基于ARM和DSP的农田信息实时采集终端设计
- 格式:pdf
- 大小:1.03 MB
- 文档页数:6
基于STM32单片机的作物生长环境监控系统设计作者:谷沛尚田芳明常永新赵欣宇郭德占赵琛那阳来源:《科技创新与应用》2017年第30期摘要:利用传感技术对作物生长环境进行监测已经成为农业信息化的重要内容。
文章以STM32单片机作为控制器,结合温湿度、光照传感器、土壤水分传感器、网络摄像机等实现对农作物生长环境信息的快速采集、存储、数据上传、分析等功能,为农户及农技人员掌握作物生长情况并进行生产决策提提供科学依据。
关键词:STM32;传感器;网络传输中图分类号:S5 文献标志码:A 文章编号:2095-2945(2017)30-0043-02随着科学技术的发展,高新技术与农业相结合已然成为中国农业发展的一种趋势。
利用信息技术对农田作物生长信息进行实时监测,农作物的生长信息可为农业结构调整和农事活动提供科学的指导,依据采集的数据制定农田生产计划,已经成为农业部门指导生产的重要方法。
当前,对作物生长环境进行监控的方法有很多,但大多为示范类项目,存在后期维护困难,价额昂贵等缺点。
本文设计一种基于STM32的作物生长环境监控系统,以农田作物为研究对象,依据不同的环境及种植的作物基础上,安装采集设备,可实现土壤水分、空气温湿度和光照的检测及数据实时上传,用户可实时了解作物生长环境和生长情况、土壤墒情信息等,为作物植保等提供数据支撑。
1 系统设计基于STM32的农田信息采集系统主要实现农田作物生长信息的监测,将生长环境数据进行远程实时在线监测、存储、显示等功能。
存储的数据可进行分析用户提供近期或者历年的农田墒情情况,为后期的种植提供科学的数据支撑。
系统整体设计:基于STM32的农田信息采集系统主要由农田墒情采集模块、网络数据传输模块、供电系统、SD卡存储模块、液晶显示模块与上位机实时监测模块五部分组成,主要功能如图1所示。
农田信息采集系统实时将土壤湿度、空气温度、湿度信号、光照强度信号经传感器采集到STM32,采集回的数据与时间存储到SD卡,在OLED液晶屏进行实时显示;串口转网络模块与主板上的RS458相连接,STM32控制芯片将传感器采集的数据进行处理,然后通过串口转网络模块内部的TCP/IP协议接入Internet网络,传输到指定的服务器,在上位机上进行显示及存储。
基于DSP+FPGA的实时信号采集系统设计与实现周新淳【摘要】为了提高对实时信号采集的准确性和无偏性,提出一种基于DSP+FPGA 的实时信号采集系统设计方案.系统采用4个换能器基阵并联组成信号采集阵列单元,对采集的原始信号通过模拟信号预处理机进行放大滤波处理,采用TMS32010DSP芯片作为信号处理器核心芯片实现实时信号采集和处理,包括信号频谱分析和目标信息模拟,由DSP控制D/A转换器进行数/模转换,通过FPGA实现数据存储,在PC机上实时显示采样数据和DSP处理结果;通过仿真实验进行性能测试,结果表明,该信号采集系统能有效实现实时信号采集和处理,抗干扰能力较强.%In order to improve the accuracy and bias of real-time signal acquisition,a real-time signal acquisition system based on DSP +-FPGA is proposed.The system adopts 4 transducer array to build parallel array signal acquisition unit,the original signal acquisition amplification filtering through analog signal pretreatment,using TMS32010DSP chip as the core of signal processor chip to realize real-time signal acquisition andprocessing,including the signal spectrum analysis and target information simulation,controlled by DSP D/A converter DAC,through the realization of FPGA data storage,real-time display on the PC and DSP sampling data processing results.The performance of the system is tested by simulation.The results show that the signal acquisition system can effectively realize the real-time signal acquisition and processing,the anti-interference ability is strong.