圆的综合 中考总复习练习题
- 格式:wps
- 大小:237.36 KB
- 文档页数:3
中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。
中考数学专项复习《圆的综合题》练习题(附答案)一、单选题1.连接圆上的任意两点的线段叫做圆的().A.半径B.直径C.弦D.弧2.如图为△ABC和一圆的重叠情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70∘,∠B=60°,则CD̂的度数为何()A.50∘B.60∘C.100∘D.120∘3.挂钟分针的长10cm,经过20分钟,它的针尖转过的路程是() A.20π3cm B.10πcm C.20πcm D.5πcm 4.已知,AB是∠O的直径,且C是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的∠B(如图所示),那么下列关于∠A与放大镜中的∠B关系描述正确的是()A.∠A+∠B=900B.∠A=∠BC.∠A+∠B>900D.∠A+∠B的值无法确定5.已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2√3B.3√3C.4√3D.6√3 6.若一圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A.40°B.80°C.120°D.150°7.如图,AB是∠O的直径,∠CDB=40°,则∠ABC=()A.40°B.50°C.60°D.80°8.如图,在平面直角坐标系中已知B(2,0),四边形ABCD和AEFG都是正方形,点A、D、E共线,点G、A、B在x轴上,点C,E,F在以O为圆心OC为半径的圆⌢的长为().上,则FCA.√5πB.√5πC.5π2D.5π29.如图所示,矩形纸片ABCD中AB=4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则底面圆的直径的长为()A.2cm B.3cm C.4cm D.5cm 10.如图,半径为5的⊙O中有两条互相垂直的弦AB、CD,垂足为点E,且AB=CD=8,则OE的长为()A.3B.√3C.2 √3D.3 √2 11.已知在∠ABC中AB=AC=13,BC=10,那么∠ABC的内切圆的半径为()A.103B.125C.2D.3 12.如图,AB为∠O直径,∠BCD=30°,则∠ABD为()A.30°B.40°C.50°D.60°二、填空题13.在∠O中已知半径为5,弦AB的长为8,那么圆心O到AB的距离为. 14.如图,AB是∠O的直径,AC是∠O的切线,OC交∠O于点D,若∠C=40°,⌢的长为.(结果保留π)OA=9,则BD15.如果圆O的半径为3,圆P的半径为2,且OP=5,那么圆O和圆P的位置关系是.16.如图,由边长为1的小正方形构成的网格中点A,B,C都在格点上,以AB为直径的圆经过点C,D,则tan∠ADC的值为.17.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为cm2.(结果保留π)18.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB =.三、综合题19.如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是AB⌢上异于A、B 的动点,过点C作CD∠OA于点D,作CE∠OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.(1)求证:四边形OGCH是平行四边形;⌢上运动时在CD、CG、DG中是否存在长度不变的线段?若存(2)当点C在AB在,请求出该线段的长度;(3)若CD=x,直接写出CD2+3CH2的结果.20.如图,∠ABC为等腰三角形,O是底边BC的中点,腰AB与∠O相切于点D,OB与∠O相交于点E.(1)求证:AC是∠O的切线;(2)若BD= √3,BE=1.求阴影部分的面积.21.在数学活动课中同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知∠ABC是腰长为4的等腰直角三角形.(1)在等腰直角三角形ABC纸片中以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.22.如图,是一个地下排水管的横截面图,已知∠O的半径OA等于50cm,水的深度等于25cm(水的深度指AB⌢的中点到弦AB的距离).求:(1)水面的宽度AB.(2)横截面浸没在水中的AB⌢的长(结果保留π).23.如图,AB是∠O的直径,CD与∠O相切于点C,与AB的延长线交于D.(1)求证:∠ADC∠∠CDB;(2)若AC=2,AB= 32CD,求∠O半径.24.如图1,BC是∠O的直径,点A在∠O上,AD∠BC,垂足为D,AE⌢=AB⌢BE 分别交AD、AC于点F、G.(1)判断∠FAG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.参考答案1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】A 5.【答案】B 6.【答案】C 7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】D 11.【答案】A 12.【答案】D 13.【答案】3 14.【答案】132π15.【答案】外切 16.【答案】2317.【答案】270π 18.【答案】28°19.【答案】(1)证明:连接OC 交DE 于M .由矩形得OM =CM ,EM =DM . ∵DG =HE .∴EM ﹣EH =DM ﹣DG . ∴HM =GM .∴四边形OGCH 是平行四边形 (2)解:DG 不变.在矩形ODCE 中∵DE =OC =3. ∴DG =1(3)证明:设CD =x ,则CE = √9−x 2 .过C 作CN∠DE 于N . 由DE•CN =CD•EC 得CN = x √9−x 23 .∴√x 2−(x √9−x 23)2= x 23 .∴HN =3﹣1﹣ x 23 = 6−x 23.∴3CH 2=3[( 6−x 23 )2+( x √9−x 23 )2]=12﹣x 2. ∴CD 2+3CH 2=x 2+12﹣x 2=12.20.【答案】(1)证明:连接OD ,作OF∠AC 于F ,如图,∵∠ABC 为等腰三角形,O 是底边BC 的中点 ∴AO∠BC ,AO 平分∠BAC ∵AB 与∠O 相切于点D ,∴OD∠AB 而OF∠AC ∴OF=OD∴AC 是∠O 的切线(2)解:在Rt∠BOD 中设∠O 的半径为r ,则OD=OE=r ,∴r 2+( √3 )2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt∠AOD 中AD= √33 OD= √33∴阴影部分的面积=2S∠AOD ﹣S 扇形DOF=2× 12 ×1× √33 ﹣ 60⋅π⋅12360= √33 ﹣ π621.【答案】(1)解:如图所示:扇形CEF 为所求作的图形;(2)解:∵∠ABC是等腰直角三角形,且AC=BC=4∴AB= 4√2由(1)可知CD平分∠ACB∴CD∠AB∴CD= 2√2设圆锥底面的半径长为r,依题意得:2πr= 90π×2√2180∴r= √22答:所制作圆锥底面的半径长为√2222.【答案】(1)解:过O作OH∠AB于H,并延长交∠O于D∴∠OHA=90°,AH=12AB∵水的深度等于25cm,即HD=25cm又∵OA=OD=50cm∴OH=OD-HD=25cm∴AH=√OA2−OH2=√502−252=25√3cm ∴AB=50 √3cm;(2)解:连接OB∵OA =50cm ,OH =25cm∴OH = 12OA∵∠OHA =90° ∴∠OAH =30° ∴∠AOH =60° ∵OA =OB ,OH∠AB ∴∠BOH =∠AOH =60° ∴∠AOB =120°∴AB⌢ 的长是: 120π×50180=100π3 cm . 23.【答案】(1)证明:如图,连接CO∵CD 与∠O 相切于点C ∴∠OCD=90° ∵AB 是圆O 的直径 ∴∠ACB=90° ∴∠ACO=∠BCD ∵∠ACO=∠CAD ∴∠CAD=∠BCD 在∠ADC 和∠CDB 中{∠CAD =∠BCD ∠ADC =∠CDB∴∠ADC∠∠CDB . (2)解:设CD 为x则AB= 32 x ,OC=OB= 34 x∵∠OCD=90°∴OD= √OC 2+CD 2 = √(34x)2+x 2 = 54 x∴BD=OD ﹣OB= 54x ﹣ 34 x= 12 x由(1)知,∠ADC∠∠CDB∴AC CB = CD BD即 2CB =x 12x解得CB=1∴AB= √AC 2+BC 2 = √5∴∠O 半径是 √5224.【答案】(1)解:结论:∠FAG 是等腰三角形;理由:如图1∵BC 为直径∴∠BAD +∠CAD =90° ∴∠BAD =∠C ∵AE⌢=AB ⌢ ∴∠ABE =∠C ∴∠ABE =∠BAD ∴AF =BF∵∠BAD +∠CAD =90° ∴∠DAC =∠AGB ∴FA =FG∴△FAG 是等腰三角形; (2)解:(1)中的结论成立; ∵BC 为直径∴∠BAD +∠CAD =90°∴∠BAD=∠C∵AE⌢=AB⌢∴∠ABE=∠C∴∠ABE=∠BAD∴AF=BF∵∠BAD+∠CAD=90°∴∠DAC=∠AGB∴FA=FG∴△FAG是等腰三角形;(3)解:由(2)得:AF=BF=FG∵BG=26∴FB=13∴{BD−DF=7BD2+DF2=169解得:BD=12∴AD=AF−DF=13−5=8∴AB=√AD2+BD2=√82+122=4√13.第11页共11。
中考数学《圆》专项复习综合练习题-附带答案一、单选题1.如图,圆O是△ABC的外接圆,∠A=68°,则∠BOC的大小是()A.22°B.32°C.136°D.68°2.已知两圆半径分别为4和7,圆心距为3 ,那么这两个圆的位置关系是()A.内含B.内切C.相交D.外切3.如图,已知线段OA交⊙O于点B,且OB=AB 点P是⊙O上的一个动点,那么∠OAP的最大值是A.90°B.60°C.45°D.30°4.如图,半径为5的⊙A中,DE=2 √5,∠BAC+∠EAD=180°,则弦BC的长为()A.√21B.√41C.4 √5D.3 √55.如图,点D E F分别在△ABC的三边上,AB=AC∠A=∠EDF=90°与∠EFD=30°AB=1下列结论正确的是()A.BD可求BE不可求B.BD不可求BE可求C.BD BE均可求D.BD BE均不可求6.如图,在Rt△ABC中,∠ACB=90° AC=3,以点C为圆心, CA为半径的圆与AB交于点D,若点D恰好为线段AB的中点,则AB的长度为()B.3 C.9 D.6A.327.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE, BC=CE,过点O作OF⊥AC于点F,延长FO 交BE于点G ,若DE=6,EG=4,则AB的长为()A.4√5B.8√3C.13 D.148.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形…,重复上述过程,经过2018次后所得到的正六边形边长是原正六边形边长的()A.(√2)2016倍B.(√3)2017倍C.(√3)2018倍D.(√2)2019倍二、填空题9.如图,PA、PB切⊙O于点A、B ,已知⊙O半径为2 且∠APB=60°,则AB= .10.如图,矩形ABCD中,BC=4 CD=2 以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)11.如图,两边平行的刻度尺在圆上移动当刻度尺的一边与直径为6.5cm的圆相切时另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则刻度尺的宽为 cm.12.如图,两圆相交于A、B两点小圆经过大圆的圆心O 点C D分别在两圆上若∠ADB=100°则∠ACB的度数为。
