水吸收氨过程填料吸收塔的设计
- 格式:doc
- 大小:1.31 MB
- 文档页数:19
设计任务书(一)设计题目试设计一座填料吸收塔,用于脱出混于空气中的氨气。
混合气体的处理为3350m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。
采用清水进行吸收,吸收剂的用量为最小量的1.5倍。
(二)操作条件1、操作压力常压2、操作温度 20℃(三)填料类型选用聚丙烯阶梯环填料,填料规格自选(四)工作日每年300天,每天24小时连续运行(五)厂址广西柳州(六)设计内容1、吸收塔的物料衡算2、吸收塔的工艺尺寸计算3、填料层压降的计算4、液体分布器简要设计5、绘制生产工艺流程图6、绘制吸收塔设计条件图7、对设计过程的评述和有关问题的讨论(七)设计基础数据20℃下氨在水中的溶解度系数为H=0.725Kmol/(m3*Kpa).目录(一)设计方案简介 (4)(二)工艺计算 (4)1.基础物性数据(1)液相物性的数据 (5)(2)气相物性数据 (5)(3)气液相平衡数据 (5)(4)物料衡算 (5)2.填料塔的工艺尺寸的计算(1)塔径的计算 (6)(2)填料层高度计算 (7)3.填料层压降计算 (9)4.液体分布器简要设计……………………………………………………………10(三) 辅助设备的计算及选型 (10)(四) 设计一览表 (12)(五)对本设计的评述 (12)(六)参考文献 (13)(七)主要符号说明 (14)(八)附图(带控制点的工艺流程简图、主体设备设计条件图)(一)设计方案简介一.方案的的确定12.吸收塔的工艺尺寸的计算(1)塔径计算气相质量流量为w=3500×1.181=4133.5 ㎏/hv液相质量流量可近似按纯水的流量计算,即=155.88×18.02=2808.96 ㎏/hWL用贝恩—霍根关联式计算泛点气速:㏒[查附录五得空隙率 =0.927计算得u F=4.375 m/s取u =0.8 u F=0.8 4.375=3.5 m/s由D===0.595 m圆整塔径,取 D=0.6 m泛点率校核:u==3.440 m/s== 78.63% (在允许范围内)填料规格校核:==14>8 液体喷淋密度校核:取最小润湿速度为(Lw )min=0.08 m3/(m·h)查常用散装填料的特性参数表,得at=114.2 m2/m3U min =(Lw)minat=114.2×0.08=9.136 m3/m2·hU==9.96>Umin经以上校核可知,填料塔直径选用D=600mm是合理的。
化工原理课程设计-水吸收氨填料吸收塔设计一、背景介绍氨是一种重要的化学制品,用于制造各种类型的化学产品,也可用作氨加热系统的燃料,但它作为强氧化剂挥发到大气中,有害环境,因此必须采取对策进行处理,以保护我们的环境。
水吸收氨填料吸收塔是一种典型的操作过程,通过在塔内部放入一定量的吸收填料,使得氨气更有效地与液体相混合,从而降低氨的挥发率,防止它的溢出。
二、设计目的本设计的目的是设计一种能够有效降低氨气挥发率的水吸收氨填料吸收塔系统。
三、塔结构设计1.水吸收塔的形式:此水吸收塔采用真空反应塔的形式,包括加热装置、塔体及其重要部件。
2.水吸收塔的尺寸:该水吸收塔直径为3m,高度为12m,采用真空式反应塔设计。
3.吸收填料:此设计采用纤维吸收填料,其密度为180 kg/m3,吸附能力0.5%,并选择优质的、耐磨的材料,保证耐久性。
4.液相:选择介质为硝酸钠溶液,介质比重1.1,温度在25℃以下,以确保氨吸收剂的低温稳定性。
5.混合器:采用有效搅拌,减少氨气挥发,氨气完全溶于液体,增加氨气的反应机会,增加吸6.塔内设备:除了加热器,还设有安全阀等设备,以防出现意外。
四、设计步骤1.根据氨吸收水填料吸收塔的工艺特点,研究氨挥发的特性,确定反应条件,估算反应速率和塔的大小及包装密度。
2.确定吸收填料的类型,以保证其对氨气的特性挥发特性。
3.细化设计,考虑塔内混合器及其优势,同时留意水塔设计具体内容,计算安全阀等设备的大小,以及确定塔内设备的位置。
4.确认成本,包括:原材料、安装和实际操作。
五、最终结论本文研究了一套水吸收氨填料吸收塔,设计了其安全阀及其它设备,以及填料的特性,确定了反应条件,估算反应速率,详细设计了塔的形式,尺寸,位置等,通过认真的工作,可以提出设计方案,完成水吸收氨填料吸收塔的设计任务。
前言在近代工业的发展中,塔设备已成为一个非常重要的单元设备,广泛应用于炼油、化工、制药等过程工业上,对吸收、蒸馏和洗涤有着不可或缺的作用。
它性能的优劣、技术水平的高低直接影响到产品的质量、产量、回收率、经济效益等各个方面。
所以研究新型的的塔设备和强化气液两相传质过程及工业生产有着重要的意义。
塔设备主要可分为两种:板式塔和填料塔。
板式塔和填料塔在过去几十年中的发展速度有快有慢,竞争能力时有强弱。
但总的来说,工业生产中因为处理量大所以还是以板式塔为主。
而对于填料塔,一般都是用于小量原料的处理。
但是在近些年来,人们对填料塔进行了大量的研究,却得了突破性的进展,目前应用规模的填料塔最大直径可达14~20m,突破了仅限于小塔的传统观念,并在现代化工生产中得到更为普遍的应用。
对于新型的填料塔来说,它还具有以下几个优点:(1)生产能力大,在需要大理论技术的分离过程中能耗小,可以更容易满足经济的应用热泵得要求。