【期刊名称】《计算机测量与控制》【年(卷),期】2017(025)008【总页数】4页(P210-213)【关键词】DSP;FPGA;信号采集;系统设计【作者】周新淳【作者单位】宝鸡文理学院物理与光电技术学院,陕西宝鸡721016【正文语种】中文【中图分类】TN911实时信号采集是实现信号处理和数据分析的第一步,通过对信号发生源的实时信号采集,在军事和民用方面都具有广泛的用途。
基于智能技术的联合收割机多功能智能终端的设计詹新生;孙承庭【摘要】结合GPS、GPRS、CAN 总线、传感器和嵌入式等技术优势,设计了基于智能技术的联合收割机多功能智能终端,并在田间进行了实际测试.试验结果表明:该多功能智能终端系统不仅可以提供较好的人机交互界面,还能完成定位、导航、语音播报、呼叫维护、呼叫加油及计算谷物产量等多种功能,为"智慧农机"的实现提供非常便利的条件.%Combined with the advantage of GPS, GPRS, CAN bus, sensors and embedded technology, it designed a multifunctional intelligent terminal based on combine intelligent technology.And the practical test was conducted in the field.The test results showed that the multifunctional intelligent terminal system can not only provide a good interactive interface, but also complete the positioning,navigation,voice broadcast,call call maintenance,refueling and calculation function of grain yield etc.It provides a very convenient condition for realizing the wisdom of agriculture.【期刊名称】《农机化研究》【年(卷),期】2018(040)011【总页数】5页(P194-198)【关键词】智能技术;多功能;智能终端;CAN总线;联合收割机【作者】詹新生;孙承庭【作者单位】徐州工业职业技术学院信息与电气工程学院,江苏徐州 221140;连云港职业技术学院信息工程学院,江苏连云港 222006【正文语种】中文【中图分类】S225;TP2740 引言随着GPS技术、人工智能、计算机控制技术及人机协同技术的突飞猛进,汽车导航、语音播报系统已经成功应用在高端汽车中,未来也将应用于中低端汽车中。
智慧农业监测系统设计设计方案智慧农业监测系统设计方案概述智慧农业监测系统是一种基于现代信息技术,对农田环境信息进行实时监测、数据采集和分析的系统。
通过采集土壤湿度、温度、气象数据等信息,辅助农民进行科学农业决策,提高农作物产量和质量。
本设计方案旨在介绍智慧农业监测系统的设计和实施,并描述系统的主要功能和技术架构。
系统功能1. 农田环境参数监测:通过传感器对土壤湿度、温度、气象等环境参数进行实时监测,并将数据上传到云端进行存储和分析。
2. 农作物生长状态监测:利用高分辨率遥感图像和机器学习方法,对农田的植被覆盖、叶面积指数等参数进行监测和评估,以判断农作物的生长状态。
3. 病虫害检测与预警:通过图像识别和算法分析,对农田中的病虫害进行实时检测和识别,并及时发出预警通知,提醒农民采取防治措施。
4. 智能灌溉控制:根据农田环境参数和作物需水量,智能调控灌溉系统,优化水资源利用,提高水肥利用效率。