中考数学总复习《圆的综合题》练习题(带答案)班级:___________姓名:___________考号:_____________一、单选题1.如图,⊙O与矩形ABCD的边AB,CD,AD相切,切点分别为E,F,G,边BC与⊙O交于M,N两点.下列五组条件中,能求出⊙O半径的有①已知AB,MN的长;②已知AB,BM的长;③已知AB,BN的长;④已知BE,BN的长;⑤已知BM,BN的长.()A.2组B.3组C.4组D.5组2.如图,⊙O的半径为5,弦AB=8,则圆上到弦AB所在的直线距离为2的点有()个.A.1B.2C.3D.03.嘉兴南湖不仅是党的诞生地,它优美的风光还吸引全国各地的旅客前来观赏.如图是南湖的一座三孔桥,某天测得最大桥拱的水面宽AB为6m,桥顶C到水面AB的距离为2m,则这座桥桥拱半径为()A.3m B.134m C.154m D.5m4.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是() A.120°B.180°C.240°D.300°5.半径为2的圆内有两条互相垂直的弦AB和CD,它们的交点E到圆心O的距离等于1,则AB2+CD2=()A.28B.26C.18D.356.如图,⊙O与⊙ABC的边AB,AC相切于点B,D,若圆心O在BC边上,⊙C=30°,OC=2,则图中阴影部分的面积是()A.π6B.π3C.2π3D.4π37.如图,小明从点A出发沿直线前进9米到达点B,向左转45∘后又沿直线前进9米到达点C,再向左转45∘后沿直线前进9米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.72米B.80米C.100米D.64米8.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为A.1⊙2B.2⊙1C.1⊙4D.4⊙19.已知四个半圆彼此相外切,它们的圆心都在x轴的正半轴上并且与直线y=√33x相切,设半圆C1、C2、C3、C4的半径分别是r1、r2、r3、r4,则当r1=1时,r4=()A.3B.32C.33D.3410.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧ABC∧上不与点A、点C重合的一个动点,连接AD、CD,若⊙APB=80°,则⊙ADC的度数是()A.15°B.20°C.25°D.30°11.如图,AB是⊙O的直径,C为圆内一点,则下列说法正确的是()A.∠BOC是圆心角B.AC是⊙O的弦C.∠C是圆周角D.AC+OC<12AB12.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.2π3B.2 √3﹣π3C.2 √3﹣2π3D.4 √3﹣2π3二、填空题13.如图,半径为2的⊙O经过菱形ABCD的三个顶点A,D,C,且与AB相切于点A,则菱形的边长为.14.若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长.15.如图,则⊙ABC中,⊙BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则AD̂的长为.(结果保留π)16.某个正多边形有一个外角是36°,则这个正多边形是边形.17.有一扇形的铁皮,其半径为30cm,圆心角为60∘,若用此扇形铁皮围成一个圆锥形的教具(不计接缝),则此圆锥的高是.18.如图,⊙O的半径为4,AB为⊙O的直径,⊙ABC=90°,直线CE与⊙O相切于点D,交BA的延长线于点E,A为OE的中点,则AC的长是.三、综合题19.如图,AB为⊙ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足PE2=PA•PC,连接CE,AE,OE,OE交CA于点D.(1)求证:⊙PAE⊙⊙PEC;(2)求证:PE为⊙O的切线;(3)若⊙B=30°,AP= 12AC,求证:DO=DP.20.如图,在平面直角坐标系中,O为原点,A(3,0),B(-3,0),D是y轴上的一个动点,⊙ADC=90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的OM交于点E,DE平分⊙ADC,连结AE,BD。
中考数学总复习《圆的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.△ABC是△O内接三角形,△BOC=80°,那么△A等于()A.80°B.40°C.140°D.40°或140°2.如图,把直径为60cm的圆形车轮(⊙O)在水平地面上沿直线l无滑动地滚动一周,设初始位置的最低点为P,则下列说法错误的是()A.当点P离地面最高时,圆心O运动的路径的长为30πcmB.当点P再次回到最低点时,圆心O运动的路径的长为60πcmC.当点P第一次到达距离地面15cm的高度时,圆心O运动的路径的长为7.5πcmD.当点P第二次到达距离地面30cm的高度时,圆心O运动的路径的长为45πcm3.下列说法正确的是()A.垂直于弦的直线必经过圆心B.平分弦的直径垂直于弦C.平分弧的直径平分弧所对的弦D.同一平面内,三点确定一个圆4.一根钢管放在V形架内,横截面如图所示,钢管的半径是6,若∠ACB=60°,则阴影部分的面积是()A.18√3−12πB.36√3−12πC.18√3−6πD.36√3−24π5.半径为2cm 的△O中有长为2√3cm的弦AB,则弦AB所对的圆周角度数为() A.60°B.90°C.60°或120°D.45°或90°6.如图,A点在半径为2的△O上,过线段OA上的一点P作直线l,与△O过A点的切线交于点B,且△APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.7.如图,已知在△ABC中,AB=AC,以AB为直径的△O交BC边于点D,交AC边于点E,连结DE。
下列五个结论:①BD=DE;②△CDE是等腰三角形;③2DE2=CA·CE;④DE=AB·sinB;⑤S△DECS△ABC=cos2C。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD平分∠ABC(2)提示:延长BC与AD相交于点F,证明△BCE≌△ACF,BE=AF=2AD(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, DEBE=DHBCDE BE =212-3.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.4.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB 为直角,即BD 垂直于AC ,利用直角三角形斜边上的中线等于斜边的一半,得到AD =DC =BD =12AC ,进而确定出∠A =∠FBD ,再利用同角的余角相等得到一对角相等,利用ASA 得到三角形AED 与三角形BFD 全等,利用全等三角形对应边相等即可得证;(2)连接EF ,BG ,由三角形AED 与三角形BFD 全等,得到ED =FD ,进而得到三角形DEF 为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE =BF =1,在直角三角形BEF 中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE 的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB 相似,由相似得比例,求出GE 的长,由GE +ED 求出GD 的长,根据三角形的面积公式计算即可.详解:(1)连接BD .在Rt △ABC 中,∠ABC =90°,AB =BC ,∴∠A =∠C =45°. ∵AB 为圆O 的直径,∴∠ADB =90°,即BD ⊥AC ,∴AD =DC =BD =12AC ,∠CBD =∠C =45°,∴∠A =∠FBD .∵DF ⊥DG ,∴∠FDG =90°,∴∠FDB +∠BDG =90°.∵∠EDA +∠BDG =90°,∴∠EDA =∠FDB .在△AED 和△BFD 中,A FBD AD BD EDA FDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ; (2)连接EF ,BG . ∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°. ∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA . ∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DEEF. ∵EF=∴DE=. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EBED,即GE •ED =AE •EB ,∴GE =8,即GE,则GD =GE +ED∴1191011092252S GD DF GD DE =⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.5.如图,AD 是△ABC 的角平分线,以AD 为弦的⊙O 交AB 、AC 于E 、F ,已知EF ∥BC . (1)求证:BC 是⊙O 的切线; (2)若已知AE=9,CF=4,求DE 长;(3)在(2)的条件下,若∠BAC=60°,求tan ∠AFE 的值及GD 长.