(2)分离效率高(3)压降小(4)操作弹性大(5)持液量小利用填料塔去分离化工过程中的产物或者处理工业生产中对环境有害的污染物已越来越普遍,而且也趋于主流,对人们的日常生过也起着非常大的作用。
在使用填料塔进行分离物质时,必须事先对整个填料塔进行系统的计算与设计。
结合能效、操作条件、经济等方面去考虑。
充分了解到填料塔中个部分的物料情况和工作效益。
使整个填料塔分离过程能符合安全、环保、节能和高效益,能真正用于工业生产中。
氨是工业生产中一种极为重要的生产原料,在国民经济中占有重要地位。
除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。
合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。
但这种极为重要的化工原料却对人的生命有着严重的危害,如果在工业生产中操作有失误,会威胁这生产人员的性命安全。
水吸收氨气填料吸收塔课程设计
氨气吸收塔课程设计是一个专门用于净化氨气的工程,其主要原理是利用水溶液与气体的有效反应以及吸收剂的特性,来去除氨气中的有害气体,以达到净化气体的目的。
氨气吸收塔课程设计的具体内容如下:
一、课程介绍
(1)氨气吸收塔的基本原理
(2)氨气吸收塔的设计原则
(3)氨气吸收塔的结构和运行条件
二、工程实施
(1)氨气吸收塔的净化原理
(2)氨气吸收塔的设计要求
(3)氨气吸收塔填料的选择和使用
(4)氨气吸收塔的安装要求
(5)氨气吸收塔的运行要求
三、技术支持
(1)氨气吸收塔的控制要点及工艺操作
(2)氨气吸收塔的安全限制
(3)氨气吸收塔的监测要点
(4)氨气吸收塔的维护和维修
四、结论
根据上述内容,我们可以总结出,要成功利用水吸收氨气填料吸收塔进行净化氨气,必须要正确地理解其原理、严格按照设计要求选择填料及安装要求,对控制要点及有害气体的安全限制进行管理,并对操作过程进行实时的监测和维护,从而确保净化气体的质量。
化工原理课程设计(水吸收氨填料吸收塔设计)目录第1节前言31.1填料塔的主体结构与特点31.2填料塔的设计任务及步骤31.3填料塔设计条件及操作条件4第2节精馏塔主体设计方案的确定42.1装置流程的确定42.2吸收剂的选择52.3填料的类型与选择52.3.1填料种类的选择52.3.2填料规格的选择52.3.3填料材质的选择62.4基础物性数据62.4.1液相物性数据62.4.2气相物性数据72.4.3气液相平衡数据72.4.4物料横算8第3节填料塔工艺尺寸的计算93.1塔径的计算93.2填料层高度的计算及分段113.2.1传质单元数的计算113.2.2传质单元高度的计算113.2.3填料层的分段143.3填料层压降的计算14第4节填料塔内件的类型及设计154.1塔内件类型154.2塔内件的设计164.2.1液体分布器设计的基本要求:164.2.2液体分布器布液能力的计算16注:171.填料塔设计结果一览表 (17)2.填料塔设计数据一览 (18)3.参考文献 (19)4.后记及其他 (19)附件一:塔设备流程图20附件二:塔设备设计图20表索引表 21工业常用吸收剂 (5)表 22 常用填料的塔径与填料公称直径比值D/d的推荐值 (6)图索引图 11 填料塔结构图 (3)图 31 Eckert图 (15)第1节前言1.1填料塔的主体结构与特点结构图错误!文档中没有指定样式的文字。
1所示:图错误!文档中没有指定样式的文字。
1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
一、設計任務書(一)設計題目試設計一座填料吸收塔,用於脫除混於空氣中的氨氣。
混合氣體的處理量為1000 m3/h,其中含氨氣為8%(體積分數),要求塔頂排放氣體中含氨低於0.02%(體積分數),採用清水進行吸收,吸收劑的用量為最小用量的1.5倍。
(20℃氨在水中的溶解度係數為H=0.725kmol/(m3.kPa)(二)操作條件1.操作壓力為常壓,操作溫度20℃.2.填料類型選用聚丙烯階梯環填料,填料規格自選。
3.工作日取每年300天,每天24小時連續進行。
(三)設計內容1.吸收塔的物料衡算;2.吸收塔的工藝尺寸計算;3.填料層壓降的計算;4.吸收塔接管尺寸計算;5.吸收塔設計條件圖;6.對設計過程的評述和有關問題的討論。
二、設計方案(一)流程圖及流程說明該填料塔中,氨氣和空氣混合後,經由填料塔的下側進入填料塔中,與從填料塔頂流下的清水逆流接觸,在填料的作用下進行吸收。
經吸收後的混合氣體由塔頂排除,吸收了氨氣的水由填料塔的下端流出。
(二)填料及吸收劑的選擇該過程處理量不大,所用的塔直徑不會太大,可選用25×12.5×1.4聚丙烯階梯環塔填料,其主要性能參數如下:比表面積at :22332/mm空隙率ε:0.90濕填料因數Φ:1172m-填料常數 A:0.204 K:1.75見下圖:根據所要處理的混合氣體,可採用水為吸收劑,其廉價易得,物理化學性能穩定,選擇性好,符合吸收過程對吸收劑的基本要求。
