++=则a b b c c a →→→→→→++= .2、曲线20y x z ⎧=⎨=⎩绕x 轴旋转所得的曲面方程为 .3、设函数22,z x xy y =++,则2zx y∂∂∂= .4、球面2229x y z ++=在点(1,2,2)处的切平面方程为 .5、设二次积分100(,)xI dx f x y dy =⎰⎰,则交换积分次序后得I= .6、闭区域D 由分段光滑的曲线L 围成,函数()(),,,P x y Q x y 在D 上有一阶连续偏导数,则有(格林公式): .7、微分方程22x y y y e '''+-=的特解可设为 .8、微分方程31dyx dx-=的通解为 . 二、选择题('35⨯=15'):1、设积分区域D 由坐标面和平面236x y z ++=围成,则三重积分D dv =⎰⎰⎰( ).(A )6; (B )12; (C )18;(D )36.2、微分方程34"'(")30y y y y x ++-=的阶数是 ( ).(A )1; (B )2; (C )3; (D )4. 3、设有平面:210x y z π-+-=和直线116:112x y z L -+-==-,则π与L 的夹角 (A )6π;(B )4π;(C )3π;(D )2π.4、二元函数(,f x y 在点00(,)x y 处满足关系( ).(A )可微(指全微分存在)⇔可导(指偏导数存在)⇔连续; (B )可微⇒可导⇒连续;(C )可微⇒可导,且可微⇒连续,但可导不一定连续; (D )可导⇒连续,但可导不一定可微. 5、设无穷级数()311npn n ∞-=-∑绝对收敛,则( ).(A )1p >; (B )3p <; (C )2p >; (D )2p <. 三、计算题(6'5⨯=30'):1、设函数(,,)u f x y z =可微,22z x y =-,求u x ∂∂,uy∂∂; 2、已知方程22243x y y z +-+=确定函数(,)z z x y =,求z zx y∂∂∂∂和;3、求幂级数2112n n n x ∞-=∑的收敛域;4、将函数1()ln1xf x x+=-展开为x 的幂级数; 5、求微分方程2(21)0x dy xy x dx +-+=的通解; 四、(8')求函数22(,)4()2f x y x y x y =---的极值.五、(7')计算2()Dy x d σ-⎰⎰,其中D 是由直线,y x =2y x =2y =及所围成的闭区域.六、(8')求旋转抛物面226z x y =--和锥面z =围成的立体的体积.期末考试试卷2(6学时)一、填空题(4'⨯7=28'):1、已知直线过点(3,2,4)P -,(6,3,2)Q ,则直线方程为 .2、函数22(,)f x y =的定义域是 .3、设函数2223x y z e +=,则全微分dz = .4、在(1,1)-内,幂级数2461x x x -+-++的和函数为 .5、幂级数1(1)2n nn x n ∞=-⋅∑的收敛半径R = . 6、设C 是在第一象限内的圆:cos x t =,sin y t =(02t π≤≤),则Cxyds =⎰.7、微分方程"8'160y y y -+=的通解为 . 二、选择题('36⨯=18'):1、下列方程表示的曲面为旋转曲面的是( ).(A )22149x y -+=;(B )22223x y z +=;(C )22z x y =-; (D )22224x y z -+=.2、设'00(,)0x f x y =,'00(,)0y f x y =,则在点00(,)x y 处函数(,)f x y ( ). (A )连续; (B )一定取得极值; (C )可能取得极值;(D )全微分为零.3、下列无穷级数中,绝对收敛的是 ( ).(A )213sin 2n n n ∞=∑; (B)1n n -∞=; (C )11(1)n n n -∞=-∑; (D )2211n n n∞=+∑. 4、设积分区域22:3D x y +≤,则二重积分(3)Ddxdy -⎰⎰( ). (A )9π-; (B )3π-; (C )3π;(D )9π.5、微分方程2"2'35x y y y e -+=的一个特解为 ( ).(A )259x e ; (B )253x e ; (C )22x e ; (D )252x e . 6、D 是点()()()0,0,1,0,1,1为顶点的三角形区域,(),f x y 在D 上连续,则二重积分(),Df x y σ=⎰⎰( ).(A )()1100,;dx f x y dy ⎰⎰ (B )()110,;x dx f x y dy ⎰⎰ (C )()100,;xdx f x y dy ⎰⎰ (D )()100,.ydy f x y dx ⎰⎰ 三、计算题(6'4⨯=24'):1、已知(1)x y z xy +=+,求函数z 在点(1,1)P 处的偏导数z zx y∂∂∂∂和;2、设22()z f x y =+,f 具有二阶导数,求2zx y∂∂∂;3、判断级数21(1)1nn n ∞=-+∑的敛散性;如果收敛,指出是绝对收敛还是条件收敛;4、将函数2()ln(1)f x x =+展开为x 的幂级数;四、(7')求微分方程()230x y dx xdy -+=的通解.