部编RJ人教版 初二八年级数学 上册第一学期 同步课堂补习练习题作业 :分式方程
- 格式:doc
- 大小:1.04 MB
- 文档页数:6
15.3分式方程4
学习目标:1.会分析题意找出等量关系.
2.会列出可化为一元一次方程的分式方程解决实际问题. 学习重点:利用分式方程组解决实际问题.
学习难点:列分式方程表示实际问题中的等量关系.
学习过程:
一、自主学习:
1、盈亏问题:利润=_____________-____________
利润率==
总价=__________×______________
二、合作探究:
1、某商店销售一种衬衫,四月份的营业额为5000元,为了扩大销售,
在五月份将每件衬衫按原价的8折销售,销售量比四月增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价。
2、某农场原有水田400公顷、旱田150公顷,为了提高单位面积产
量,准备把旱田改为水田,改完后,要求旱田占水田的10%。
纹银把多少公顷旱田改为水田?
三、学以致用:
1、某大商场家电部送货人员与销售人员人数之比为1︰8.今年夏天
由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货.结果送货人员与销售人员人数之比为2︰5.求这个商场家电部原来各有多少名送货人员和销售人员?
2、对甲、乙两班学生进行体育达标测验,结果甲班有48人合格,乙
班有45人合格,甲班的合格率比乙班高5%,并且甲班人数与乙班人数相等,求甲班人数
四、能力提升
一服装店在广州看到一种夏季衬衫,用8000元购进若干件,以每件58元的价格出售,很快售完;又用17600元购进同样的衬衫,数量是第一次的2倍,每件进价比第一次多4元,服装店仍按每件58元出售,全部售完,问该服装商店这笔生意盈利多少元/。
115.2分式的运算专题一 分式的混合运算1.化简221111x x ⎛⎫-÷ ⎪+-⎝⎭的结果是( ) A . ()21x 1+ B .()21x 1- C .()21x + D .()21x - 2.计算211x x x ---.3.已知:22x x y x +6+9=-9÷2x x x+3-3-x +3.试说明不论x 为任何有意义的值,y 的值均不变.专题二 分式的化简求值4.设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于( ) A .BCD . 3 5.先化简,再求值:b a b b a b ab a +++2222-2-,其中a =-2,b=1.6.化简分式222()1121x x x x x x x x --÷---+,并从—1≤x ≤3中选一个你认为适合的整数x 代入求值.状元笔记21.分式的运算结果一定要化为最简分式或整式.2.分式乘方时,若分子或分母是多项式,要避免出现类似2222()a b a b c c ++=这样的错误. 3.同分母分式相加减“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,特别是相减时,要避免出现符号错误.【方法技巧】1.分式的乘除运算归根到底是乘法运算,其实质是分式的约分.2.除式或被除式是整式时,可把它们看作分母是1的分式,然后依照除法法则进行计算.参考答案:1.D 解析:原式=2)1()1)(1(11)1)(1(1121-=+-⋅+-=-+÷+-+x x x x x x x x x .故选D . 2.原式221(1)(1)11111x x x x x x x x +-+-=-==---. 3.解:22x x y x +6+9=-9÷2x x x+3-3-x +3 =2(3)(3)(3)x x x ++-×()x x x -3+3-x+3 =x -x +3=3.根据化简结果与x 无关可以知道,不论x 为任何有意义的值,y 的值均不变.4.A 解析:∵224m n mn += ∴2226m n mn mn ++=,2222m n mn mn +-=,∴()()m n m n mn +-==A .3 5.解:原式=b a b b a b a b a ++-+-))(()(2=ba b b a b a +++-=b a b b a ++-=b a a +, 当a =2-,1=b 时,原式=2122=+--. 6.解:原式=22221()11x x x x x x x x-+-⋅--- =22(1)(1)1(1)(1)(1)(1)x x x x x x x x x x x --⋅-⋅--+-- =111x -+ =1x x +. ∵x ≠-1,0,1∴当x =2时,原式=22213=+.。