【答案】(1)证明见解析(2)DE=6(318367- 【解析】试题分析:(1)连接OD ,由角平分线的定义得到∠1=∠2,得到DE DF =,根据垂径定理得到OD ⊥EF ,根据平行线的性质得到OD ⊥BC ,于是得到结论;(2)连接DE ,由DE DF =,得到DE=DF ,根据平行线的性质得到∠3=∠4,等量代换得到∠1=∠4,根据相似三角形的性质即可得到结论;(3)过F 作FH ⊥BC 于H ,由已知条件得到∠1=∠2=∠3=∠4=30°,解直角三角形得到FH=12DF=12×6=3,3227CF HF -=,根据三角函数的定义得到tan ∠AFE=tan ∠C=37HF CH =;根据相似三角形到现在即可得到结论. 试题解析:(1)连接OD , ∵AD 是△ABC 的角平分线, ∴∠1=∠2,∴DE DF =, ∴OD ⊥EF , ∵EF ∥BC , ∴OD ⊥BC , ∴BC 是⊙O 的切线; (2)连接DE , ∵DE DF =, ∴DE=DF , ∵EF ∥BC , ∴∠3=∠4, ∵∠1=∠3, ∴∠1=∠4, ∵∠DFC=∠AED , ∴△AED ∽△DFC ,∴AE DE DF CF =,即94DEDE =, ∴DE 2=36, ∴DE=6;(3)过F 作FH ⊥BC 于H , ∵∠BAC=60°,∴∠1=∠2=∠3=∠4=30°,∴FH=12DF=162⨯=3,∴=, ∵EF ∥BC , ∴∠C=∠AFE ,∴tan ∠AFE=tan ∠C=HF CH =; ∵∠4=∠2.∠C=∠C , ∴△ADC ∽△DFC , ∴AD CDDF CF=, ∵∠5=∠5,∠3=∠2, ∴△ADF ∽△FDG , ∴AD DFDF DG=,∴CD DF CF DG =,即64DG=,∴DG=183675.点睛:本题考查了切线的判定、圆周角定理、相似三角形的判定与性质、解直角三角形、平行线的性质,正确作出辅助线是解题的关键.6.(1)问题背景如图①,BC 是⊙O 的直径,点A 在⊙O 上,AB=AC ,P 为BmC 上一动点(不与B ,C 重合),求证:2PA=PB+PC .小明同学观察到图中自点A 出发有三条线段AB ,AP ,AC ,且AB=AC ,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC 绕着点A 顺时针旋转90°至△QAB (如图①); 第二步:证明Q ,B ,P 三点共线,进而原题得证. 请你根据小明同学的思考过程完成证明过程. (2)类比迁移如图②,⊙O 的半径为3,点A ,B 在⊙O 上,C 为⊙O 内一点,AB=AC ,AB ⊥AC ,垂足为A ,求OC 的最小值. (3)拓展延伸如图③,⊙O 的半径为3,点A ,B 在⊙O 上,C 为⊙O 内一点,AB=43AC ,AB ⊥AC ,垂足为A ,则OC 的最小值为 .【答案】(1)证明见解析;(2)OC 最小值是2﹣3;(3)32. 【解析】试题分析:(1)将△PAC 绕着点A 顺时针旋转90°至△QAB (如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA ,将△OAC 绕点O 顺时针旋转90°至△QAB ,连接OB ,OQ ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴QP=2AP=QB+BP=PC+PB,∴2AP=PC+PB.(2)如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,∵AB⊥AC,∴∠BAC=90°,由旋转可得QB=OC,AQ=OA,∠QAB=∠OAC,∴∠QAB+∠BAO=∠BAO+∠OAC=90°,∴在Rt△OAQ中,OQ=32,AO=3 ,∴在△OQB中,BQ≥OQ﹣OB=32﹣3 ,即OC最小值是32﹣3;(3)如图③中,作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,]∴BQ 的最小值为2,∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.7.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I 所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.8.如图,⊙O 的直径AB =8,C 为圆周上一点,AC =4,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E .(1)求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE∥OB,又∵CO∥EB∴四边形OBEC为平行四边形.又∵OB=OC=4.∴四边形OBEC是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.9.如图,已知等边△ABC,AB=16,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.【答案】(1)证明见解析;(2)6;(3).【解析】试题分析:(1)连接OD,根据等边三角形得出∠A=∠B=∠C=60°,根据OD=OB得到∠ODB=60°,得到OD∥AC,根据垂直得出切线;(2)根据中位线得出BD=CD=6,根据Rt△CDF的三角函数得出CF的长度,从而得到AF的长度,最后根据Rt△AFG的三角函数求出FG的长度;(3)过点D作DH⊥AB,根据垂直得出FG∥DH,根据Rt△BDH求出BH、DH的长度,然后得出∠GDH的正切值,从而得到∠FGD的正切值.试题解析:(1)如图①,连结OD,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线(2)∵OD∥AC,点O为AB的中点,∴OD为△ABC的中位线,∴BD=CD=6.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=CD=3,∴AF=AC-CF=12-3=9 在Rt△AFG中,∵∠A=60°,∴FG=AF·sinA=9×=(3)如图②,过D作DH⊥AB于H.∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=BD=3,DH=BH=3.∴tan∠GDH===,∴tan∠FGD=tan∠GDH=考点:(1)圆的基本性质;(2)三角函数.10.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)332 23π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。
中考数学总复习《圆的综合题》练习题-附带答案一、单选题(共12题;共24分)1.如图,AB是半圆O的直径,C,D是半圆上的两点,若∠BAC=20°.则∠D的大小为()A.100°B.110°C.120°D.130°2.如图,矩形ABCD为∠O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交∠O于点F,则线段AF的长为()A.B.5C.+1D.3.如图,在⊙O中∠AOB=90°,点C是优弧AB上一点,则∠ACB的度数为()A.35°B.45°C.50°D.60°4.如图,∠O中弦AD∠BC,DA=DC,∠AOC=160°,则∠BCO等于()A.20°B.30°C.40°D.50°5.如图,∠O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD所对的圆心角∠BOD的大小为()A.108°B.118°C.144°D.120°6.已知AB,CD是两个不同圆的弦,如AB=CD,那么AB⏜与CD⏜的关系是()A.AB=CD B.AB>CD C.AB<CD D.不能确定7.如图,在△ABC中∠C=90°,AB=7 ,AC=4以点C为圆心、CA为半径的圆交AB于点D,求弦AD的长为()A.4√337B.327C.2√337D.1678.如图,AB是∠O的直径,弦MN∠AB,分别过M,N作AB的垂线,垂足为C,D.以下结论:①AC=BD;②AM⌢=BN⌢;③若四边形MCDN是正方形,则MN=12AB;④若M为AN⌢的中点,则D为OB中点;所有正确结论的序号是()A.①②③B.①②④C.①②D.①②③④9.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4B.4√3C.4√5D.2√14 10.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.A.4√2B.5 C.√30D.2√1511.如图,在矩形ABCD中AB=3cm,AD=4cm若以点B为圆心,以4cm长为半径作OB,则下列选项中的各点在⊙B外的是()A.点A B.点B C.点C D.点D 12.如图,⊙O的直径AB=6,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP= 1:5,则CD的长为().A.3B.4C.2√5D.√5二、填空题(共6题;共7分)13.若圆弧的度数为60°,弧长为6π,则圆弧的半径为.14.如图,小明自制一块乒乓球拍,正面是半径为8cm的⊙O,AB⌢m__=90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为.15.如图,点E(0,3),O(0,0),C(4,0)在∠A上,BE是∠A上的一条弦.则sin∠OBE=.16.如图,在平面直角坐标系xOy中A(4,0),B(0,3),C(4,3),点I是∠ABC 的内心,则点I的坐标为;点I关于原点对称的点的坐标为.17.如图:P是∠O的直径BA延长线上一点,PD交∠O于点C,且PC=OD,如果∠P=24°,则∠DOB=18.已知AB是⊙O的弦,AB=8cm,OD⊥AB于点C,OC=3cm,则⊙O的半径是cm.三、综合题(共6题;共69分)19.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作∠O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∠PE.(1)求证:AP=AO;(2)若tan∠OPB= 12,求弦AB的长;(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 .20.如图,PA 、PB 是∠O 的切线,A 、B 为切点,∠APB=60°,连接PO 并延长与∠O交于C 点,连接AC ,BC .(1)求证:四边形ACBP 是菱形;(2)若∠O 半径为1,求菱形ACBP 的面积.21.已知,如图,在Rt∠ABC 中∠C =90°,AD 平分∠CAB .(1)按要求尺规作图:作AD 的垂直平分线(保留作图痕迹);(2)若AD 的垂直平分线与AB 相交于点O ,以O 为圆心作圆,使得圆O 经过AD 两点.①求证:BC 是∠O 的切线;②若 CD =2√2,AD =2√6 ,求∠O 的半径.22.如图,已知AB 是∠O 的直径,弦CD 与直径AB 相交于点F .