五、(8')某厂要用铁板作成一个体积为32m 的有盖长方体水箱,问当长、宽、高各取多少时,才能使用料最省?六、计算下列积分:1、(7')计算(2)Dy x d σ-⎰⎰,其中D 是由抛物线2y x =和直线2y x =+所围成的闭区域.2、(8')设积分区域Ω由上半球面z =0z =所围成,求三重积分zdxdydz Ω⎰⎰⎰.期末考试试卷3(6学时)一、填空题(4'⨯8='32):1、设(2,2,1)a =,(4,5,3)b =,则与a 、b 同时垂直的单位向量为____________.2、yoz 面上的抛物线22z y =绕z 轴旋转所得旋转曲面方程为 .3、若(,)f x y 在区域22:14D x y ≤+≤上恒等于1,则(,)Df x y dxdy =⎰⎰ .4、设22(,)4()f x y x y x y =---,则其驻点为 .5、级数13n n q ∞=∑收敛,则q 的取值为 .6、设sin ,z uv t =+而,cos .t u e v t ==则全导数dzdt= . 7、微分方程'sin 0y y e x -=的通解为 .8、设函数(1)x z y =+,则(1,1)|dz = . 二、选择题('35⨯=15'):1、过点(2,-8,3)且垂直于平面2320x y z +--=的直线方程是( ).(A )(2)2(8)3(3)0x y z -++--=; (B )283123x y z -+-==--; (C )283123x y z +-+==-; (D )283x y z==-.2、若函数(,)y y x z =由方程x y xyz e +=所确定,则yx∂=∂ ( ). (A )(1)(1)y x x y --; (B )(1)y x y -; (C )1yzy-; (D )(1)(1)y xz x y --. 3、二元函数(,)z f x y =在00(,)x y 处的偏导数 '00(,)x f x y 和'00(,)y f x y 存在是函数在该点全微分存在的 ( ).(A )充分条件; (B )必要条件; (C )充要条件; (D )既非充分也非必要条件.4、积分⎰⎰y ydx )y ,x (f dy 10更换积分次序后为( ). (A )⎰⎰1010),(dy y x f dx ; (B )⎰⎰xx dy y x f dx ),(10; (C )⎰⎰2),(10x x dy y x f dx ;(D )⎰⎰xx dy y x f dx 2),(10.5、设12n n S a a a =++(0,1,i a i n >=),而无穷级数1n n a ∞=∑收敛,则下列说法不正确的是( ).(A )lim 0n n a →∞=; (B )lim n n S →∞存在; (C )lim 0n n S →∞=; (D ){}n S 为单调数列.三、计算题(6'⨯3='18):1、曲面224z x y =--上哪一点的切平面平行于平面2210x y z ++-=,并写出切平面方程;2、讨论级数11121(1)2n n n n ∞--=--∑的敛散性;若收敛,指出是条件收敛还是绝对收敛.3、将函数21()22f x x x =-+展开为(1)x -的幂级数;四、(7')求微分方程2"'2x y y y e +-=的通解.五、(7')在所有对角线为六、(7')计算22Dx d yσ⎰⎰,其中D 是由直线2x =,y x =及曲线1xy =所围成的闭区域.七、(7')计算arctan Dyd xσ⎰⎰,其中D 是由圆22221,4x y x y +=+=及直线0,y y x ==所围成的第一象限部分。
2024-2025学年第一学期六校联合体10月联合调研高三数学2024.10.22注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x| x 2-2x -8<0},B ={x| x ≤4 },则“x ∈A ”是“x ∈B ”A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 2.若复数z 满足-z =2-i3+i,则|z |= A .510 B .102 C .22D .123.甲、乙、丙、丁去听同时举行的3个讲座,每人可自由选择听其中一个讲座,则恰好只有甲、乙两人听同一个讲座的种数为A .6B .12C . 18D . 24 4.已知等比数列{a n }满足a 4a 5a 6=64,则a 2a 4+a 6a 8的最小值为A .48B .32C .24D .85.已知函数f (x )=-13x 3+ax 2-a -4(x ≥0)ax -sin x (x <0)在R 上单调,则实数a 的取值范围为 A .()-∞,-1 B .(]-∞,-1 C .[)-4,-1 D .[]-4,-16.已知圆(x -2)2+y 2=1与双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线交于A ,B 两点,且|AB |=1,则该双曲线的离心率为A .2B .13C .21313D .413137.已知函数f (x )=(x -4)3 cos ωx (ω>0),存在常数a ∈R ,使f (x +a )为偶函数,则ω的最小值为A .π12B .π8C .π4D . π28.