人教版八年级数学上册分式运算分式方程练习题一、单选题1.当分式31x -有意义时,字母x 应满足( ) A.1x ≠-B.0x =C.1x ≠D.0x ≠ 2.若分式2a a b+中的a b ,的值同时扩大到原来的10倍,则分式的值( ) A.是原来的20倍 B.是原来的10倍 C.是原来的110 D.不变3.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A.3-B.1-C.1D.3 4.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是( ) A.-2 B.-1 C.2 D.35.计算2222ab ab a b a b-÷-+的结果是( ) A.22ab b -+ B.2b a b -+ C.22ab b -- D.2b a b-- 6.在分式2222424312,,,412y x x x xy y a ab a x x y ab b +--++-+-中,是最简分式的有( ) A.1个 B.2个 C.3个 D.4个7.若分式22969x x x -++的值为0,则x 的值为( ) A.3 B.3± C.9 D.9±8.计算2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是( ) A.4- B.4 C.2a D.2a -9.老师设计了接力游戏,用合作的方式完成分式化简,规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁 10.计算2235325953x x x x x ÷⋅--+的结果为( ) A.223x B.2(53)3x + C.253x x - D.2159x x - 11.计算2n n m m m ⎛⎫-÷ ⎪-⎝⎭的结果是( ) A.1m -- B. 1m -+ C. mn m -- D.mn n -- 12.计算2221121a a a a a a --⋅+-+结果是( ) A.1a B.a C.11a a +- D.11a a -+ 13.计算222105a b a b ab a b +⋅-的结果为( ) A.2a b - B.a a b - C.b a b - D.2a a b- 14.计算3362b a b a-⋅的结果为( ) A.223a bB.223a b -C.229a b -D.229a b 15.把分式2112,,2(2)(3)(3)x x x x --++通分,下列结论不正确的是( ) A.最简公分母是2(2)(3)x x -+ B.221(3)2(2)(3)x x x x +=--+C.213(2)(3)(2)(3)x x x x x +=-+-+D.22222(3)(2)(3)x x x x -=+-+ 16.化简分式222()x y y x --的结果是( ) A.1- B.1 C.x y y x +- D.x y x y+- 二、计算题17.计算:1.2222255343x y m n xym mn xy n÷ 2.222132(1)441x x x x x x x-++÷+++- 18.先化简,再求值:2221211x x x x x x--+÷+-,其中2x =-. 三、填空题19.计算293242a a a a-+÷--的结果为_________. 20.如果23a b =,那么22242a b a ab --的值是____________. 21.如果2220m m +-=,那么244()2m m m m m ++⋅+的值是 . 参考答案1.答案:C解析:当10x -≠时,分式有意义。
15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
人教版八年级上册数学《分式》同步练习姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题)1.计算()a b a b b a a+-÷的结果为( ) A .a b b -B .a b b +C .a b a -D .a b a+ 2.化简293()33a a a a a ++÷--的结果为 ( ) A . B . C . D .13.代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( ) A .6个 B .4个 C .3个 D .2个 4.下列运算中正确的是( )A .m n m m ÷⋅=B .1m n m n ÷⋅=C .11m m m÷⋅= D .n m m n ÷⋅= 5.下面的说法中正确的是( )A .有除法运算的式子就是分式B .有分母的式子就是分式C .若A 、B 为整式,式子A B叫分式 D .若A 、B 为整式且B 中含有字母,式子A B 叫分式 6.计算22()ab ab的结果为( ) A .b B .a C .1 D .1b7.化简222m n m mn -+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+9.使分式1)(1)x x +-(有意义的x 值是( ) .0A x ≠ .1B x ≠ .1C x ≠- .1D x ≠±a a -()23a +10.以下分式化简:(1)42226131x x x x ++=--;(2)x a a x b b+=+;(3)22x y x y x y +=++;(4)22x y x y x y-=-+。