三、工藝計算(一)基礎物性數據1.液相物性數據3998.2(/)L kg m ρ= 6100410() 3.6(/)L Pa s kg m h μ-=⨯⋅= 272.6(d y n /c )940896(/)L m k g h σ== 931.7610(/)L D m s -=⨯2. 氣相物性數據 混合氣體平均密度:31.166(/)v kg m ρ=c σ=427680(2/kg h )空氣黏度:51.8110()0.065(/)v Pa s kg m h μ-=⨯⋅=273K ,101.3Kpa.氨氣在空氣中擴散係數:200.17(/)D ms =(二)物料衡算,確定塔頂、塔底的氣液流量和組成20℃,101.3Kpa 下氨氣在水中的溶解度係數 30.725/H kmol m kpa = 998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯進塔氣相摩爾比: 10.080.087010.08Y ==- 出塔氣相摩爾比:20.00020.00020010.0002Y ==- 對於純溶劑吸收過程,進塔液相組成:20X =混合氣體流量 :1100027341.59629322.4V ⨯==⨯ kmol/h 進塔惰性氣體流量: 41.596(10.08)38.268V =⨯-= kmol/h吸收過程屬於低濃度吸收,平衡關係為直線,最小液氣比可按下式計算:12min 120.08700.0002000.752(0.0870/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作液氣比為最小液氣比的1.5倍,可得吸收劑用量為:0.75238.268 1.543.166/L Kmol h =⨯⨯=根據全塔物料衡算式:()()()121212120.08700.0002000.07700.752 1.5V Y Y L X X V Y Y X LX L -=---=+==⨯液氣比 : 43.166180.6661000 1.166l v W W ⨯==⨯ (三)塔徑的計算1.塔徑的計算考慮到填料塔內塔的壓力降,塔的操作壓力為101.3KPa()()()()33330.08170.922928.04/101.31028.0410 1.166/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为採用貝恩----霍夫泛點關聯式:112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=- 3.017/f u m s = ()0.50.85f u u =-取泛點率為0.6. 即 0.60.6 3.017 1.810/f u u m s ==⨯=()4410000.4423.14 1.8103600s V D m u ⨯===π⨯⨯ 圓整後取 ()()0.4400D m mm ==2.泛點率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85範圍之間) 3.填料規格校核: 40016825D d ==> 4.液體噴淋密度校核:取最小潤濕速率為:)/(08.0)(3min h m m L W ⋅=23223/t a m m = 所以得32min min ()0.0822317.84/()W t U L a m m h =⋅=⨯=⋅263220.78543.16618998.2 6.17510/()0.7850.4hL U D m m h =⋅⨯⨯==⨯⋅⨯ min U U >故滿足最小噴淋密度的要求.(四)填料層高度計算1.傳質單元高度計算273K ,101.3kpa 下,氨氣在空氣中的擴散係數20.17(/)o D cm s =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,則 293K ,101.3kpa 下,氨氣在空氣中的擴散係數20.189(/)v D cm s =293K ,101.3kpa 下,氨氣在水中的擴散係數()921.7610/L D m s -=⨯ (查化工原理附錄)*110.7540.07700.0581Y mX ==⨯=*220Y mX ==脫吸因數為:0.7540.6680.752 1.5mV S L ===⨯ 氣相總傳質單元數為:()*12*221ln 11OG Y Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦=()10.08700ln 10.6680.66810.6680.0002000-⎡⎤-+⎢⎥--⎣⎦ =14.992氣相總傳質單元高度採用修正的恩田關聯式計算:0.050.20.10.752221exp 1.45w c L t L L t L t L L L t L a U a U U a a a g σσμρσρ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液體品質通量為:22243.166186186.21/()0.7850.7850.4L L W U Kg m h D ⨯===⋅⨯⨯ 氣體品質通量為:2221000 1.1669283.44/()0.7850.7850.4v v W U Kg m h D ⨯===⋅⨯⨯ 故20.750.10.052820.24276806186.216186.212231exp{ 