已知2024m =2025,2023m =x +2024 ,2025m =y +2026,则A .0<x <yB .x <y <0C .y <x <0D .x <0<y9.下列说法中正确的是A .若随机变量X ~B (10,p ),且E (X )=3,则D (X )=2.1B .某射击运动员在一次训练中10次射击成绩(单位:环)如下:6,5,7,9,6,8,9,7,9,5,这组数据的75百分位数为7C .若随机变量ξ~N (μ,σ2),且P (ξ>3)=P (ξ<-1)=p ,则P (1≤ξ≤3)=12-pD .若变量y 关于变量x 的线性回归方程为^y =x +t ,且-x =4,-y =2t ,则t =4310.已知棱长为4的正方体ABCD -A 1B 1C 1D 1,球O 是该正方体的内切球,E ,F ,P 分别是棱AA 1,BC ,C 1D 1的中点,M 是正方形BCC 1B 1的中心,则 A .球O 与该正方体的表面积之比为π6B .直线EF 与OM 所成的角的正切值为2C .直线EP 被球O 截得的线段的长度为22D .球O 的球面与平面APM 的交线长为4π11.已知函数f (x )=x 3+mx +1,则A .当m =-1时,过点(2,2)可作3条直线与函数f (x )的图象相切B .对任意实数m ,函数f (x )的图象都关于(0,1)对称C .若f (x )存在极值点x 0,当f (x 1)=f (x 0)且x 1≠x 0,则x 1+32x 0=0D .若有唯一正方形使其4个顶点都在函数f (x )的图象上,则m =-22三、填空题:本题共3小题,每小题5分,共15分.12.已知向量a ,b 满足a +b =(2,1),a -b =(-2,4),则|a |-|b |=_______.13.某个软件公司对软件进行升级, 将序列A =(a 1,a 2,a 3,···)升级为新序列A*=(a 2-a 1,a 3-a 2,a 4-a 3,···), A*中的第n 项为a n +1-a n , 若(A*)*的所有项都是3,且a 4=11, a 5=18,则a 1=_______.14.已知抛物线C :y 2=4x 的焦点为F ,过点D (-1,0)的直线l 在第一象限与C 交于A ,B 两点,且BF 为∠AFD 的平分线,则直线l 的方程为_______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,AB ⊥AD ,P A =PD , AB =2,AD =8,AC =CD =5(1)求证:平面PCD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值.16.(本题满分15分)已知△ABC 的角A ,B ,C 对的边分别为a ,b ,c ,2b cos A =2c -3a (1)求B ;(2)若cos A =sin C -1,CA →=4CD →,BD =37,求△ABC 的面积.17.(本题满分15分)某人工智能研究实验室开发出一款全新聊天机器人,它能够通过学习和理解人类的语言来进行对话.聊天机器人的开发主要采用RLHF (人类反馈强化学习)技术,在测试它时,如果输入的问题没有语法错误,则它的回答被采纳的概率为80%,当出现语法错误时,它的回答被采纳的概率为40%.(1)在某次测试中输入了8个问题,聊天机器人的回答有5个被采纳,现从这8个问题中抽取4个,以X 表示抽取的问题中回答被采纳的问题个数,求X 的分布列和数学期望;(2)设输入的问题出现语法错误的概率为p ,若聊天机器人的回答被采纳的概率为70%,求p 的值.18.(本题满分17分) 已知f (x )=ln(x +1)(1) 设h (x )=x f (x -1),求h (x )的极值.(2) 若f (x )≤ax 在[0,+∞)上恒成立,求a 的取值范围.(3) 若存在常数M ,使得对任意x ∈I ,f (x )≤M 恒成立,则称f (x )在I 上有上界M ,函数f (x )称为有上界函数.如y =e x 是在R 上没有上界的函数, y =ln x 是在(0,+∞)上没有上界的函数;y =-e x ,y =-x 2都是在R 上有上界的函数.若g (n )=1+12+13+···+1n (n ∈N *),则g (n )是否在N *上有上界? 若有,求出上界;若没有,给出证明.19.(本题满分17分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为B ,左右顶点分别为A 1、A 2,左焦点为F 1,离心率为12.过F 1作垂直于x 轴的直线与C 交于D ,E 两点,且| DE |=3.(1)求C 的方程;(2)若M ,N 是C 上任意两点①若点M (1,32),点N 位于x 轴下方,直线MN 交x 轴于点G ,设△MA 1G 和△NA 2G 的面积分别为S 1,S 2,若2S 1-2S 2=3,求线段MN 的长度;②若直线MN 与坐标轴不垂直,H 为线段MN 的中点,直线OH 与C 交于P ,Q 两点,已知P ,Q ,M ,N 四点共圆, 求证:线段MN 的长度不大于14.