初中数学竞赛试题汇编
- 格式:doc
- 大小:3.12 MB
- 文档页数:111
初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。
12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。
14. 一个数的立方根等于它本身,这个数是________。
15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。
全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。
【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。
在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。
求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。
【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。
求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。
【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。
【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。
随机抽取两个球,求两个球颜色相同的概率。
【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。
求不同的放法有多少种。
【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。
”- 乙说:“丙是说谎者。
”- 丙说:“甲和乙都是说谎者。
”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。
【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。
如果水池开始时是空的,求水池被填满的时间\( t \)。
【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。
数学竞赛试题及答案初中一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. 根号2C. 1/3D. 4答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 16B. 18C. 20D. 22答案:C3. 一个数的平方等于16,这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 以下哪个方程的解是x=2?A. x^2 - 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - x - 6 = 0答案:B5. 一个圆的直径为10,其面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题(每题3分,共15分)1. 一个直角三角形的两个直角边长分别为3和4,其斜边长为________。
答案:52. 如果一个数的立方等于-8,那么这个数是________。
答案:-23. 一个数的绝对值是5,这个数可能是________或________。
答案:5 或 -54. 一个圆的周长是2πr,如果周长是12π,那么半径r是________。
答案:65. 如果一个二次方程ax^2 + bx + c = 0的判别式Δ=b^2-4ac小于0,那么这个方程的解是________。
答案:无实数解三、解答题(每题10分,共20分)1. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-3,c=2,求这个函数的顶点坐标。
答案:顶点坐标为(3/2, -1/4)。
2. 一个长方形的长是宽的两倍,如果周长是24,求长方形的长和宽。
答案:长为8,宽为4。
四、证明题(每题15分,共30分)1. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。
答案:略2. 证明平行四边形的对角线互相平分。
答案:略。
2023年全国初中数学竞赛试题一、选择题:1.已知实数a ≠b, 且满足(a+1)2=3-3(a+1),3(b+1)=3-(b+1)2 。
则b +a 旳值为( ) A.23; B.-23; C-2; D-132、若直角三角形旳两条直角边长为a 、b, 斜边长为c, 斜边上旳高为h, 则有( ) A.ab=h ; B. + = ; C. + = ; D.a2 +b2=2h23、一条抛物线y=ax2+bx+c 旳顶点为(4, -11), 且与x 轴旳两个交点旳横坐标为一正一负, 则a 、b 、c 中为正数旳( )A.只有a;B.只有b;C.只有c;D.只有a 和b 4.如图所示, 在△ABC 中, DE ∥AB ∥FG, 且FG 到DE 、AB 旳距离之比为1: 2。
若△ABC 旳面积为32, △CDE 旳面 积为2, 则△CFG 旳面积S=( ) A.6; B.8; C.10; D.125、假如x 和y 是非零实数, 使得∣x ∣+y=3和∣x ∣y+x3=0, 那么x+y 等于( ) A.3; B 、 ; C 、 ; D 、4- 二、填空题:6.如图所示, 在△ABC 中, AB=AC, AD=AE, ∠BAD=600, 则∠EDC=_____________(度)。