点E 在∠O 外,作直线AE ,且∠EAC=∠D .(1)求证:直线AE 是∠O 的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF 的长.23.如图,AH 是∠O 的直径,AE 平分∠FAH ,交∠O 于点E ,过点E 的直线FG∠AF ,垂足为F ,B 为半径OH 上一点,点E 、F 分别在矩形ABCD 的边BC 和CD上.(1)求证:直线FG是∠O的切线(2)若CD=10,EB=5,求∠O的直径24.如图,∠O是∠ABC的外接圆,AB为直径,D是∠O上一点,且弧CB=弧CD,CE∠DA交DA的延长线于点E.(1)求证:∠CAB=∠CAE;(2)求证:CE是∠O的切线;(3)若AE=1,BD=4,求∠O的半径长.参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】B 5.【答案】C 6.【答案】D 7.【答案】B 8.【答案】B 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】C 13.【答案】1814.【答案】(32+48π)cm² 15.【答案】3516.【答案】(3,2);(-3,-2) 17.【答案】72° 18.【答案】519.【答案】(1)证明:∵PG 平分∠EPF∴∠DPO=∠BPO ∵OA∠PE ∴∠DPO=∠POA ∴∠BPO=∠POA ∴PA=OA(2)解:过点O 作OH∠AB 于点H ,则AH=HB= 12AB∵tan∠OPB= OH PH =12,∴PH=2OH设OH=x ,则PH=2x由(1)可知PA=OA=10,∴AH=PH ﹣PA=2x ﹣10 ∵AH 2+OH 2=OA 2,∴(2x ﹣10)2+x 2=102 解得x 1=0(不合题意,舍去),x 2=8 ∴AH=6,∴AB=2AH=12(3)P、A、O、C;A、B、D、C;P、A、O、D;P、C、O、B 20.【答案】(1)证明:连接AO,BO,∵PA、PB是∠O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO= 1 2∠APB=30°∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°∴∠ACO=∠APO,∴AC=AP同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形(2)解:连接AB交PC于D∴AD∠PC,∴OA=1,∠AOP=60°,∴AD= √32OA= √32∴PD= 32,∴PC=3,AB= √3∴菱形ACBP的面积= 12AB•PC=2√32.21.【答案】(1)解:如图所示:(2)①证明:如图,连接OD,∵AD为∠BAC的角平分线∴∠CAD=∠BAD∵OA=OD,∴∠BAD=∠ODA∴∠CAD=∠ODA∴OD∠AC∴∠ODB=∠C=90°∴OD∠BC∵OD为∠O半径∴BC是∠O的切线.②如图,过点D作DH∠AB于H∵∠C=90°∴DC∠AC∵AD为∠BAC的角平分线∴DH=CD= 2√2在Rt∠ADH中AH=√AD2−DH2=√(2√6)2−(2√2)2=4设∠O半径为r,∴OA=OD=r∴OH=AH-OA=4-r在Rt∠OHD中∴r2=(4−r)2+(2√2)2∴r=3即∠O的半径为3.22.【答案】(1)解:连接BD ,如图∵AB 是∠O 的直径∴∠ADB=90°,即∠ADC+∠CDB=90° ∵∠EAC=∠ADC ,∠CDB=∠BAC ∴∠EAC+∠BAC=90°,即∠BAE=90° ∴直线AE 是∠O 的切线; (2)解:∵AB 是∠O 的直径∴∠ACB=90°在Rt∠ACB 中∠BAC=30° ∴AB=2BC=2×4=8由勾股定理得:AC=√82−42=4√3 在Rt∠ADB 中cos∠BAD =34=ADAB∴34=AD 8 ∴AD=6∴BD=√82−62 =2√7∵∠BDC=∠BAC ,∠DFB=∠AFC ∴∠DFB∠∠AFC ∴BF FC =BD AC∴BF103=2√74√3∴BF=5√219. 23.【答案】(1)【解答】解:如图1,连接OE∵OA=OE∴∠EAO=∠AEO∵AE 平分∠FAH∴∠EAO=∠FAE∴∠FAE=∠AEO∴AF∠OE∴∠AFE+∠OEF=180°∵AF∠GF∴∠AFE=∠OEF=90°∴OE∠GF∵点E 在圆上,OE 是半径∴GF 是∠O 的切线.(2)【解答】∵四边形ABCD 是矩形,CD=10∴AB=CD=10,∠ABE=90°设OA=OE=x ,则OB=10﹣x在Rt∠OBE 中∠OBE=90°,BE=5由勾股定理得:OB 2+BE 2=OE 2∴(10﹣x )2+52=x 2∴x =54AH =2×254=254∴∠O 的直径为252.24.【答案】(1)证明:连接BD∵弧CB=弧CD∴∠CDB=∠CBD,CD=BC∵四边形ACBD是圆内接四边形∴∠CAE=∠CBD,且∠CAB=∠CDB∴∠CAB=∠CAE(2)证明:连接OC∵AB为直径∴∠ACB=90°=∠AEC又∵∠CAB=∠CAE∴∠ABC=∠ACE∵OB=OC∴∠BCO=∠CBO∴∠BCO=∠ACE∴∠ECO=∠ACE+∠ACO=∠BCO+∠ACO=∠ACB=90°∴EC∠OC∵OC是∠O的半径∴CE是∠O的切线(3)证明:过点C作CF∠AB于点F又∵∠CAB=∠CAE,CE∠DA∴AE=AF在∠CED和∠CFB中∵∠DEC=∠BFC=90°∠EDC=∠BFCCD=BC∴∠CED∠∠CFB(AAS)∴ED=FB设AB=x,则AD=x﹣2在∠ABD中由勾股定理得,x2=(x﹣2)2+42解得,x=5∴∠O的半径的长为5 2。
专题十圆的综合问题一、非动态问题例题1如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作EF AC ⊥于点E ,交AB 的延长线于点F ,连接AD .(1)求证:EF 是O 的切线.(2)求证:FBD FDA △△∽.(3)若4DF =,2BF =,求O 的半径长.练习题1.在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D .(1)如图①,以点B 为圆心,BC 为半径作圆弧交AB 于点M ,连结CM ,若∠ABC =66°,求∠ACM ;(2)如图②,过点D 作⊙O 的切线DE 交AC 于点E ,求证:AE =EC ;(3)如图③,在(1)(2)的条件下,若tanA =34,求S △ADE :S △ACM 的值.2.如图1,在Rt △ABC 中,90C ∠=︒,以BC 为直径的O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为O 的切线.(2)若32MH =,34AC BC =,求O 的半径.(3)如图2,在(2)的条件下分别过点A 、B 作O 的切线,两切线交于点D ,AD 与O 相切于点N ,过N 点作NQ BC ⊥,垂足为E ,且交O 于Q 点,求线段AO 、CN 、NQ 的长度.3.如图,点P 在y 轴的正半轴上,P 交x 轴于B 、C 两点,以AC 为直角边作等腰Rt △ACD ,BD 分别交y 轴和P 于E 、F 两点,连接AC 、FC ,AC 与BD 相交于点G .(1)求证:ACF ADB =∠∠;(2)求证:CF DF =;(3)DBC ∠=______°;(4)若3OB =,6OA =,则△GDC 的面积为______.4.如图,四边形ABCD 内接于半圆O ,BC 是半圆O 的直径,CE 是半圆O 的切线,CE AD ⊥交AD 的延长线于点E ,14DE BC =,OE 与CD 相交于点F ,连接BF 并延长交AE 的延长线于点G ,连接CG .(1)求证:AD BC ∥.(2)探究OF 与BF 的数量关系.(3)求tan GBC ∠的值.5.【概念提出】圆心到弦的距离叫做该弦的弦心距.【数学理解】如图①,在O 中,AB 是弦,OP AB ⊥,垂足为P ,则OP 的长是弦AB 的弦心距.(1)若O 的半径为5,OP 的长为AB 的长为______.(2)若O 的半径确定,下列关于AB 的长随着OP 的长的变化而变化的结论:①AB 的长随着OP 的长的增大而增大;②AB 的长随着OP 的长的增大而减小;③AB 的长与OP 的长无关.其中所有正确结论的序号是______.(3)【问题解决】若弦心距等于该弦长的一半,则这条弦所对的圆心角的度数为______°.(4)已知如图②给定的线段EF 和O ,点Q 是O 内一定点.过点Q 作弦AB ,满足AB EF =,请问这样的弦可以作______条.6.已知O 为ACD ∆的外接圆,AD CD =.(1)如图1,延长AD 至点B ,使BD AD =,连接CB .①求证:ABC ∆为直角三角形;②若O 的半径为4,5AD =,求BC 的值;(2)如图2,若90ADC ∠=︒,E 为O 上的一点,且点D ,E 位于AC 两侧,作ADE ∆关于AD 对称的图形ADQ ∆,连接QC ,试猜想QA ,QC ,QD 三者之间的数量关系并给予证明.7.定义:两个角对应互余,且这两个角的夹边对应相等的两个三角形叫做余等三角形.如图1,在△ABC 和△DEF 中,若∠A +∠E =∠B +∠D =90°,且AB =DE ,则△ABC 和△DEF 是余等三角形.(1)图2,等腰直角△ABC ,其中∠ACB =90°,AC =BC ,点D 是AB 上任意一点(不与点A ,B 重合),则图中△________和△________是余等三角形,并求证:AD 2+BD 2=2CD 2.(2)图3,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为5,且AD 2+BC 2=100,①求证:△ABC 和△ADC 是余等三角形.②图4,连接BD 交AC 于点I ,连接OI ,E 为AI 上一点,连接EO 并延长交BI 于点F ,若∠ADB =67.5°,IE =IF ,设OI =x ,S △y 关于x 的函数关系式.8.如图1,在等腰ABC 中,AB AC ==120BAC ∠=︒,点D 是线段BC 上一点,以DC 为直径作O ,O 经过点A .(1)求证:AB 是O 的切线;(2)如图2,过点A 作AE BC ⊥垂足为E ,点F 是O 上任意一点,连结EF .①如图2,当点F 是DC 的中点时,求EF BF的值;②如图3,当点F 是O 上的任意一点时,EF BF 的值是否发生变化?请说明理由.(3)在(2)的基础上,若射线BF 与O 的另一交点G ,连结EG ,当90GEF ∠=︒时,直接写出EF EG -的值.9.【证明体验】(1)如图1,过圆上一点A 作O 切线AD ,AC 是弦(不是直径),若AB 是直径,连接BC ,求证:DAC ABC ∠=∠;(2)如图2,若AB 不是直径,DAC ∠______ABC ∠(填“>”、“<”或“=”);(3)如图3,(1)、(2)的结论是否成立,说明理由;【归纳结论】(4)由以上证明可知:切线与弦的夹角等于它所夹的弧对的______;【结论应用】(5)如图4,ABC 内接圆于O ,弦BE AB ⊥,交AC 于F ,过点A 作O 的切线AD ,交EB 的延长线于点D .