1.45()()()940896223 3.6998.2 1.27106186.21()}998.29408962230.2476w t a a -⨯=--⨯⨯⨯⨯⨯⨯⨯⨯⨯=氣膜吸收係數:10.7310.74340.2379283.440.0652230.1891036000.2372230.0658.3142931.1660.189103600 0.1273V V t V G t V V V U a D k a D RT μμρ--⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭= 液膜吸收係數:211323121833290.00956186.21 3.6 3.6 1.27100.00950.2476223 3.6998.2998.2 1.761036000.3037(/)L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=查表得ψ=1.35 故1.1G G W K a K a ψ==0.1273⨯0.2476⨯223⨯ 1.11.35=9.778()3/Kmol m h kpa ⋅⋅ 0.4L L W K a K a ψ==0.3037⨯0.2476⨯223⨯0.41.35=18.907()3/kmol m h kpa f =fu u =0.733>0.5 以下公式為修正計算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ()()1.4319.50.2339.77821.864/Kmol m h kpa ⎡⎤=+⨯⨯⎣⎦=⋅⋅2.219.50.5L L f u K a K a u ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ()()2.2319.50.23318.90726.194/kmol m h kpa =+⨯⨯=。
环境工程原理课程设计清水吸收氨的填料塔装置设计说明书院(系)别:资源与环境学院专业:环境工程年级班:姓名:学号:指导老师:前言:课程设计是比较综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性、学习化工设计基本知识的初次尝试。
通过课程设计,要求学生能综合利用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。
通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的程序和方法,培养学生分析和解决工程实际问题的能力。
同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。
课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。
经过学习,我知道,填料塔吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。
工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。
这次课程设计我把聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。
目录一、设计任务书 (3)二、设计方案简介 (3)1、方案的确定 (4)2、填料的类型与选择 (4)3、设计步骤 (4)三、工艺计算 (4)1、基础物性数据 (5)2、工艺尺寸计算 (6)四、辅助设备的计算及选型 .................................... 错误!未定义书签。
1、除雾沫器 ........................................................ 错误!未定义书签。
2、液体分布器简要设计 .................................... 错误!未定义书签。
3、填料支承装置.................................................. 错误!未定义书签。
化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。
其次,填料的表面
积大,对氨气的吸附强度较高。
二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。
结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。
三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。
v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。
四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。
我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。