7、据有关资料记录, 两个都市之间每天旳 通话次数T 与这两个都市旳人口数m 、n (单位: 万人)以及两个都市间旳距离d (单位: km )有T= 旳关系(k为常数)。
现测得A.B.C 三个都市旳人口及它们之间旳距离如图所示, 且已知A.B 两个都市间每天旳 通话次数为t, 那么B.C 两个都市间每天旳 次数为 次(用t 表达)。
8、已知实数a 、b 、x 、y 满足a+b=x+y=2 , ax+by=5 , 则(a2+b2)xy+ab(x2+y2)= 。
9、如图所示, 在梯形ABCD 中, AD ∥BC (BC >AD ), ∠D=900, BC=CD=12, ∠ABE=45, 若AE=10, 则CE 旳长度为 。
数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
初中八年级数学竞赛试题一、选择题(每题3分,共30分)1. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 82. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -43. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²4. 如果一个数的绝对值是3,那么这个数可能是:A. 3B. -3C. 3或-3D. 05. 下列哪个分数是最简分数:A. 4/8B. 5/10C. 3/4D. 6/96. 一个正整数n,如果n²+n+1是质数,那么n的取值范围是:A. n=0B. n=1C. n=2D. n=-17. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,它的体积是:A. 72 cm³B. 144 cm³C. 216 cm³D. 432 cm³8. 一个数列的前三项是2, 4, 6,如果这是一个等差数列,那么第四项是:A. 8B. 9C. 10D. 119. 一个数的立方根是2,这个数是:A. 6B. 8C. 4D. 210. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14二、填空题(每题4分,共20分)11. 一个数的平方是36,这个数是_________。
12. 一个直角三角形的两个锐角的度数之和是_________。
13. 如果一个数的立方是-8,那么这个数是_________。
14. 一个数的倒数是1/4,那么这个数是_________。
15. 一个圆的直径是10厘米,那么它的周长是_________厘米。
三、解答题(共50分)16. (10分)解方程:2x + 5 = 1717. (15分)证明:在一个直角三角形中,如果一条直角边是另一条直角边的两倍,那么斜边是这条直角边的根号3倍。
1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
九年级数学竞赛题一、代数部分1. 一元二次方程竞赛题题目:已知关于公式的一元二次方程公式有两个实数根公式和公式。
(1)求实数公式的取值范围;(2)当公式时,求公式的值。
解析:(1)对于一元二次方程公式,判别式公式。
在方程公式中,公式,公式,公式,因为方程有两个实数根,所以公式。
展开公式得公式,即公式,解得公式。
(2)由公式可得公式。
根据韦达定理,在一元二次方程公式中,公式,公式。
对于方程公式,公式,公式。
当公式时,即公式,解得公式,但公式不满足公式(由(1)得),舍去。
当公式时,即公式,那么公式,由(1)中公式,解得公式。
2. 二次函数竞赛题题目:二次函数公式的图象经过点公式,且与公式轴交点的横坐标分别为公式、公式,其中公式,公式,求公式的取值范围。
解析:因为二次函数公式的图象经过点公式,所以公式,则公式。
二次函数与公式轴交点的横坐标是方程公式的根,由韦达定理公式,公式。
设公式,因为公式,公式,当公式时,公式;当公式时,公式;当公式时,公式。
将公式代入公式,公式中:由公式得公式,化简得公式,即公式。
由公式得公式,化简得公式,即公式,公式。
所以公式,则公式,解得公式。
二、几何部分1. 圆的竞赛题题目:在公式中,弦公式与弦公式相交于点公式,公式、公式分别是弦公式、公式的中点,连接公式、公式,若公式,公式的半径为公式。
(1)求证:公式是等边三角形;(2)求公式的长(用公式表示)。
解析:(1)连接公式、公式。
因为公式、公式分别是弦公式、公式的中点,根据垂径定理,公式,公式。
在四边形公式中,公式,公式,根据四边形内角和为公式,可得公式。
又因为公式(半径),公式、公式分别是弦公式、公式的中点,所以公式,公式。
在公式中,公式,公式(同圆中,弦心距相等则弦相等的一半也相等),所以公式是等边三角形。
(2)设公式与公式交于点公式,公式与公式交于点公式。
在公式中,公式,公式,公式,则公式。
同理,在公式中,公式。
因为公式是等边三角形,公式,在公式中,公式,公式,则公式,所以公式。
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(3无限循环)B. √2C. 3.14D. 1/32. 一个数的平方等于它本身,这个数是?A. 0B. 1C. -1D. 0或13. 如果一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 12B. 14C. 16D. 184. 一个数列的前三项是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 1285. 一个圆的半径是5,那么它的面积是多少?A. 25πC. 75πD. 100π6. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为4的圆C. 长为6,宽为4的矩形D. 底边为6,高为4的等腰三角形7. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 08. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 69. 一个数的倒数是1/4,那么这个数是?A. 4B. 1/4C. 1/2D. 210. 下列哪个表达式的值是最小的?A. 5 - 3B. 5 + 3D. 5 ÷ 3二、填空题(每题4分,共20分)11. 一个数的立方等于-8,这个数是______。