若6AD =,2sin 3ACB ∠=,求线段BE 的长.10.定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD 中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形(1)如图①,半圆O的直径为BC,OA⊥OB,点E在过点A的切线上,且BE=BA,点D 是AC 上的动点(不在点A、C上),求证:四边形AEBD为准平行四边形.(2)如图②,准平行四边形ABCD内接于⊙O,∠B≠∠D,若⊙O的半径为5,AB=AD,则①准平行四边形ABCD的面积S是线段AC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;②准平行四边形ABCD的面积S有最大值吗?如果有求出最大值,如果没有,说明理由.二、动点问题例题2(2021·浙江温州·三模)如图,在⊙O中,AB是直径,点D在圆内,点C在圆上,CD⊥半径OA于点E,延长AD交⊙O于F点,连结BF.当点M从点C匀速运动到点D 时,点N恰好从点B匀速运动到点A,且M,N同时到达点E.(1)请判断四边形ACBF 的形状,并说明理由.(2)连结AM 并延长交⊙O 于点G ,连结OG ,DN .记CM =x ,AN =y ,已知y =12.①求出AE 和BF 的长度.②当M 从C 到E 的运动过程中,若直线OG 与四边形BFDN 的某一边所在的直线垂直时,求所有满足条件的x 的值.练习题1.(2021·浙江温州·一模)如图,在矩形ABCD 中,AB =8,BC =6,E 是线段AB 上的一个动点,经过A ,D ,E 三点的⊙O 交线段AC 于点K ,交线段CD 于点H ,连接DE 交线段AC 于点F .(1)求证:AE =DH ;(2)连接DK ,当DE 平分∠ADK 时,求线段DE 的长;(3)连接HK ,KE ,在点E 的运动过程中,当线段DH ,HK ,KE 中满足某两条线段相等时,求出所有满足条件的AE 的长.2.(2022·河北·石家庄外国语教育集团一模)已知,在半圆O 中,直径AB =6,点C ,D 在半圆AB 上运动,(点C ,D 可以与A ,B 两点重合),弦CD =3.(1)如图1,当∠DAB=∠CBA 时,求证:△CAB ≌△DBA ;(2)如图2,若∠DAB =15°时,求图中阴影部分(弦AD 、直径AB 、弧BD 围成的图形)的面积;(3)如图3,取CD 的中点M ,点C 从点A 开始运动到点D 与点B 重合时结束,在整个运动过程中:①点M 到AB 的距离的最小值是___________;②直接写出点M 的运动路径长___________.3.(2022·湖南长沙·九年级期中)已知O 为ABC ∆的外接圆,AC BC =,点D 是劣弧 AB 上一点(不与点A ,B 重合),连接DA ,DB ,DC .(1)如图1,若AB 是直径,将ACD ∆绕点C 逆时针旋转得到BCE ∆.若4CD =,求四边形ADBC 的面积;(2)如图2,若AB AC =,半径为2,设线段DC 的长为x .四边形ADBC 的面积为S .①求S 与x 的函数关系式;②若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置.DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化.求所有t 值中的最大值,并求此时四边形ADBC 的面积S .4.(2022·广东·深圳中学一模)(1)【基础巩固】如图1,△ABC 内接于⊙O ,若∠C =60°,弦AB =r =______;(2)【问题探究】如图2,四边形ABCD 内接于⊙O ,若∠ADC =60°,AD =DC ,点B 为弧AC 上一动点(不与点A ,点C 重合)求证:AB +BC =BD(3)【解决问题】如图3,一块空地由三条直路(线段AD 、AB 、BC )和一条道路劣弧 CD围成,已知CM DM =千米,∠DMC =60°, CD的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M 另外三个入口分别在点C 、D 、P 处,其中点P 在 CD 上,并在公园中修四条慢跑道,即图中的线段DM 、MC 、CP 、PD ,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.5.(2022·四川·绵阳市桑枣中学一模)在矩形ABCD 中,5AB cm =,BC 10cm =,点P 从点A 出发,沿AB 边向点B 以每秒1cm 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以每秒2cm 的速度移动,P 、Q 两点在分别到达B 、C 两点时就停止移动,设两点移动的时间为t 秒,解答下列问题:(1)如图1,当t 为几秒时,PBQ △的面积等于24cm ?(2)如图2,以Q 为圆心,PQ 为半径作Q .在运动过程中,是否存在这样的t 值,使Q 正好与四边形DPQC 的一边(或边所在的直线)相切?若存在,求出t 值;若不存在,请说明理由.6.(2022·广东深圳·一模)在O 中,弦CD 平分圆周角ACB ∠,连接AB ,过点D 作DE //AB 交CB 的延长线于点E .(1)求证:DE 是O 的切线;(2)若1tan3CAB ∠=,且B 是CE 的中点,O ,求DE 的长.(3)P 是弦AB 下方圆上的一个动点,连接AP 和BP ,过点D 作DH BP ⊥于点H ,请探究点P 在运动的过程中,BH AP BP +的比值是否改变,若改变,请说明理由;若不变,请直接写出比值.7.(2021·四川德阳·二模)如图,在△ABC 中,AB =AC ,AO ⊥BC 于点O ,OE ⊥AB 于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F .(1)求证:AC 是⊙O 的切线;(2)若点F 是OA 的中点,OE =3,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE +PF 取最小值时,直接写出BP 的长.8.(2022·湖南永州·一模)如图,在ABC ∆中,AB AC =,以AB 为直径的O 交BC 于D ,过D 点作O 的切线DE 交AC 于E .(1)求证:DE AC ⊥;(2)若10AB =,3cos 5ABC ∠=,求DE 的长;(3)在(2)的条件下,若P 为线段BD 上一动点,过P 点作BC 的垂线交AB 于N ,交CA 的延长线于M ,求证:PN PM +是定值,并求出定值是多少?9.(2022·江苏·南通市海门区东洲国际学校一模)[问题提出](1)如图1,已知线段AB =4,点C 是一个动点,且点C 到点B 的距离为2,则线段AC 长度的最大值是________;[问题探究](2)如图2,以正方形ABCD 的边CD 为直径作半圆O ,E 为半圆O 上一动点,若正方形的边长为2,求AE 长度的最大值;[问题解决](3)如图3,某植物园有一块三角形花地ABC,经测量,AC=BC=120米,∠ACB =30°,BC下方有一块空地(空地足够大),为了增加绿化面积,管理员计划在BC下方找一点P,将该花地扩建为四边形ABPC,扩建后沿AP修一条小路,以便游客观赏.考虑植物园的整体布局,扩建部分 BPC需满足∠BPC=60°.为容纳更多游客,要求小路AP的长度尽可能长,问修建的观赏小路AP的长度是否存在最大值?若存在,求出AP的最大长度;若不存在,请说明理由.10.(2021·江苏南京·九年级期末)如图,在平行四边形ABCD中,AB=BC=6,∠B=45°,点E为CD上一动点,经过A、C、E三点的⊙O交BC于点F.(1)【操作与发现】当E运动到AE CD⊥处,利用直尺与圆规作出点E与F.(保留作图痕迹)(2)在(1)的条件下,证明AF ABAE AD=.(3)【探索与证明】点E运动到任何一个位置时,求证AF AB AE AD=.(4)【延伸与应用】点E在运动的过程中,直接写出EF的最小值______.三、动圆问题例题3(2021·山东威海·一模)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,点O 在射线AC 上(点O 不与点A 重合),过点O 作OD ⊥AB ,垂足为D ,以点O 为圆心,OD 为半径画半圆O ,分别交射线AC 于E ,F 两点,设OD =x .(1)如图1,当点O 为AC 边的中点时,则x =;(2)如图2,当点O 与点C 重合时,连接DF ,求弦DF 的长;(3)若半圆O 与BC 无交点,则x 的取值范围是.练习题1.(2022·江苏·常州市武进区前黄实验学校一模)如图,在平面直角坐标系中,矩形ABCD 的边BC 落在x 轴上,点B 的坐标为()1,0-,3AB =,6BC =,边AD 与y 轴交于点E .(1)直接写出点A 、C 、D 的坐标;(2)在x 轴上取点()3,0F ,直线()0y kx b k =+≠经过点E ,与x 轴交于点M ,连接EF .①当15MEF ∠=︒时,求直线()0y kx b k =+≠的函数表达式;②当以线段EM 为直径的圆与矩形ABCD 的边所在直线相切时,求点M 的坐标.9.(2021·江苏镇江·一模)如图1,ABC 中,5AB =,AC =7BC =,半径为r 的O 经过点A 且与BC 相切,切点M 在线段BC 上(包含点M 与点B 、C 重合的情况).(1)半径r 的最小值等于__________.(2)设BM =x ,求半径r 关于x 的函数表达式;(3)当BM =1时,请在图2中作点M 及满足条件的O .(要求:尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗)10.(2022·浙江温州·一模)如图,在矩形ABCD 中,AB =4,BC =6,点E ,F 分别在边AD ,CD 上,且∠ABE =∠CBF ,延长BE 交CD 的延长线于点G ,H 为BG 中点,连结CH 分别交BF ,AD 于点M ,N .(1)求证:BF CH ⊥.(2)当FG =9时.①求tan FBG ∠的值.②在线段CH 上取点P ,以E 为圆心,EP 为半径作E (如图),当E 与四边形ABMN 某一边所在直线相切时,求所有满足条件的HP 的长.11.(2022·江苏镇江·九年级期末)如图:已知线段5AM =,射线AS 垂直于AM ,点N 在射线AS 上,设AN n =,点P 在经过点N 且平行于AM 的直线上运动,PAM ∠的平分线交直线NP 于点Q ,过点Q 作QB AP ∥,交线段AM 于点B ,连接PB 交AQ 于点C ,以Q 为圆心,QC 为半径作圆.(1)求证:PB 与Q 相切;(2)已知Q 的半径为3,当AM 所求直线与Q 相切时,求n 的值及PA 的长;(3)当2n 时,若Q 与线段AM 只有一个公共点,则Q 的半径的取值范围是______.