华北水利水电大学North China University of Water Resources and Electric Power 课程设计题目水吸收氨过程的填料吸收塔设计学院专业姓名学号指导教师完成时间教务处制化工原理课程设计任务书课程设计名称化工原理课程设计专业班级(学生人数)指导教师本学期承担相应课程教学任务情况课程设计目的及任务化工原理课程设计是本课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性、学习化工设计基本知识的初次尝试。
通过本课程设计,要求学生了解工程设计的基本内容,掌握化工设计的程序和方法,培养学生分析和解决工程实际问题的能力。
同时,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。
本次设计任务:水吸收氨过程的填料吸收塔设计1、处理能力2000 m3/h的空气-氨混合气体2、设备形式填料吸收塔3、操作条件①混合气含氨量6%(体积分数,下同),塔顶排放气体中含氨量低于0.02%。
②操作压力---常压③操作温度---20℃④填料类型填料选用聚丙烯阶梯环,规格自选。
4、设计基础数据20℃时氨在水中的溶解度系数H=0.725 kmol/(m3•kPa)课程设计要求设计中需要学生自己做出决策,即自己定方案、选择流程、查取资料、进行过程和设备计算,并要求对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。
本次设计要求具体如下:①吸收塔的物料衡算;②吸收塔的工艺尺寸计算;③填料层压降的计算;④液体分布器简要设计;⑤整理设计计算结果列表;⑥对设计过程的评述和有关问题的讨论;⑦绘制吸收塔设计条件图。
课程设计目标通过本次设计,学生应在下列几个方面得到较好的培养和训练:1、熟悉查阅文献资料、收集有关数据,正确选用公式;2、在兼顾技术上先进性、可行性,经济上合理性的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全运行所需的检测和计量参数,同时还需考虑到操作维修的方便和环境保护的要求;3、准确而迅速地进行过程计算及主要设备的工艺设计计算;4、用精炼的语言、简洁的文字、清晰的图表来表达自己的设计思想和计算结果。
可编辑修改精选全文完整版设计题目3000Nm3/h含氨5%填料吸收塔的设计试设计一座填料吸收塔,用于脱出混于空气中的氨气。
混合气体的处理量为3000Nm3/h,其中含氨为5%(体积分数),采用清水进行吸收。
要求塔顶排放气体中含氨低于0.02%(体积分数)。
操作条件(1)操作压力101.33 kPa(常压);(2)操作温度20℃;(3)吸收剂用量为最小用量的1.9倍填料类型:选用聚丙烯阶梯环填料。
工作日:每年300天,每天24小时连续运行厂址:合肥设计内容(1)设计方案的说明及流程说明;(2)吸收塔的物料衡算;吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制生产工艺流程图;(7)绘制吸收塔设计条件图;(8)绘制液体分布器施工图;(9)对设计过程的评述和有关问题的讨论。
目录第1章设计方案的简介 (1)1.1选定塔型 (1)1.2确定填料吸收塔的具体方案 (2)1.2.1装置流程的确定 (2)1.2选择吸收剂 (3)1.3操作温度与压力的确定 (3)1.3.1操作温度的确定 (3)1.3.2操作压力的确定 (3)第2章填料的类型与选择 (4)2.1填料的类型 (4)2.1.1散装填料 (4)2.1.2规整填料 (4)2.2填料的选择 (5)2.2.1填料种类的选择 (5)2.2.2填料规格的选择 (6)2.2.3填料材质的选择 (7)第3章填料塔工艺尺寸 (9)3.1设计基础数据 (9)3.1.1液相物性数据 (9)3.1.2气相物性数据 (9)3.2.3气液相平衡数据 (9)3.2.4物料衡算 (10)第4章填料塔的工艺尺寸的计算 (11)4.1塔径的计算 (11)4.2填料层高度计算 (12)4.3填料塔压降的计算 (14)第5章液体分布器简要设计 (16)5.1液体分布器 (16)5.2液体再分布器 (17)5.3 塔底液体保持管高度 (18)第6章吸收塔接管尺寸计算 (19)6.1气体进料管 (19)6.2液体进料管 (19)6.3 离心泵的选型 (19)6.4风机的选型 (20)第7章塔体附件设计 (22)7.1塔的支座 (22)7.2其他附件 (22)附图1 填料塔工艺图 (23)附图2 工艺流程图 (24)附录1 吸收塔设计条件图 (25)附录2 符号说明 (26)附录3 设计一览表 (27)附录4 Eckert通用关联图 (28)参考文献 (29)第1章设计方案的简介1.1选定塔型塔器是关键设备,例如在气体吸收、液体精馏(蒸馏)、萃取、吸附、增湿中、离子交换等过程中都有体现。
华北电力大学题目:水吸收氨过程填料吸收塔的设计班级:应化1102 姓名:学号:201105020226第一章前言1、设计任务设计一座填料吸收塔,用于脱除混于空气中的氨气。
混合气体的处理量为1000 m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。