高三2024-2025学年第一学期六校联合体10月联合调研数学参考答案 2024.10一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.C 2.C 3.A 4.B 5.D 6.D 7.B 8.D二.选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,不选或有选错的得0分. 9. AC 10.ACD 11.ABD三、填空题:本大题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上. 12.0 13.8 14.y =32x +32四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(1)∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD AD =,且AB AD ⊥,AB ⊂平面ABCD ,∴AB ⊥平面PAD ,………………...........................2分 ∵PD ⊂平面PAD ,∴AB PD ⊥,又PD PA ⊥,且PA AB A = ,,PA AB ⊂平面PAB , ∴PD ⊥平面PAB ;…………................................……..4分又PD ⊂平面PAD ,所以平面⊥PCD 平面PAB ………………..6分 (2)取AD 中点为O ,连接CO ,PO 又因为PD PA =,所以AD PO ⊥ 则4==PO AO因为5==CD AC ,所以AD CO ⊥,则322=−=AO AC CO以O 为坐标原点,分别以OP OA OC ,,所在直线为z y x ,,轴,建立如图所示的空间直角坐标系xyz O − 则)4,0,0(),0,4,0(),0,0,3(),0,4,2(),0,4,0(P D C B A −,)4,4,0(),4,0,3(−−=−=PD PC ,)4,4,2(−=PB ......................................……..8分设),,(z y x n =是平面PCD 的一个法向量,则,00 =⋅=⋅PD n PC n 得=+=−0043z y z x ,令,3=z 则3,4−==y x , 所以)3,3,4(−=n ……………............................................…..10分设PB 与平面PCD 所成的角为θ所以PB 与平面PCD 所成的角的正弦值为51344………………..13分16.(本小题满分15分)解:因为2cos 2b Ac =−,所以2sin cos 2sin B A C A =−2sin cos 2sin()2sin cos 2cos sin B A A B A A B A B A =+=+所以B A A cos sin 2sin 3=…………..3分 在ABC ∆中,0sin ≠A ,所以23cos =B ,所以6π=B …………..5分 (2)由1sin cos −=C A ,得1sin -65cos −=C C )(π, 1sin sin 65sincos 65cos−=+C C C ππ,1)3sin(=+πC ………..7分 因为π<<C 0,所以3433πππ<+<C ,所以23ππ=+C ,所以6π=C …………..9分所以c b A ==,32π在ABD ∆中, ,4CD CA =所以b AD 43=A AD AB AD AB BD cos 237222⋅−+==)21(43216922−⋅⋅−+=b b b b ,得4==c b ,…………………………………………………………....13分所以ABC ∆的面积.34234421sin 21=⋅⋅⋅=⋅=A AC AB S ………………..15分17.(本小题满分15分)(1)由题可知X 的所有取值为1,2,3,4,P (X =1)=C 15C 33C 48=570=114P (X =2)=C 25C 23C 48=3070=37P (X =3)=C 35C 13C 48=3070=37P (X =4)=C 45C 03C 48=570=114,………………………………8分故X 的分布列为:则E (X )=1×114+2×37+3×37+4×114=52.………………………………9分由已知得,P (C )=0.7,P (C |A )=0.8,P (C |B )=0.4,P (B )=p ,P (A )=1-p , 所以由全概率公式得P (C )=P (A )·P (C |A )+P (B )·P (C |B )=0.8(1-p )+0.4p =0.8-0.4p =0.7,…………14分 解得p =0.25.……………………………………………………………………15分18.(本小题满分17分)解:(1) h ′(x )=ln x +1(x >0)令h ′(x )=0则x =1e ……………………………………………………………2分所以在(0,1e)上h ′(x ) <0,h (x )递减;在(1e,+∞)上,h ′(x )>0,h (x )递增; 所以函数h (x )有极小值h (1e )=-1e,函数没有极大值.