四、圆的图形变换问题例题4平面上,矩形ABCD 与直径为QP 的半圆K 如图摆放,分别延长DA 和QP 交于点O ,且∠DOQ =60°,OQ =OD =3,OP =2,OA =AB =1.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).发现(1)当α=0°,即初始位置时,点P____直线AB 上.(填“在”或“不在”)求当α是多少时,OQ 经过点B ?(2)在OQ 旋转过程中.简要说明α是多少时,点P ,A 间的距离最小?并指出这个最小值:(3)如图,当点P 恰好落在BC 边上时.求α及S 阴影.拓展如图.当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设BM =x (x >0),用含x 的代数式表示BN 的长,并求x 的取值范围.探究当半圆K 与矩形ABCD 的边相切时,求sin α的值.练习题1.把一张圆形纸片按如图方式折叠两次后展开,图中的虚线表示折痕,且折痕6AB =,求O 的半径.2.如图,已知AB 为O 的直径,CD 为弦.CD =AB 与CD 交于点E ,将CD沿CD 翻折后,点A 与圆心O 重合,延长BA 至P ,使AP OA =,连接PC .(1)求O 的半径;(2)求证:PC 是O 的切线;(3)点N 为 ADB 的中点,在PC 延长线上有一动点M ,连接MN 交AB 于点G .交 BC 于点F的值.(F与B、C不重合).求NG NF3.如图1,在Rt△ABC中,∠C=90°,AB=10,BC=6,O是AC的中点,以点O为圆心在AC的右侧作半径为3的半圆O,分别交AC于点D、E,交AB于点G、F.(1)思考:连接OF,若OF⊥AC,求AF的长度;(2)探究:如图2,将线段CD连同半圆O绕点C旋转.①在旋转过程中,求点O到AB距离的最小值;②若半圆O与Rt△ABC的直角边相切,设切点为K,连接AK,求AK的长.4.如图,点B在数轴上对应的数是﹣2,以原点O为圆心、OB的长为半径作优弧AB,使C为OB的中点,点D在数轴上对应的数为4.点A点的左上方,且tan∠AOB(1)S扇形AOB=;(2)点P是优弧AB上任意一点,则∠PDB的最大值为;(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,顺时针旋转a(0°≤a≤360°),①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.5.如图1,在正方形ABCD中,AB=10,点O,E在边CD上,且CE=2,DO=3,以点O为圆心,OE为半径在其左侧作半圆O,分别交AD于点G,交CD的延长线于点F.(1)AG =;(2)如图2,将半圆O 绕点E 逆时针旋转α(0°<α<180°),点O 的对应点为O ′,点F 的对应点为F ′,设M 为半圆O ′上一点.①当点F ′落在AD 边上时,求点M 与线段BC 之间的最短距离;②当半圆O ′交BC 于P ,R 两点时,若PR 的长为53π,求此时半圆O ′与正方形ABCD 重叠部分的面积;③当半圆O ′与正方形ABCD 的边相切时,设切点为N ,直接写出tan ∠END 的值.6.如图,已知⊙O 的半径为2,AB 为直径,CD 为弦,AB 与CD 交于点M ,将弧CD 沿着CD 翻折后,点A 与圆心O 重合,延长OA 至P ,使AP =OA ,链接PC .(1)求证:PC 是⊙O 的切线;(2)点G 为弧ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E ,交弧BC 于点F (F 与B 、C 不重合).问GE ▪GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.7.如图,在ABE △中,BE AE >,延长BE 到点D ,使DE BE =,延长AE 到点C ,使CE AE =.以点E 为圆心,分别以BE 、AE 为半径作大小两个半圆,连结CD .(1)求证:AB CD =;(2)设小半圆与BD 相交于点M ,24BE AE ==.①当ABE S 取得最大值时,求其最大值以及CD 的长;②当AB 恰好与小半圆相切时,求弧AM 的长.8.在扇形AOB 中,半径6OA =,点P 在OA 上,连结PB ,将OBP 沿PB 折叠得到O BP ' .(1)如图1,若75O ∠=︒,且BO '与 AB 所在的圆相切于点B .①求APO ∠'的度数.②求AP 的长.(2)如图2,BO '与 AB 相交于点D ,若点D 为 AB 的中点,且//PD OB ,求 AB 的长.9.如图,矩形ABCD 中,4=AD ,AB m =(4m >),点P 是DC 上一点(不与点D ,C 重合),连接AP ,APQ 与APD △关于AP 对称,PM 是过点A ,P ,Q 的半圆O 的切线,且PM 交射线AB 于点M .(1)当AP PM =时,半圆O 与AB 所围成的封闭图形的面积为___________;(2)当Q 在矩形ABCD 内部时,①判断PAQ ∠与AMP ∠是否相等,并说明理由;②若3tan 4PAQ ∠=,求AM 的长;(3)当14DP DC =时,若点Q 落在矩形ABCD 的对称轴上,求m 的值及此时半圆O 落在矩形ABCD 内部的弧长.10.如图1,在正方形ABCD 中,10AB =,点O 、E 在边CD 上,且2CE =,3DO =,以点O 为圆心,OE 为半径在其左侧作半圆O ,分别交AD 于点G ,交CD 延长线于点F .(1)AG =________.(2)如图2,将半圆O 绕点E 逆时针旋转()0180αα︒<<︒,点O 的对应点为O ',点F 对应点为F ',当半圆O '交BC 于P 、R 两点时,若弧PR 的长为5π3,求此时半圆O '与正方形ABCD 重叠部分的面积.(3)当半圆O '与正方形ABCD 相切时,设切点为N ,直接写出tan END ∠的值.11.如图⊙O 中直径AB =2,点E 是AB 的中点,点C 是AE 上的一个动点,将CB 沿线段BC 折叠交AB 于点D .(1)如图1,当∠ABC =20°时,求此时 AC 的长.(2)如图2,连结AC ,当点D 与点О重合时,求此时AC 的长.(3)设AC =x ,DO =y ,请直接写出y 关于x 的函数表达式及自变量x 的取值范围.12.如图,在平行四边形ABCD 中,AB =10,AD =15,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小.(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号).(3)若点Q 恰好落在平行四边形ABCD 的边所在直线上时,直接写出PB 旋转到PQ 时点B 经过的路径的长(结果保留π).13.如图1,四边形ABCD 是正方形,且AB =8,点O 与B 重合,以O 为圆心,作半径长为5的半圆O ,交BC 于E ,交AB 于F ,交AB 延长线于G 点,M 是半圆O 上任一点;发现:AM 的最大值为,S 阴影=.如图2,将半圆O 绕点F 逆时针旋转,旋转角为α(0°<α<180°).思考:(1)若点C 落在半圆O 的直径GF 上,求圆心O 到AB 的距离;(2)若α=90°,求半圆O 落在正方形内部的弧长;探究:在旋转过程中,若半圆O 与正方形的边相切,求点A 到切点的距离.【注:sin37°=35,sin53°=45,tan37°=34】14.如图,在矩形ABCD 中,6AB =,8BC =,O 是AD 的中点,以O 为圆心,在AD 的下方作半径为3的半圆O ,交AD 于点E ,F .(1)思考:连接BD ,交半圆O 于点G 、H ,求GH 的长;(2)探究:将线段AP 连带半圆O 绕点A 顺时针旋转,得到半圆O ',设其直径为E F '',旋转角为α(0180α<<︒);①设F '到直线AD 的距离为m ,当72m >时,求α的取值范围.②若半圆O '与线段AB 相切,或半圆O '与线段BC 相切,设切点为R ,直接写出 F R '的长.(3sin 494︒=,3cos 414︒=,3tan 374︒=,结果保留π)15.如图1,在Rt ABC 中,90C ∠=︒,10AB =,6BC =,O 是AC 的中点,以点O 为圆心在AC 的右侧作半径为3的半圆O ,分别交AC 于点D 、E ,交AB 于点G 、F .思考:连接OF ,若OF AC ⊥,求AF 的长度;探究:如图2,将线段CD 连同半圆O 绕点C 旋转.(1)在旋转过程中,求点O 到距离的最小值;(2)若半圆O 与Rt ABC 的直角边相切,设切点为K ,连接AK ,求AK 的长.16.如图,在矩形ABCD 中,4=AD ,30BAC ∠=︒,点O 为对角线AC 上的动点(不与A 、C 重合),以点O 为圆心在AC 下方作半径为2的半圆O ,交AC 于点E 、F .(1)当半圆O 过点A 时,求半圆O 被AB 边所截得的弓形的面积;(2)若M 为 EF的中点,在半圆O 移动的过程中,求BM 的最小值;(3)当半圆O 与矩形ABCD 的边相切时,求AE 的长.17.如图1,扇形OAB 的半径为4,∠AOB =90°,P 是半径OB 上一动点,Q 是 AB 上一动点.(1)连接AQ 、BQ 、PQ ,则∠AQB 的度数为;(2)当P 是OB 中点,且PQ ∥OA 时,求 AQ的长;(3)如图2,将扇形OAB 沿PQ 对折,使折叠后的 QB'恰好与半径OA 相切于点C .若OP =3,求点O 到折痕PQ 的距离.18.如图1,在Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,以MN 为直径的半圆O 按如图所示位置摆放,点M 与点A 重合,点N 在边AC 的中点处,点N 从现在的位置出发沿AC CB -方向以每秒2个单位长度的速度运动,点M 随之沿AC CB -下滑,并带动半圆O 在平面内滑动,设运动时间为t 秒(0t ≥),点N 运动到点B 处停止,点P 为半圆中点.(1)如图2,当点M 与点A 重合时,连接OP 交边AB 于E ,则EP 为____________;(2)如图3,当半圆的圆心O 落在了Rt ABC ∆的斜边AB 的中线时,求此时的t ,并求出此时CMN ∆的面积;(3)在整个运动的过程中,当半圆与边AB 有两个公共点时,求出t 的取值范围;(4)请直接写出在整个运动过程中点P 的运动路径长.19.如图1,矩形ABCD 中,3AB =,4=AD ,以AD 为直径在矩形ABCD 内作半圆O .(1)若点M 是半圆O 上一点,则点M 到BC 的最小距离为________;(2)如图2,保持矩形ABCD 固定不动,将半圆O 绕点A 顺时针旋转α()090α︒<<︒度,得到半圆O',则当半圆O'与BC相切时,求旋转角α的度数;AD'与边BC有交点时,求tanα的取值范围.(3)在旋转过程中,当20.如图,半圆O的直径4AB=,以长为2的弦PQ为直径,向点O方向作半圆M,其中P 点在AQ(弧)上且不与A点重合,但Q点可与B点重合.发现 AP的长与 QB的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求 AP的长.(注:结果保留π,cos35= ,cos55=。