采用清水进行吸收,吸收剂的用量为最小量的1.5倍。
2、操作条件a)操作压力常压b)操作温度 20℃填料类型和规格均自选3、工作日每年300天,每天24小时连续运行4、厂址华北地区第二章设计方案的确定2.1装置流程的确定本次设计采用逆流操作:气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,即逆流操作。
逆流操作的特点是:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。
工业生产中多采用逆流操作。
2.2吸收剂的选择吸收剂又叫溶剂,吸收过程是依靠气体在吸收剂中的溶解来实现的,因此,选择良好的吸收剂是吸收过程的重要一环。
选择吸收剂的基本要求:1. 吸收剂应具有较大溶解度,以提高吸收速率减少吸收剂用量,降低输送与再生的能耗。
2. 选择性好,吸收剂对混合气体的溶质要有良好的吸收能力,而对其它组分不吸收或吸收甚微。
以提高吸收速率,减小吸收剂用量。
3. 操作温度下吸收剂的蒸汽压要低,以为离开吸收设备的气体往往被吸收剂所饱和,吸收剂的挥发度愈大,则在吸收和再生过程中吸收剂损失愈大。
4. 粘度要低,以利于传质与输送;有利于气液接触,提高吸收速率。
5. 具有较好的化学稳定性及热稳定性,以减少吸收剂的降解和变质,尤其在使用化学吸收剂时。
6. 其它,所选用的吸收剂还应满足无毒性,无腐蚀性,不易燃易爆,不发泡,冰点低,廉价易得以及化学性质稳定等要求。
因为用水做吸收剂,故采用纯溶剂。
2.3填料的选择2.3.1 填料层填料塔内充以某种特定形状的固体填料以构成填料层。
填料层是塔实现气、液接触的主要部位。
填料的主要作用是:①填料层内空隙体积所占比例很大,填料间隙形成不规则的弯曲通道,气体通过时可达到很高的湍动程度;②单位体积填料层内提供很大的固体表面,液体分布于填料表面呈膜状流下,增大了气、液之间的接触面积。
填料的选择包括确定填料的种类、规格及材质等。
所选填料既要满足生产工艺的要求,又要使设备投资和操作费用最低。
2.3.2 填料种类的选择填料的选择包括确定填料的种类、规格及材质等。
所选择填料既要满足生产工艺的要求,又要使设备投资和操作费用较低。
填料种类的选择要考虑分离工艺的要求,通常考虑以下几个方面:(1)传质效率要高一般而言,规整填料的传质效率高于散装填料(2)通量要大在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料(3)填料层的压降要低(4)填料抗污堵性能强,拆装、检修方便2.3.3 填料规格的选择填料规格是指填料的公称尺寸或比表面积。
(1)散装填料规格的选择工业塔常用的散装填料主要有DN16、DN25、DN38、DN50、DN76等几种规格。
同类填料,尺寸越小,分离效率越高,但阻力增加,通量减少,填料费用也增加很多。
而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。
因此,对塔径与填料尺寸的比值要有一规定,一般塔径与填料公称直径的比值D/d应大于8。
(2)规整填料规格的选择工业上常用规整填料的型号和规格的表示方法很多,国内习惯用比表面积表示,主要有125、150、250、350、500、700等几种规格,同种类型的规整填料,其比表面积越大,传质效率越高,但阻力增加,通量减少,填料费用也明显增加。
选用时应从分离要求、通量要求、场地条件、物料性质及设备投资、操作费用等方面综合考虑,使所选填料既能满足技术要求,又具有经济合理性。
应予指出,一座填料塔可以选用同种类型,同一规格的填料,也可选用同种类型不同规格的填料;可以选用同种类型的填料,也可以选用不同类型的填料;有的塔段可选用规整填料,而有的塔段可选用散装填料。
设计时应灵活掌握,根据技术经济统一的原则来选择填料的规格。
2.3.4 填料材质的选择填料的类型1拉西环填料优点:易于制造,价格低廉,且对它的研究较为充分,所以在过去较长的时间内得到了广泛的应用。
缺点:由于高径比大,堆积时填料间易形成线接触,因此液体在填料层流动时,常存在严重的沟流和壁流现象。
且拉西环填料的内表面润湿率较低,因而传质速率也不高2阶梯环填料(Stair ring)填料的阶梯环结构与鲍尔环填料相似,环壁上开有长方形小孔,环内有两层交错45°的十字形叶片,环的高度为直径的一半,环的一端成喇叭口形状的翻边。
这样的结构使得阶梯环填料的性能在鲍尔环的基础上又有提高,其生产能力可提高约10%,压降则可降低25%,且由于填料间呈多点接触,床层均匀,较好地避免了沟流现象。
阶梯环一般由塑料和金属制成,由于其性能优于其它侧壁上开孔的填料,因此获得广泛的应用。
3鲍尔环填料在拉西环的基础上发展起来的鲍尔环是在的侧壁上开一层或两层长方形小孔,小孔的母材并不脱离侧壁而是形成向内弯的叶片。
同尺寸的鲍尔环与拉西环虽有相同的比表面积和空隙率,但鲍尔环在其侧壁上的小孔可供气液流通,使环内壁面充分利用。
比之拉西环,鲍尔环不仅具有较大的生产能力和较低的压降,且分离效率较高,沟流现象也大大降低。
鲍尔环填料的优良性能使它一直为工业所重视,应用十分广泛。
可由陶瓷、金属或塑料制成。