其中错误的有( ) A 1个 B .2个 C .3个 D .4个二 、填空题(本大题共5小题)11.计算:111a a a +=++. 12.约分:(1)32324______30x y x y -=;(2)262______31x x x +=+ 13.约分:(1)3______3mn m=(2)227______28x z xy z -=(3)233______26a a a -=- (4)22222______m mn n m n -+=- 14.若分式2225(5)x x --的值为0,则x 的值为 . 15.已知,则___________. 三 、解答题(本大题共8小题)16.解方程:223444x x x x =--+ 17.不改变分式的值,把分式的分子、分母中各项的系数化为整数.⑴1-51124x x y - ⑵0.010.50.30.04a b a -+18.当x 为何值时,下列分式的值为0?(1)1x x + (2)213x x -+ (3)288x x +19.当x 为何值时,下列分式的值为0?(1)211x x -+ (2)2231x x x +-- (3)2242x x x -+234x y z ==222x y z xy yz zx ++=++20.下列方程是分式方程吗?(1)2315x x -+= (2)113x +=21.计算:解方程:22093x x x +=-+22.小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到上海需要的时间.23.内江市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同完成.从两个公司的业务资料看到:若两个公司合做,则恰好用12天完成;若甲、乙合做9天后,由甲再单独做5天也恰好完成.如果每天需要支付甲、乙两公司的工程费用分别为1.2万元和0.7万元.试问:(1)甲、乙两公司单独完成这项工程各需多少天?(2)要使整个工程费用不超过22.5万元,则乙公司最少应施工多少天?人教版八年级上册数学《分式》同步练习答案解析一 、选择题1.A2.A3.C4.D5.D6.B7.B ;222()()=()m n m n m n m n m mn m m n m-+--=++ 8.B9.D10.C ;约分是约去分子和分母中的公因式,而不是分子与分母中的部分因式或多项式式中的某些项,故(1)、(2)、(3)错误。
第15章《分 式》同步练习(§15.1 分式)班级 学号 姓名 得分一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ).(A)2个 (B)3个 (C)4个 (D)5个2.下列变形从左到右一定正确的是( ). (A)22--=b a b a (B)bc ac b a = (C)b a bx ax = (D)22b a b a=3.把分式y x x+2中的x 、y 都扩大3倍,则分式的值( ).(A)扩大3倍 (B)扩大6倍(C)缩小为原来的31(D)不变4.下列各式中,正确的是( ). (A)y x yx y x yx +-=--+- (B)y x yx y x yx ---=--+- (C)y x yxy x y x -+=--+- (D)y x yx y x y x ++-=--+-5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1 (C)2 (D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义.7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112m m m -+-约分的结果是______.10.若x 2-12y 2=xy ,且xy >0,则分式y x yx -+23的值为______.11.填上适当的代数式,使等式成立: (1)b a b a b ab a +=--+)(22222; (2)x xx x 2122)(2--=-;(3)a b b a b a-=-+)(11; (4))(22xy xy =.三、解答题12.把下列各组分式通分: (1);65,31,22abc a b a - (2)222,b a a ab a b --.13.把分子、分母的各项系数化为整数: (1);04.03.05.02.0+-x x (2)b a b a -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号: (1)y x y x ---22; (2)ba b a +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?16.已知311=-y x ,求分式y xy x y xy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.参考答案1.B . 2.C . 3.D . 4.A . 5.A .6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1.11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bc a abc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b13.(1);2152510+-x x (2)⋅-+b a ba 6491214.(1);22x y y x -- (2)⋅-+b a ba 215.化简原式后为1,结果与x 的取值无关. 16.⋅5317.x =0或2或3或-1. 18.⋅23。