(未写极大值扣1分)…………4分 (2)设m (x )=ln(x +1)-ax (x ≥0),m (0)=0m ′(x )=1x +1-a当a ≤0时, m ′(x )>0, m (x )单调递增,m (x )≥0,显然不满足. …………………………6分 当0<a <1时,令 m ′(x ) =0, ∃x 0使m ′(x 0)=0,在(0,x 0)上,m (x )单调递增;在( x 0,+∞)上,m (x )单调递减,显然不成立;…………………………………………………………8分当a ≥1时,m ′(x )<0,m (x )单调递减,m (x )≤m (0)=0;…………………………………10分 综上:a ≥1. ………………………………………………………………………………11分 (3)没有上界,理由如下:由(1)可知,ln(x +1)≤x 在[0,+∞)上恒成立,令x =1n ,则ln(1n +1)≤1n ,…………………………………………………………………13分所以ln(11+1)<11,ln(12+1)<12,ln(13+1)<13...ln(1n +1)<1n,…………………………15分将上式相加,ln(n +1)<1+12+13+..+1n=g (n )由于ln(n +1)没有上界,故g (n )也没有上界. …………………………………………17分 19.(本小题满分17分) 解:(1)由离心率为12,得b 2 a 2=34,由DE =3得2b 2a =3, 解得a =2,b = 3所以故椭圆C 的方程为x 24+y 23=1…………………………………………………………3分(2)由(1)可得A 2(2,0),连接MA 2,因为S 1-S 2=S △MA 1A 2-S △MNA 2=32,S △MA 1O =32,所以S △NGA 2=S △MOG ,得S △NMA 2=S △MOA 2;所以ON ∥MA 2,所以直线ON 的方程为,y =-32x ,……………………………………6分由 y =-32x ,x 24+y23=1.得N (1,-32),N (-1,32)(舍去). 所以|MN |=3 …………………………………………………8分(3)设直线MN :y =kx +m ,M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),H (x 0,y 0)则Q (-x 3,-y 3).联立 y =kx +m ,x 24+y 23=1.可得,(3+4k 2)x 2+8mkx+4m 2-12=0,所以,x 1+x 2=-8mk4k 2+3,x 1x 2=4m 2-124k 2+3,………………………………………10分 y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3Δ=64m 2k 2+16(m 2-3)(4k 2+3)>0,得m 2-3-4k 2<0. 所以中点H 的坐标为(-4mk 4k 2+3,3m 4k 2+3),所以k OH =-34k, 故直线OH :y =-34k x. ………………………………………12分由P ,Q ,M ,N 四点共圆,则|HM |·|HN |=|HP |·|HQ |,………………………………14分 由|HM |·|HN |=14|MN |2=14(1+k 2)[(x 1+x 2)2-x 1x 2]=12(1+k 2).4k 2+3-m 2(4k 2+3)2; 联立y =-34k x ,x 24+y 23=1.可得,x 2=16k 24k 2+3,所以x 23=16k 24k 2+3, 所以|HP |·|HQ |=(1+916k 2)|x 20-x 23|=(9+16k 2).4k 2+3-m 2(4k 2+3)2所以12(1+k 2)=9+16k 2得,k =±32……………………………………………………16分 所有m 2<3+4k 2=6,得m ∈(- 6 ,6),|MN |2=48(1+k 2).4k 2+3-m 2(4k 2+3)2=42-7m 23 ≤14 即|MN |≤14…………………………………………………………………………17分。
第1页 共2页淮 海 工 学 院12 – 13 学年 第 二 学期 高等数学A (2) 期末试卷(A 卷)1.向量(1,1,0)a =,(0,1,1)b =-所成夹角为----------------------------(C ) (A )6π (B )4π (C )3π (D )2π2.2(,)(2)tan(23)f x y x y x y =+-+,则(,2)xx f x =--------------------------------(B ) (A )1 (B )2 (C )x (D )x 2 3. 3sin xu e y z =-+在点(0,0,1)-处沿下列哪个方向的方向导数最大--------(D) (A ))1,1,0(- (B )(0,1,1)- (C )(3,1,1)- (D )(3,1,1)- 4.二次积分1ln 10(,)x edx f x y dy ⎰⎰的另一种积分次序为----------------------(B ) (A ) 011(,)ye dyf x y dx -⎰⎰(B )011(,)y e dy f x y dx -⎰⎰(C )1(,)ye dyf x y dx -⎰⎰(D )011(,)y edy f x y dx -⎰⎰5.