中考数学总复习《圆的综合题》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定2.如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°3.下列命题:①三点确定一个圆;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④等弧所对的圆心角相等;其中真命题的个数是()A.0B.1C.2D.34.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60B.60πC.65D.65π5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.3π2B.4π3C.4D.2+ 3π26.下列命题正确的个数有()①长度相等的弧叫做等弧;②三点确定一个圆;③平分弦的直径垂直于弦;④弧相等,则弧所对的圆心角相等.A.1B.2C.3D.47.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2B.2 πcm2C.6πcm2D.3πcm28.如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若⊙ACE=25°,则⊙D的度数是()A.50°B.55°C.60°D.65°9.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E 为弧CD上一点,且OE⊙CD,垂足为F,OF=300√3米,则这段弯路的长度为A.200π米B.100π米C.400π米D.300π米10.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=2 ,则⊙AED的度数是()A.30°B.60°C.45°D.36°11.如图,AB是⊙O的直径,C,D是⊙O上的点,⊙CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A.√32B.12C.√33D.√312.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若⊙BOD=⊙BCD,则BD̂的长为()A.πB.32πC.2πD.3π二、填空题(共6题;共7分)13.如图,△ABC中AB=2,将△ABC绕点A逆时针旋转60°得到△AB1C1,AB1恰好经过点C,则阴影部分的面积为.14.如图,Rt⊙ABC中⊙C=90°,⊙A=30°,AB=4,以AC上的一点O为圆心OA为半径作⊙O,若⊙O与边BC始终有交点(包括B、C两点),则线段AO的取值范围是.15.如图所示一张圆形光盘,已知光盘内直径为2cm,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,则另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的外直径是cm,该光盘的面积是cm2.16.如图,⊙O是△ABC的外接圆OB=√13,BC=4则tanA的值为.R,则AC 17.已知半径为R的半圆O,过直径AB上一点C,作CD⊙AB交半圆于点D,且CD=√32的长为18.如图,在矩形ABCD中AB=2,BC=4点E为BC上一动点,过点B作AE的垂线交AE于点F,连接DF则DF的最小值是.三、综合题(共6题;共60分)19.如图,在△ABC中以△ABC的边AB为直径作⊙O,交AC于点D,DE是⊙O的切线,且DE⊥BC 垂足为点E.(1)求证:AB=BC;(2)若DE=3,CE=6,求直径AB长.20.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D.(1)若⊙BAD=80°,求⊙DAC的度数;(2)如果AD=6,AB=8,求AC的长.21.如图,AB为⊙O的直径,点C是⊙O上的一点,AB=8cm,⊙BAC=30°,点D是弦AC上的一点.(1)若OD⊙AC,求OD长;(2)若CD=2OD,判断△ADO形状,并说明理由.22.如图,以⊙ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求证:DE是⊙O的切线;(2)设⊙CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan⊙BAC的值.23.如图,AB、AC是⊙O的两条弦,且AB=AC,点D是弧BC的中点,连接并延长BD、CD,分别交AC、AB的延长线于点E、F.(1)求证:DF=DE(2)若BD=6,CE=8求⊙O的半径.24.如图,AB是⊙O的直径,AC是弦,D是弧BC的中点,过点D作EF垂直于直线AC,垂足为F,交AB的延长线于点E.(1)求证: EF是⊙O的切线;(2)若AF=6,EF=8,求⊙O的半径.参考答案1.【答案】C 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】A 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】B 12.【答案】C 13.【答案】23π14.【答案】√3≤OA ≤43√3 15.【答案】10;24π 16.【答案】2317.【答案】12R 或32R 18.【答案】√17−119.【答案】(1)证明:连接OD .∵DE 是⊙O 的切线 ∴OD ⊥DE ∵DE ⊥BC ∴OD ∥BC ∴∠ODA =∠C又∵OD=OA∴∠ODA=∠OAD ∴∠OAD=∠C∴AB=BC(2)解:连接BD ∵AB为直径∴∠BDA=90°∴∠BDC=90°∴△DEB∼△CED∴DEBE=CEDE∴3BE=63∴BE=3 2∴BC=15 2∴AB=15 220.【答案】(1)解:如图,连接OC∵DC切⊙O于C∴OC⊙CF∴⊙ADC=⊙OCD=90°∴AD //OC∴⊙DAC=⊙OCA∵OA=OC∴⊙OAC=⊙OCA∴⊙DAC=⊙OAC∵⊙BAD=80°∴⊙DAC=12⊙BAD=12×80°=40°(2)解:连接BC.∵AB是直径∴⊙ACB=90°=⊙ADC ∵⊙DAC=⊙BAC∴⊙ADC⊙⊙ACB∴ACAB=ADAC∵AD=6,AB=8∴AC8=6AC∴AC=4 √3.21.【答案】(1)∵AB为⊙O的直径∴∠ACB=90°∵AB=8cm,⊙BAC=30°∴BC=4∵OD⊙AC∴OD//BC∵OA=OB∴OD=12BC=2(2)△ADO是等腰三角形.理由如下:如图,过O作OQ⊥AC于Q,连接OC,∵AB=8,∠BAC=30°∴AC=AB·cos30°=8×√32=4√3∴CQ=AQ=2√3∴OQ=12OA=2设OD=x,则CD=2OD=2x∴DQ=2x−2√3由勾股定理可得:x2=(2x−2√3)2+22∴(√3x−4)2=0∴x1=x2=4√3 3∴AD=4√3−2×4√33=4√33=OD∴△ADO是等腰三角形.22.【答案】(1)证明:连接OD∵OD=OB∴⊙ODB=⊙OBD.∵AB是直径∴⊙ADB=90°∴⊙CDB=90°.∵E为BC的中点∴DE=BE∴⊙EDB=⊙EBD∴⊙ODB+⊙EDB=⊙OBD+⊙EBD 即⊙EDO=⊙EBO.∵BC是以AB为直径的⊙O的切线∴AB⊙BC∴⊙EBO =90°∴⊙ODE =90°∴DE 是⊙O 的切线(2)解:连接AE∵S 2=5S 1,E 为BC 的中点∴S ⊙ACE =3S 1∴S ⊙ADE =2S 1∴AD =2DC∵⊙CBO =90°,⊙CDB =90° ∴⊙BDC⊙⊙ADB∴AD BD =DB DC∴DB 2=AD •DC ,即 DB =√2DC∴DB AD =√2DC 2DC =√22∴tan⊙BAC = DB AD =√2223.【答案】(1)解: ∵AB =AC AB ⏜=AC ⏜ ∵ 点 D 是 BC ⃗⃗⃗⃗⃗ 的中点∴BD ⏜=CD ⏜∴AB ⏜+BD ⏜=AC ⏜+CD ⏜∴ABD ⏜=ACD ⏜∴∠ACD =∠ABD =90°在 △ACF △ABE 中{∠A =∠A AB =AC ∠ABE =∠ACF∴△ACF ≌△ABE(ASA)∴CF =BE又 ∵BD ⏜=CD ⏜∴BD =CD∴CF −CD =BE −BD ,即 DF =DE (2)解:连接 AD由(1)知 ∠ACD =90°∴AD 是 ⊙O 的直径∴∠DCE =90°又 ∵CD =BD =6在 Rt △DCE 中令 AB =AC =x ,在 Rt △ABE 中由 AB 2+BE 2=AE 2 ,得 x 2+(6+10)2=(x +8)2 解得 x =12 ,即 AC =12在 Rt △ACD 中∴⊙O 的半径为 12AD =3√5 24.【答案】(1)证明:连接OD .∵EF⊙AF∴⊙F =90°.∵D 是 BC⌢ 的中点,∴BD ⌢=CD ⌢ . ∴⊙EOD =⊙DOC = 12⊙BOC ∵⊙A = 12⊙BOC ,∴⊙A =⊙EOD ∴OD⊙AF .∴⊙EDO =⊙F =90°.∴OD⊙EF∴EF 是⊙O 的切线;(2)解:在Rt⊙AFE 中∵AF =6,EF =8 ∴AE =√AF 2+EF 2 = √62+82 =10 设⊙O 半径为r ,∴EO =10﹣r . ∵⊙A =⊙EOD ,⊙E =⊙E∴⊙EOD⊙⊙EAF ,∴OD AF = OE EA ∴r 6=10−r 10 .∴r = 154 ,即⊙O 的半径为 154 .。