第15章——15.2《分式的运算》同步练习及(含答案) 15.2.2第2课时 分式的加减一、选择题1.分式)1(111+++a a a 的计算结果是( ) A .11+a B .1+a a C .a 1 D .a a 1+ 2.下列计算正确的是( )A .)(818181y x y x +=+B .xzy z y x y 2=+ C .y y x y x 21212=++ D .011=-+-x y y x 3.已知a ,b 为实数,且ab =1,a ≠1,设M=11+++b b a a ,N=1111+++b a ,则M ,N 的大小关系是( )A .M >NB .M=NC .M <ND .无法确定4.化简abb a a b b a 22+--的结果是( ) A .0 B .-b a 2 C .-a b 2 D .ab 2 5.若1111x y y x=+=+,,则y 等于( ) A.1x - B .1x + C .x - D.x6.若x > y > 0,则11y y x x+-+的值为( ) A.正数 B.负数 C.零 D.无法确定7.已知公式21111R R R +=(R 1≠R 2),则表示R 1的公式是( )A .R 1=22RR R R -B .R 1=22R R RR -C .R 1=221)(R R R R + D .R 1=RR RR -22 8.甲、乙两人3次都同时到某个体米店买米,甲每次买m (m 为正整数)千克米,乙每次买米用去2m 元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是( )A .甲比乙便宜B .乙比甲便宜C .甲与乙相同D .由m 的值确定二、填空题9.分式225a b c 、2710c a b 、252b ac-的最简公分母是 . 10.计算:329122---m m = . 11.化简11-+x x 的结果是 . 12.计算:211+-x x = . 13.计算22122x x x -=-- . 14.若ab =2,1-=+b a ,则b a 11+的值为 . 15.若113x y -=,则232x xy y x xy y+---= . 16.若nm n m +=+711,则n m m n +的值为 . 17.如果a a 1+=3,则221aa += .18.观察下列各式:)311(21311-=⨯,)51-31(21531=⨯,)71-51(21751=⨯,…,根据观察计算:=+⨯-++⨯+⨯+⨯)12()12(1751531311n n (n 为正整数). 三、解答题19.计算:(1)1112-+-a a . (2)1211112--++-a a a a20.当a =,b=2时,求代数式222222b a abb b ab a b a ---+++的值.21.已知2-2x =0,求代数式11)1(222++--x xx x 的值.22.已知两个分式:A=442-x ,B=x x -++2121,其中x ≠±2.下面有三个结论: ①A=B ;②A 、B 互为倒数;③A 、B 互为相反数.请问哪个正确?为什么?23.描述证明:小明在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整小明发现的这个有趣的现象;(2)请你证明小明发现的这个有趣现象.第2课时 分式的加减一.选择题1.C2.D3.B4.C5.D6.A7.D8.B二、填空题9.22210a b c 10.32-+m 11.11-+x 12.)2(2+x x 13.1x - 14.21- 15.43 16.5 17.7 18.12+n n . 三、解答题19.解:(1)原式=11111)12++-+-++a a a a a a ( =1)1(1)12++--+a a a a ( =11123+---+a a a a =1223+--+a a a a . (2) 解:原式=)1)(1(211+---++a a a a a =)((1)10+-a a =0.20. 解:原式=))(()()(2b a b a b a b b a b a -+-+++ =ba b b a b b a ++=+++11, 当a=3,b=2时,原式=2321++=3(2﹣3)=6﹣33.21. 解:原式=1)1(1)1(22+++--x x x x x )( =1112+++-x x x x =112+-+x x x ;∵22-x =0,∴2x =2; ∴原式=112+-+x x =1. 22.解:∵ B=444442221212121222--=--=----=--+=-++x x x x x x x x x , 又∵A=442-x , ∴A 、B 互为相反数,③正确.23. 解:(1)如果ab ab b a =++2,那么ab b a =+; (2)证明:∵ab ab b a =++2, ∴ab abab b a =++222,(3分) ∴2222)(ab ab b a =++,∴22)()(ab b a =+; ∴ab b a =+.。
同步练习:分式方程
(66分)
一、选择题(每题4分,共20分) 1.解分式方程
2x -1+x +21-x
=3时,去分母后变形为
(D)
A .2+(x +2)=3(x -1)
B .2-x +2=3(x -1)
C .2-(x +2)=3(1-x )
D .2-(x +2)=3(x -1) 2.[2015·天津]分式方程2x -3=3
x 的解为
(D)
A .x =0
B .x =5
C .x =3
D .x =9
【解析】 去分母得2x =3x -9,解得x =9, 经检验x =9是分式方程的解. 3.[2015·常德]分式方程2x -2+3x 2-x =1的解为
(A) A .x =1 B .x =2 C .x =13
D .x =0
【解析】 去分母得2-3x =x -2,解得x =1, 经检验x =1是分式方程的解.