设L 为椭圆2251x y +=,其周长为l ,则()(5)Lx y x yd s ++=⎰----------------(B ) (A ) 5l (B ) l (C ) (D ) 5l6.若级数1(65)nn p ∞=-∑收敛,则p 的取值范围是------------------------------------------(B )(A )(,2-∞ (B )(2 (C )(1,32) (D )(32,)+∞ 7.若幂级数21(4)n nn a x ∞+=-∑在7x =处条件收敛,则其收敛半径为-----------------(A )(A )3 (B )9 (C )11 (D )1218.12xy C C e -=+是下列哪个微分方程的通解------------------------------------------(C ) (A )0='-''y y (B )0=-''y y (C )0='+''y y (D )0=+''y y二、计算题(本大题共4小题,每题7分,共28分) 1.设(,)f u v 是二元可微函数,=(,)z f y x x y ,求+x y xz yz .解:21x u v y z f f x y =-+----------------------------------------------------------------------------2 21y u v xz f f x y=-----------------------------------------------------------------------------3故+0x y xz yz =.------------------------------------------------------------------------------22.求22xy De dxdy +⎰⎰D :2214x y ≤+≤.解: :02,12,D r θπ≤≤≤≤--------------------------------------------2 则原式2221r d e rdr πθ=⎰⎰----------------------------------------------22221r e dr π=⎰4()e e π=-.-----------------------------------------------------------33.设空间闭区域Ω{(,,)0x y z z =≤≤,∑是Ω的整个边界曲面的内侧,用高斯公式计算3222()3()(1)xz dydz y z x dzdx z z dxdy ∑++-+-⎰⎰.解: 3222,3(),(1)P x z Q y z x R z z =+=-=---------------------------------------1Ω是半径为1的半球体 --------------------------------------------------------------------2 则 原式()xyz Pdydz Qdzdx Rdxdy P QR dxdydz ∑Ω=++=-++⎰⎰⎰⎰⎰-------------2dv Ω=-⎰⎰⎰23π=-. ---------------------------------------------------------------24.求解微分方程111y y x x'-=++. 解: 公式法, 11111[(1)]dx dx x x y e e dx C x-++⎰⎰=++⎰------------------------------------------3 ln(1)ln(1)1[(1)]x x e e dx C x+-+=++⎰------------------------------------------21(1)()x dx C x=++⎰(1)(ln )x x C =++.---------------------2第2页 共2页三、计算题(本大题8分)设方程0132=--xz y z 确定了),(y x z z =,求(1))1,0,1(-dz;(2)曲面),(y x z z =在点)1,0,1(-处的切平面方程. 解: 令1),,(32--=xz y z z y x F则1)1,0,1(=-x F ,1)1,0,1(=-y F ,3)1,0,1(-=-z F ---------------------------------2(1)=-)1,0,1(dz dx F F z x )1,0,1()1,0,1(---)(31)1,0,1()1,0,1(dy dx dy F F z y +=----------------------2(2)切平面的法向量 )311(-=,,n--------------------------------------------2 切平面方程为 0)1(3)1(=+-+-z y x .----------------------------------------2 四、计算题(本大题8分)和建制造,乐在共享。