中考数学总复习《圆的综合题》专题测试卷-含答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.如图,已知⊙O的两条弦AB,CD相交于AB的中点E,且AB=4,DE=CE+3,则CD的长为()A.4B.5C.8D.102.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.83.在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离4.如图,在⊙O中,已知,则AC与BD的关系是()A.AC=BD B.AC<BD C.AC>BD D.不确定5.如图,点P是⊙O外的一点,PA、PC是⊙O的切线,切点分别为A,C,AB是⊙O的直径,连接BC,PO,PO交弦AC于点D.下列结论中错误的是()A.PO∥BCB.PD=2ODC.若∠ABC=2∠CPO,则⊙PAC是等边三角形D.若⊙PAC是等边三角形,则∠ABC=2∠CPO6.如图,AB是⊙O的直径,⊙C=15°,则⊙BAD的度数为()A.45°B.55°C.60°D.75°7.如图,⊙O是⊙ABC的内切圆,切点分别是D,E,F,已知⊙A=100°,⊙C=30°,则⊙DFE的度数是()A.55°B.60°C.65°D.70°8.在半径为12的⊙O中,150°的圆心角所对的弧长等于()A.10πB.12πC.24πD.5π9.如图,⊙A是⊙O的圆周角,⊙A=40°,则⊙BOC的度数为()A.50°B.80°C.90°D.120°10.如图,在圆O中,半径OA=√61,弦BC=10,点Q是劣弧AC上的一个动点,连接BQ,作CP⊥BQ,垂足为P.在点Q移动的过程中,线段AP的最小值是()A.6B.7C.8D.911.如图,点C、D在以AB为直径的半圆上,点O为圆心∠DCO=55°则∠CAD的度数为()A.30°B.35°C.40°D.45°12.如图,在矩形ABCD中AB=3,BC=2 √3以点A为圆心,AD长为半径画弧交边BC于点E,连接AE,则DE⌢的长为()A.√33πB.πC.2√33πD.√3π二、填空题(共6题;共7分)13.如图,AB为⊙O的直径,C、D为⊙O上的点,AD=CD若⊙CAB=40°,则⊙CAD=.14.如图,OA是⊙O的一条半径,点P是OA延长线上一点,过点P作⊙O的切线PB,点B为切点.若PA=1,PB=2则sin∠OPB=.15.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则⊙PCD的周长等于cm.16.现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB 和CD平行且相等(如图2),小华用皮带尺量出AC=2米,AB=1米,那么桌面翻成圆桌后,桌子面积会增加平方米.(结果保留π)17.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是弧BC上任意一点(不与B,C重合)AH=1CH=2.延长线段BM交DC的延长线于点E,直线MH交⊙O于点N,连结BN交CE于点F,则OC=,HE⋅HF=.18.如图,PA,PB切⊙O于A、B两点,CD切⊙O于E点,⊙O的半径是r,⊙PCD周长为4r,则tan⊙APB=三、综合题(共6题;共60分)19.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线;(2)若∠DFA=30°,DF=4,求FG的长.20.如图,⊙ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊙AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE=6,求tanC.⌢的中点,连结CE交AB于21.如图,已知⊙ABC,以AC为直径的⊙O交AB于点D,点E为AD点F,且BF=BC.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,sinB=45,求CE的长.22.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)若AE=3,DE=4,求⊙O的半径的长.23.如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分⊙BAD,连接BF(1)求证:AD⊙ED;(2)若CD=4,AF=2,求⊙O的半径.24.如图,在Rt⊙ABC中,⊙ABC=90o,以BC为直径的半圆⊙O交AC于点D,点E是AB的中点,连接DE并延长,交CB延长线于点F.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若CF=8,DF=4,求⊙O的半径和AC的长.参考答案1.【答案】B 2.【答案】C 3.【答案】C 4.【答案】A 5.【答案】B 6.【答案】D 7.【答案】C 8.【答案】A 9.【答案】B 10.【答案】C 11.【答案】B 12.【答案】C 13.【答案】25° 14.【答案】3515.【答案】1416.【答案】2π3 ﹣ √3217.【答案】2.5;4 18.【答案】4319.【答案】(1)证明:∵ C ,A ,D ,F 在⊙O 上,⊙CAF=90°∴ ⊙D=⊙CAF=90°. ∵ AB⊙CE ,BG⊙DF ∴ ⊙BED=⊙G=90°.∴ 四边形BEDG 中,⊙ABG=90°. ∴ 半径OB⊙BG . ∴ BG 是⊙O 的切线. (2)解:连接CF∵ ⊙CAF=90°∴ CF是⊙O的直径.∴ OC=OF.∵直径AB⊙CD于E∴ CE=DE.∴ OE是⊙CDF的中位线.∴OE=12DF=2.∵AD⌢=AD⌢,⊙AFD=30°∴ ⊙ACD=⊙AFD=30°.∴∠CAE=90°−∠ACE=60°.∵ OA=OC∴ ⊙AOC是等边三角形.∵ CE⊙AB∴ E为AO中点∴ OA=2OE=4,OB=4.∴BE=BO+OE=6.∵ ⊙BED=⊙D=⊙G=90°∴四边形BEDG是矩形.∴ DG=BE=6.∴FG=DG−DF=2.20.【答案】(1)证明:连接OD,∵OB=OD,∴⊙B=⊙ODB,∵AB=AC,∴⊙B=⊙C,∴⊙ODB=⊙C,∴OD⊙AC,∵DF⊙AC,∴OD⊙DF,∴DF是⊙O的切线;(2)解:连接BE,AD∵AB是直径∴⊙AEB=90°∵AB=AC,AC=3AE=6∴AB=3AE=6,AE=2∴CE=4AE=8∴BE= √AB2−AE2=4 √2∴tanC= BECE=√22.21.【答案】(1)BC与⊙O相切证明:连接AE∵AC是⊙O的直径∴⊙E=90°∴⊙EAD+⊙AFE=90°∵BF=BC∴⊙BCE=⊙BFC∵E为弧AD中点∴⊙EAD=⊙ACE∴⊙BCE+⊙ACE=90°∴AC⊙BC∵AC为直径∴BC是⊙O的切线.(2)解:∵⊙O的半为2 ∴AC=4∵sinB=45=ACAB∴AB=5∴BC=√AB2−AC2=3∵BF=BC∴BF=3,AF=5﹣3=2∵⊙EAD=⊙ACE,⊙E=⊙E ∴⊙AEF⊙⊙CEA∴EAEC=AFAC=12∴EC=2EA设EA=x,EC=2x由勾股定理得:x2+4x2=16x=4√55(负数舍去)即CE=8√55.22.【答案】(1)证明:连接OC∵点C为弧BF的中点∴弧BC=弧CF.∴∠BAC=∠FAC.∵OA=OC∴∠OCA=∠OAC.∴∠OCA=∠FAC.∵AE⊙DE∴∠CAE+∠ACE=90°.∴∠OCA+∠ACE=90°.∴OC⊙DE.∴DE是⊙O的切线.(2)解:由勾股定理得AD=5∵∠OCD=∠AEC=90°⊙D=⊙D∴⊙OCD⊙⊙AED∴ODAD=OCAE即5−r5=r3解得r= 15 8∴⊙O的半径长为15 8.23.【答案】(1)证明:连接OC,如图∵AC平分⊙BAD∴⊙1=⊙2∵OA=OC∴⊙1=⊙3∴⊙2=⊙3∴OC⊙AD∵ED切⊙O于点C∴OC⊙DE∴AD⊙ED(2)解:OC交BF于H,如图∵AB为直径∴⊙AFB=90°易得四边形CDFH为矩形∴FH=CD=4,⊙CHF=90°∴OH⊙BF∴BH=FH=4∴BF=8在Rt⊙ABF中,AB= √AF2+BF2=√22+82=2√17∴⊙O的半径为√17.24.【答案】(1)解:相切证明:连接OD,OE∵点E是AB中点,点O是BC中点∴OE是⊙ABC的中位线,∴OE⊙AC∴⊙1=⊙4,⊙2=⊙3∵OC=OD,∴⊙3=⊙4,∴⊙1=⊙2∵OB=OD,OE=OE,∴⊙OBE⊙⊙ODE∴⊙ODE=⊙OBE=90o∴OD⊙DE,∴直线DF与⊙O相切.(2)解:设⊙O半径为x,则OD=x,OF=8-x在Rt⊙FOD中OD2+FD2=OF2∴x2+42=(8−x)2,∴x=3∴⊙O半径为3∵⊙FBE=⊙FDO=90°,⊙F=⊙F,∴⊙FBE⊙⊙FDO,∴BFDF=BEOD∵BF=FC-BC=2,OD=3,DF=4,∴BE=32,∵点E是AB中点,∴AB=2BE=3在Rt⊙ABC中,AC=√AB2+BC2=3√5。
圆的综合 中考总复习经典题型
一、选择题
1.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙O 1的半径为4cm ,则⊙O 2的半径为( )
A .5cm B.13cm C.9cm 或13cm D.5cm 或13cm
2.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )
A .与x 轴相离、与y 轴相切
B .与x 轴、y 轴都相离
C .与x 轴相切、与y 轴相离
D .与x 轴、y 轴都相切
3.圆锥的侧面积为8πcm 2, 侧面展开图圆心角为45°,则该圆锥母线长为( )
A .64cm
B .8cm
222cm cm 4C、 D、 4.如图,正三角形的内切圆半径为1,那么三角形的边长为( ) A .2 B .32 C .3 D .3
5、如图,PA PB ,分别是圆O 的切线,A B ,为切点,AC 是圆O 的直径, 35BAC ∠=,P ∠的度数为( )
A .35
B .45
C .60
D .70
6.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( )
A .2100cm π
B .2400cm 3π
C .2800cm π
D .2800cm 3π 二、填空题
7.如图,AB 是⊙O 的弦,OC AB ⊥于点C ,若8cm AB =,3cm OC =,则⊙O 的半径为 cm .
8.若O 为△ABC 的外心,且∠BOC =60°,则∠BAC = °.
9.圆O 1和圆O 2的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于 cm .
10.圆锥的底面半径是1,母线长是4,它的侧面积是 ______.
11.已知⊙O 的半径是3,圆心O 到直线l 的距离是3,则直线l 与⊙O 的位置关系是 .
第6题图 O 第5题图 A B C O A C
O 第7题图 第4题图
A B C P O 三、解答题
12.如图,AB 是圆O 的直径,点C 在圆O 上,且13AB =,5BC =.
(1)求sin BAC ∠的值;
(2)如果OD AC ⊥,垂足为D ,求AD 的长;
(3)求图中阴影部分的面积.
14.AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=,求B ∠的度数.
15.如图,正方形网格中,ABC △为格点三角形(顶点都是格点),将ABC △绕点A 按逆时针方向旋转90得到11AB C △.
(1)在正方形网格中,作出11AB C △;
(2)设网格小正方形的边长为1,求旋转过程中动点B 所经过的路径长.
A B C D O
16.如图,某种雨伞的伞面可以看成由12块完全相同的等腰三角形布料缝合而成.量得其中一个三角形OAB 的边OA=OB=56cm.
(1)求∠AOB 的度数;
(2)求△OAB 的面积.(不计缝合时重叠部分的面积)
17.如图,点C 是半圆O 的半径OB 上的动点,作PC AB ⊥于C .点D 是半圆上位于PC 左侧的点,连结BD 交线段PC 于E ,且PD PE =.
(1)求证:PD 是圆O 的切线.
(2)若圆O 的半径为43,83PC =,设2OC x PD y ==,.
①求y 关于x 的函数关系式.
②当3x =时,求tan B 的值.
C E
P D。