4.[2015·遵义]若x =3是分式方程a -2x -1
x -2=0的根,则a 的值是
(A)
A .5
B .-5
C .3
D .-3
【解析】 ∵x =3是分式方程a -2x -1
x -2=0的根,
∴a -23-13-2
=0,
∴a -2
3=1,∴a -2=3,∴a =5.
5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是
(A)
A.
600x +50=450
x B.
600x -50
=450
x C.600x =450x +50
D.600x =450x -50
【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.
二、填空题(每题4分,共20分)
6.[2015·淮安]方程1x -3=0的解是__x =13__. 7.[2015·巴中]分式方程
3x +2
=2
x 的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__.
9.[2015·河南模拟]若关于未知数x 的分式方程a
x -2+3=x +12-x
有增根,则a 的值为__-3__.
【解析】 分式方程去分母,得a +3x -6=-x -1, 解得x =-a +54,
∵分式方程有增根,∴x =2, ∴
-a +5
4=2,解得a =-3.
10.[2015·黄冈中学自主招生]若关于x 的方程ax +1
x -1
-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.
【解析】解方程得x=
2
1-a
,即
2
1-a
>0,解得a<1,
当x-1=0时,x=1,代入得a=-1,此为增根,∴a≠-1,
∴a<1且a≠-1.
三、解答题(共26分)
11.(10分)(1)[2014·黔西南]解方程:1
x-2=
4
x2-4
;
(2)[2014·滨州]解方程:2-2x+1
3=
1+x
2.
解:(1)x+2=4,x=2,
把x=2代入x2-4,x2-4=0,所以方程无解;
(2)去分母,得12-2(2x+1)=3(1+x),
去括号,得12-4x-2=3+3x,
移项、合并同类项,得-7x=-7,
系数化为1,得x=1.
12.(8分)[2015·济南]济南与北京两地相距480 km,乘坐高铁列车比乘坐普通快车能提前4 h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.
解:设普通快车的速度为x km/h,由题意得
480 x-480
3x=4,解得x=80,
经检验,x=80是原分式方程的解,
3x=3×80=240.
答:高铁列车的平均行驶速度是240 km/h.
13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?
解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%)x,
由题意得1 200
x-
1 200
(1+20%)x
=2,
解得x=100,
经检验,x=100是原分式方程的解,且符合题意.
答:原计划每天种树100棵.
(22分)
14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.
(1)求每张门票的原定票价;
(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票
价经过连续二次降价后降为324元,求平均每次降价的百分率.
解:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意,得
6 000 x=4 800
x-80
,
解得x=400.
经检验,x=400是原方程的根.
答:每张门票的原定票价为400元;
(2)设平均每次降价的百分率为y,根据题意,得
400(1-y)2=324,
解得:y1=0.1,y2=1.9(不合题意,舍去).
答:平均每次降价10%.
15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T恤衫各购进多少件?
(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款
型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?
解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依
题意有
7 800
1.5x+30=6 400 x,
解得x=40,
经检验,x=40是原分式方程的解,且符合题意,
1.5x=60.
答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;
(2)6 400
40=160,
160-30=130(元),
130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2)
=4 680+1 920-640
=5 960(元).
答:售完这批T恤衫商店共获利5 960元.
(12分)
16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6 600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵
或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
【解析】(1)首先设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得等量关系:种植A,B两种花木共6 600棵,根据等量关系列出方程;
(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时
间=(26-a)人种植B花木所用时间,根据等量关系列出方程.
解:(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得
x+2x-600=6 600,
解得x=2 400,
2x-600=4 200,
答:B花木数量为2 400棵,则A花木数量是4 200棵;
(2)设安排a人种植A花木,由题意得
4 200 60a=
2 400
40(26-a)
,
解得a=14,
经检验,a=14是原分式方程的解,
26-a=26-14=12,
答:安排14人种植A花木,12人种植B花木.。