金属英特洛克斯(Intalox)填料将环形结构与鞍形结构的特点集于一体而形成的一种独特结构的填料,具有生产能力大、压降低、液体分布性能好、传质速率高及操作弹性大等优良性能,因而获得广泛应用,在减压蒸馏中其优势更为显著。
网体填料(Wire gauze packings)上述几种形式的填料属实体填料,与之对应的另一类金属丝网制成的填料称为网体填料。
网体填料也有多种形式,如网环和鞍型网等。
优点:因网丝细密,填料的空隙很高,比表面积很大。
由于毛细管作用,填料表面润湿性能很好。
故网体填料气体阻力小,传质速率高。
缺点:造价很高,故多用于实验室中难分离物系的分离。
规整填料规整填料一般由波纹状的金属网丝或多孔板重叠而成。
使用时根据填料塔的结构尺寸,叠成圆筒形整块放入塔内或分块拼成圆筒形在塔内砌装。
优点:空隙大,故生产能力大,压降小,且因流道规则,所以只要液体初始分布均匀,则在全塔中分布也均匀,因此规整填料几乎无放大效应,通常具有很高的传质效率。
缺点:造价较高,易堵塞难清洗,因此工业上一般用于较难分离或分离要求很高的情况。
第三章吸收塔的工艺计算3.1基础物性数据3.1.1液相物性数据3998.2(/)Lkg mρ=6100410() 3.6(/)LPa s kg m hμ-=⨯⋅=272.6(d y n/c)940896(/)Lm k g hσ==931.7610(/)LD m s-=⨯3.1.2气相物性数据混合气体平均密度:31.181(/)vkg mρ=空气黏度:51.8110()0.065(/)vPa s kg m hμ-=⨯⋅=273K,101.3Kpa.氨气在空气中扩散系数:20.17(/)D m s=3.2 物料衡算,确定塔顶、塔底的气液流量和组成20℃,101.3Kpa下氨气在水中的溶解度系数30.725/H kmol m kpa=998.20.7540.78518101.3sSEmP HM Pρ====⨯⨯进塔气相摩尔比:10.050.052610.05Y==-出塔气相摩尔比:Y2 = 0.0002/(1 – 0.0002)= 0.000211对于纯溶剂吸收过程,进塔液相组成:20X=混合气体流量:V1 = (1000*273)/(293*22.4) = 41.596 kmol/h进塔惰性气体流量: V = 41.596 *(1 – 0.05) = 39.5162kmol/h吸收过程属于底浓度吸收,平衡关系为直线,最小气液比可按下式计算:12min 120.05260.0002110.751(0.0526/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作气掖比为最小气液比的1.5倍,可得吸收剂用量为:L = 1.5 * 0.751 * 39.5162 = 44.515kmol/h根据全塔物料衡算式: V * (Y 1 – Y 2) = L * (X 1 – X 2)X 1 = V * (Y 1 – Y 2) / L + LX 2 = (0.0526 – 0.0002)/(0.751*1.5) = 0.0685液气比 : W l /Wv = (44.515*18)/(1000*1.181) = 0.6783.3塔径的计算 3.3.1塔径的计算考虑到填料塔内塔的压力降,塔的操作压力为101.3KPa()()()()33330.05170.952928.4/101.31028.410 1.181/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为采用贝恩----霍夫泛点关联式:112480.23lg f t v v L L L v L u a W A K g W ρρμερρ⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦= -0.48 4.535/F u m s = ()0.50.8f u u =-取泛点率为0.6. 即 u = 0.6u f = 0.6 * 4.535 = 2.721m/sD = [4*V S /(π*u)]0.5 = [4×1000÷(3600×3.14×2.721)]0.5 = 0.361m 圆整后取 D = 0.4m =400mm3.3.2泛点率校核u= 4 * V ÷(π * D 2) = 2.212m/s u/u f = 2.721÷4.535 = 60% 在(50%--80%)之间,所以符合要求.3.3.3填料规格校核根据要求应选择环形填料中的塑料阶梯环.由于所选用的塔径为700mm ,又根据填料与塔径的对应关系及实际操作要求,区尺寸为38的塑料阶梯环,此填料规格如下:公称直径:38mm 孔隙率ε:0.92比表面积a:133()23/m m 填料因子:1761m - 填料常数A:0.0942 所以有D/d = 400/38 = 10.53,即符合要求.