12. 如果一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是______。
13. 一个数的平方根是2,那么这个数是______。
14. 如果一个数除以3的商是5,那么这个数是______。
15. 一个圆的直径是10,那么它的周长是______。
三、解答题(每题10分,共50分)16. 一个等差数列的前三项分别是3,7,11,求这个数列的第10项。
17. 一个长方形的长是宽的两倍,且周长是24,求这个长方形的面积。
18. 一个三角形的内角和是多少?19. 一个数的平方加上这个数本身等于0,求这个数。
20. 一个圆的半径增加2,那么它的面积增加了多少?答案一、选择题1. B2. D3. C4. B5. C6. B7. C8. A9. A 10. A二、填空题11. -2 12. 5 13. 4 14. 15 15. 31.4三、解答题16. 第10项是31。
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。
答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。
答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。
答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。
2012年全国初中数学竞赛预赛试题江西省吉安市一、选择题:(每题7分,共42分)1、化简38194233122172+---+的结果是( )A 、2B 、 -2C 、-33D 、332、一次考试共有5道题,考后统计如下,有81%的同学做对第1题,91%的同学做对第2题,85%的同学做对第3题,79%的同学做对第4题,74%的同学做对第5题,如果做对3题以上的(含3题)题目的同学考试合格,那么这次考试合格率的同学至少( )。
A 、70% B 、 79% C 、74% D 、81%3、如图:在△ABC 中,,31,31,31CA CF BC BE AB AD ===则AN:NL:LE 等于( )A 、2:1:1B 、3:2:1C 、3:3:1D 、2:3:14、满足方程xy y x y x ++=+)(222的所有非负整数解的组数有( )A 、1B 、2C 、3D 、45、如图:正方形ABCD 的边长为152,E 、F 分别是AB 、BC 的中点,AF 分别交DE ,DB 于M ,N,则△DMN 的面积为( ) A 、8 B 、9 C 、10 D 、116、使分式334222+-+-x x x x 的值为整数的实数x 的值的个数是( )A 、4B 、5C 、6D 、7二、填空题(每题7分,共28分)7、边长为整数,且面积的数值与周长相等的直角三角形的个数为 . 8、边长为9cm, 40cm,41cm 的三角形的重心到外心的距离是9、已知二次函数c bx ax y ++=2,一次函数4)1(2k x k y --=,若它们的图像对于问题任意的数k 都只有一个公共点,则二次函数的解析式为 10、代数式49)8(922+-++x x 的最小值是 三、解答题(共三大题,70分)11、已知关于x 的方程024)2810()4)(2(2=+----x k x k k 的根是整数,求满足条件的所有实数k 的值(20分)12、如图:在矩形ABCD 中,点P 在AB 上,且△ACP 是等腰三角形,O 是AC 的中点,OE ⊥ AB 于有,点Q 是OE 的中点,求证:PQ ⊥ CE (25分).13、已知二次函数4)3(2++--=m x m x y 图像与轴交于)点点0,(),0,(21x B x A (x 1<x 2),与y 轴交于点C,若∠CAB 与∠CBA 是锐角。
(1)求m 的值;(2)是否可能出现∠CAB =∠CBA ? 若可能,求出m 的值;若不可能,比较∠CAB 与∠CBA 的大小;(3)当∠CAB 与∠CBA 互余时,△ABC 的面积是多少?(25分)2011年全国初中数学竞赛试题(考试时间:2011年3月20日9:30——11:30 满分:150分)一、选择题(共5小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、设32x =,则代数式(1)(2)(3)x x x x +++的值为( ) A 、0 B 、1 C 、﹣1 D 、22、对于任意实数a, b, c, d, 定义有序实数对(a, b )与(c, d)之间的运算“△”为:(a, b )△(c, d )=(ac+bd, ad+bc )。