见下图:3.3.4液体喷淋密度校核最小的喷淋密度()3min 0.08/()W L m m h ==⋅ σt =13332/m m= 0.08 * 133 = 10.64m 3/(m 2*h)=1451.7 * 18/(998.2*0.785*0.42) = 11.6m 3/(m 2*h)min U U >故满足最小喷淋密度的要求3.4填料层高度计算3.4.1传质单元高度计算273K ,101.3kpa 下,氨气在空气中的扩散系数20.17(/)o D c ms =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则293K ,101.3kpa 下,氨气在空气中的扩散系数20.189(/)v D cm s =293K ,101.3kpa 下,氨气在水中的扩散系数()921.7610/L D m s -=⨯ (查化工原理附录)Y 1* = mX 1 = 0.754 * 0.0685 = 0.051649*220Y mX ==脱吸因数为:S = mV/L = 0.754 / (0.751*1.5) = 0.700气相总传质单元数为:()*12*221ln 11OGY Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦= 12.24 气相总传质单元高度采用修正的恩田关联式计算:0.10.20.750.052221exp 1.45w c L t L L t L t L L L L t a U a U U a a g a σσμρρσ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液体质量通量为:U L = W L /(0.785*D 2)=155.801*18/ (0.785*0.72)=7290.83kg/(m 2.h) 气体质量通量为:U V = W V /(0.785*D 2)=3500*1.181/(0.785*0.72)=10746.13 kg/(m 2.h) 故0.050.20.750.122284276809640.069640.06114.29640.061exp 1.45940896114.2 3.6998.2 1.2710997.08940896114.2w t a a -⎧⎫⎛⎫⎛⎫⨯⎪⎪⎛⎫⎛⎫=--⎨⎬ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭= 0.9812气膜吸收系数:10.730.237V V t V G t V V V U a D k a D RT μμρ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =0.10092/()Kmol m h kpa ⋅⋅ 液膜吸收系数= 0.47612/()Kmol m h kpa ⋅⋅ 查表得ψ=1.45 故1.1G G W K a K a ψ==0.1009⨯0.9812⨯72⨯ 1.11.45=10.727()3/Kmol m h kpa ⋅⋅ 0.4L L W K a K a ψ==0.4761⨯0.9812⨯72⨯0.41.45=39.0241/h fuu =0.59>0.5 以下公式为修正计算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦ = 10.1853/()Kmol m h kpa ⋅⋅2.219.50.5L L f u K a K a u ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦= 24.576 3/()Kmol m h kpa ⋅⋅ 则 111G G L K a K a HK a=+'(H 为溶解度系数)= 6.5793/()Kmol m h kpa ⋅⋅由 OG Y G V VH K a K aP ==ΩΩ=138.305/(7.679*101.3*0.785*0.72) = 0.462m3.4.2填料层高度的计算由 Z = H OG ×N OG = 0.462×12.24 = 5.655m取上下活动系数为1.5故 Z ’= 1.5Z = 1.5*5.655 = 8.48m 故取填料层高度为9m. 查散装填料分段高度推荐值查得: 塑料阶梯环 h/d ⊂8~15 max 6h m ≤ 取h/d=8 得 h=8⨯700=5600 m计算得填料层高度为9000mm ,,故不需分段3.5 填料层压降的计算填料层压降:气体通过填料层的压降采用Eckert 关联图计算, 其中横坐标为:=0.0234 查得1p 92m -Φ=纵坐标为⨯(2.5282⨯92⨯1.45/9.81)=0.103查图得Eckert 图790/P Pa m z∆≈ 填料层压力降△P = 790*9 = 7110m第四章 塔附属设备工艺计算4.1 塔附属高度的计算取塔上部空间高度可取1.5m,塔底液相停留时间按5min 考虑,则塔釜所占空间高度为h 1 = [(5*60*155.801*18)/(0.72*0.785*3600*998.2)] = 0.609m考虑到气相接管所占的空间高度,空间高度可取 2.5m,所以塔的附属高度可以取4.0m.填料层在中间高度取0.7m .所以塔高为 H = 4.0 + 9 + 0.7 = 13.7m4.2 液体初始分布器和再分布器的选择与计算4.2.1 液体分布器液体分布器可分为初始分布器和再分布器,初始分布器设置于填料塔内,用于将塔顶液体均匀的分布在填料表面上,初始分布器的好坏对填料塔效率影响很大,分布器的设计不当,液体预分布不均,填料层的有效湿面积减小而偏流现象和沟流现象增加,即使填料性能再好也很难得到满意的分离效果。