如果对于任意实数u, v,都有(u, v )△(x, y )=(u, v ),那么(x, y )为( )A 、(0, 1)B 、(1, 0)C 、(﹣1, 0)D 、(0, ﹣1) 3、已知A ,B 是两个锐角,且满足225sin cos 4A B t +=,2223cos sin 4A B t +=,则实数t 所有可能值的和为( )A 、83- B 、53-C 、1D 、1134、如图,点D 、E 分别在△ABC 的边AB 、AC 上,BE 、CD 相交于点F ,设1EADF S S 四边形=,2BDF S S ∆=,3BCF S S ∆=,4CEF S S ∆=,则13S S 与24S S 的大小关系为( ) A 、13S S ﹤24S S B 、13S S =24S S C 、13S S ﹥24S S D 、不能确定 5、设33331111++++1232011S L =,则4S 的整数部分等于( )A 、4B 、5C 、6D 、7二、填空题(共5小题,每小题7分,共35分)6、两条直角边长分别是整数a, b (其中b<2011),斜边长是b+1的直角三角形的个数为 .7、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3 ,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8。
同时掷这两枚骰子,则其朝上的面两个数字和为5的概率是 .8、如图,双曲线2y x=(0x >)与矩形OABC 的边BC , BA 分别交于点E , F , 且AF =BF ,连结EF ,则△OEF 的面积为 .9、⊙O 的三个不同的内接正三角形将⊙O 分成的区域的个数为 .10、设四位数abcd 满足3333110a b c d c d ++++=+,则这样的四位数的个数FB CEDA第4题图CAP为 .三、解答题(共4题,每题20分,共80分)11、已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1, 求a b c ++的值.12、如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D , 延长AD 交CH 于点P , 求证:点P 为CH 的中点.13、若从1,2,3,…,n 中任取5个两两互素的不同的整数1a ,2a ,3a ,4a ,5a , 其中总有一个整数是素数,求n 的最大值.14、如图,△ABC 中,∠BAC =60°,AB =2AC. 点P 在△ABC 内,且, PB=5, PC=2, 求△ABC 的面积.2011年全国初中数学联赛江西赛区初赛试题(考试时间2011年3月二0日9:30—11:30)第一试一、选择题(每题7分,共42分)1、设a 为质数,并且872+a 和782+a 都是质数,若记877+=a x ,788+=a y ,财在以下情况中,必定成立的是( )A 、x,y 都是质数B 、x,y 都是合数C 、x,y 一个是质数,一个是合数D 、对于不同的a,以上各情况皆可 2、化简2121722321217223---++的结果是( )A 、2B 、2-C 、2D 、-23、2011201132+的末位数字是( )A 、1B 、3C 、5D 、7 4、方程1168143=--+---+x x x x 的解的情况是( )A 、无解B 、恰有一解C 、恰有两个解D 、有无穷多个解5、正六边形被三组平行线划分成小的正三角形,则图中的全体正三角形的个数是( ) A 、24 B 、36 C 、38 D 、766、设a,b 为整数,并且一元二次方程0)6()32(22=++++++ab a x b a x 有等根α,而一元二次方程0)122()224(22=--+--+b a x b a ax 有等根β,那么以α、β为根的一元二次方程是( )A 、06722=++x x B 、0622=+-x xC 、0442=++x x D 、0)(2=+++ab x b a x二、填空题( 每题7分,共28分)1、Rt △ABC 的三条边长分别为3、4、5,若将其为内切圆挖去,则剩下部分的面积等于2、若c x b x a x x x x +-+-+-=--+)4()4()4(3752323,则(a,b,c)= ( )3、如图:正方形ABCD 的边长为1,E 是CD 边 外的一点,满CE ∥BD,BE=BD,则CE=4、绕圆周填写了十二个正整数,其中每个数取自{1,2,3,4,5,6,7,8,9}之中(每一个数都可以多次出现在圆周上)若圆周上任何三个相邻位置上的数之和都是7的倍数,用S 表示圆周上所有的十二个数的和,那么数S 所有可能的取值情况有 种。
第二试一(20分)试确定,对于怎样的整数a,方程029)3(4522=-++-a x a x 的正整数解?并求出方程的所有正整数解。
二(25分)锐角△ABC 的外心为O ,外接圆的半径为R ,延长AO ,BO ,CO ,分别与对边BC ,CA ,AB 交于D 、E 、F ;证明RCF BE AD 2111=++。
三、(25分)设k 为正整数,证明:1、如果k 是两个连续正整数的乘积,那么25 k+6也是两个连续正整数的乘积;2、如果25k+6是两个连续正整数的乘积,那么 k 也是两个连续正整数的乘积;2010年全国初中数学联赛江西省初赛试题第 一 试一. 选择题(每小题7分,共42分)1、化简26481353++-+的结果是( ).(A )、2; (B )、22; (C )2; (D )、21. 2、△ABC 是一个等腰直角三角形,DEFG 是其内接正方形,H 是正方形的对角线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为( ).(A)、12; (B)、13;(C)、26;(D)、30.3、设ab ≠0,且函数b ax x x f 42)(21++=与b ax x x f 24)(22++=有相同的最小值u ;函数a bx x x f 42)(23++-=与a bx x x f 24)(24++-=有相同的最大值v ;则u+v 的值( ).(A)、必为正数;(B)、必为负数;(C)、必为0; (D)、符号不能确定.4、若关于x 的方程没有实根,那么,必有实根的方程是( ).(A)、;(B)、;(C)、; (D)、.5、正方形ABCD 中,E,F 分别是AB,BC 上的点,DE 交AC 于M ,AF 交BD 于N ;若AF 平分∠BAC ,DE ⊥AF ,;记BFCFz ON BN y OM BE x ===,,,,则有( ). (A )、x>y>z ; (B )、x=y=z ; (C )、x=y>z ; (D )、x>y=z .6、将1,2,3,4,5,6,7,8这八个数分别填写于一个圆周八等分点上,使得圆周上任两个相邻位置的数之和为质数, 如果圆周旋转后能重合的算作相同填法,那么不同的填法有( ).(A)、4种; (B)、 8种; (C)12种、; (D)、16种.二、 填空题(每小题7分,共28分)1、若k 个连续正整数之和为2010,则k 的最大值是 .2、单位正三角形中,将其内切圆及三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则三角形剩下部分的面积为 .3、圆内接四边形ABCD 的四条边长顺次为:AB=2,BC=7,CD=6,DA=9,则四边形的面积为 .4、在±1±2±3±5±20中,适当选择+、-号,可以得到不同代数和的个数是 .第 二 试一、(20分)边长为整数的直角三角形,若其两直角边长a,b 是方程k x k x 4)2(2++-=0的两根,求 k 的值并确定直角三角形三边之长.二、(25分)如图,自△ABC 内的任一点P ,作三角形三条边的垂线: PD ⊥BC ,PE ⊥CA ,PF ⊥AB ,若BD=BF,CD=CE ;证明:AE=AF .三、(25分)已知a,b,c 为正整数,且cb ba ++33为有理数,证明cb ac b a ++++222为整数.“《数学周报》杯”2010年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分. 1.若10,20==c b b a ,则c b ba ++的值为( ). (A )2111 (B )1121 (C )21110 (D )112102.若实数a ,b 满足02212=++-b ab a ,则a 的取值范围是( ).(A )a(B )a 4 (C )a ≤或 a ≥4 (D )≤a ≤43.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =32,BC =224-,CD =24,则AD 边的长为( ).(A )62 (B )64ADCB第3题图P DOy x CAB·第9题图(C )64+ (D )622+4.在一列数,,,321x x x ……中,已知11=x ,且当k ≥2时,]}42[]41{[411----+=-k k x x k k (取整符号[a ]表示不超过实数的最大整数,例如[2.6]=2,[0.2]=0),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 45.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ). (A )(2010,2) (B )(2010,) (C )(2012,) (D )(0,2)二、填空题6.已知a =15-,则2a 3+7a 2-2a -12 的值等于 . 7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则ADAE. 10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i-1.若的最小值0n 满足30002000<<n ,则正整数的最小值为 .三、解答题(共4题,每题20分,共80分) 11、如图:△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF .求证:BCEFPAD =∠tan .12.如图,抛物线bx ax y +=2(a 0)与双曲线xky =相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.13.求满足m m p p 28222-=++的所有素数p 和正整数m .2009年全国初中数学江西赛区预赛试题(2009年3月22日上午9:30~11:30)一、选择题(共5小题,每小题7分,满分35分) 1、已知非零实数a 、b 满足|2a -4|+|b+2|+(a-3)b 2+4=2a ,则a+b 等于( ) A 、-1 B 、0 C 、1 D 、22、如图所示,菱形ABCD 边长为a ,点O 在对角线AC 上一点,且OA=a ,OB=OC=OD=1,则a 等于( )A 、21B 、1C 、51+D 、251+3、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方形骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则关于x 、y 的方程组⎩⎨⎧=+=+223y x by ax 只有正数解的概率为( )A 、112 B 、29 C 、518 D 、13364、如图1所示,在直角梯形ABCD 中,AB ∥CD , ∠B=90°,动点P 从点B 出发,沿梯形的边由B → C →D →A 运动,设点P 运动的路程为x ,△ABP 的面积为y ,把y 看作x 的函数,函数图象如图2所示,则△ABC 的面积为( )A 、10B 、16C 、18D 、325、关于x 、y 的方程29222=++y xy x 的整数解(x 、y )的组数为( )A 、2组B 、3组C 、4组D 、无穷多组 二、填空题(共5小题,每小题7分,共35分)6、一自行车轮胎,若把它安装在前轮,则自行车行驶5000km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、 后轮胎。