5. 农业知识分享与决策支持:结合农业专家知识库和数据分析结果,为农民提供农业技术指导和决策支持,帮助农民进行精细化管理。
技术架构1. 传感器网络:在农田中布设各类传感器,实时监测土壤湿度、温度、湿度、光照等参数,并将数据传输到数据处理节点。
2. 数据处理节点:负责接收传感器数据、进行数据清洗、整理和存储,并将数据上传到云端服务器。
3. 云端服务器:对数据进行存储、分析和处理,并提供数据查询和管理接口。
同时,构建农业专家知识库,用于决策支持和知识分享。
4. 移动终端:农民可以通过手机或平板电脑等移动终端,实时查看农田环境参数、作物生长状态和病虫害预警信息,进行远程监测和管理。
系统实施步骤1. 传感器网络部署:根据农田布局和需求,布设传感器节点,确保传感器覆盖整个农田,并保证数据的准确性和稳定性。
2. 数据处理节点搭建:在农田附近建立数据处理节点,用于接收传感器数据,并进行数据处理和存储。
数据处理节点需要具备一定的计算和存储能力,同时具备网络通信能力,能够将数据传输到云端服务器。
嵌入式系统课程设计题目1.ARM系统在LED显示屏中的应用(利用ARM系统控制彩色LED显示屏)2.ARM-Linux 嵌入式系统在农业大棚中的应用(温度、湿度和二氧化碳浓度是影响棚栽农作物生长的3 大要素。
为了实现农业大棚中这3 种要素数据的远程实时采集,引入了当前嵌入式应用中较为成熟的ARM9 微处理器和Linux 嵌入式操作系统技术, 采用温度传感器PH100TMPA、湿度传感器HM1500 和二氧化碳浓度传感器NAP221A ,设计一种基于TCP/ IP 协议的嵌入式远程实时数据采集系统方案。
从硬件设计和软件实现2方面对该系统进行具体设计。
)3.ARM 嵌入式处理器在智能仪器中的应用(设计一种基于ARM 嵌入式处理器系统的智能仪器的硬件和软件设计方案, 并结合uc/o s2II或者Linux嵌入式实时操作系统, 给出一套完整的任务调度和管理的方法, 最后用实例说明)4.ARM系统在汽车制动性能测试系统中的应用(采用ARM系统构建一个路试法的汽车制动性能测试系统)5.ARM 嵌入式控制器在印染设备监控中的应用(针对拉幅热定型机,设计一种基于485 总线的分布式监控系统。
用ARM 嵌入式控制器实现主、从电机的同步运行和烘房温度的控制;在PC 机上用VB6. 0 设计转速和温度的监控画面;实现ARM、变频器和PC 机之间的数据通信。
)6.基于ARM系统的公交车多功能终端的设计(完成电子收费、报站、GPS定位等功能)7.基于ARM9的双CAN总线通信系统的设计(设计一种基于ARM9内核微处理器的双路CAN总线通信系统。
完成系统的总体结构、部分硬件的设计,系统嵌入式软件的设计,包括启动引导代码U - boot、嵌入式L inux - 操作系统内核、文件系统以及用户应用管理软件四个部分。
)8.基于ARM9 和Linux 的嵌入式打印终端系统(嵌入式平台上的打印终端的外围电路连接设计、嵌入式Linux 的打印机驱动程序开发和应用程序的开发)9.基于ARM 的车载GPS 终端软硬件的研究(重点研究基于ARM 的导航系统的软硬件设计)10.ARM系统在B超系统中的应用(完成系统软件硬件设计,包括外围电路)11.基于ARM 的嵌入式系统在机器人控制系统中应用(提出一种基于ARM、DSP 和arm-linux 的嵌入式机器人控制系统的设计方法, 完成控制系统的功能设计、结构设计、硬件设计、软件设计)12.基于ARM的视频采集系统设计(完成系统软件硬件设计,包括外围电路,采用USB接口的摄像头)13.基于ARM的高空爬壁机器人控制系统(构建一种经济型的爬壁机器人控制平台, 与上位机视觉定位和控制系统结合,使其适用于导航与定位、运动控制策略、多机器人系统体系结构与协作机制等领域。
第22卷第11期2006年11月农业工程学报T ra nsactio ns o f the CS AE V o l.22 N o.11N ov. 2006基于Java 手机的野外农田数据采集与传输系统设计牟伶俐1,2,刘 钢3,黄健熙2(1.中国科学院国家天文台,北京100012; 2.中国科学院遥感应用研究所,北京100101;3.华中科技大学计算机科学学院,武汉430071)摘 要:为了解决“数字农业”中对野外农田数据采集传输的机动性,跨平台与经济性,在分析当前农田数据野外采集现状的基础上,提出基于J av a 手机平台野外农田数据采集与传输系统的设计方案。
在B /S 网络构架下,详细分析客户端与服务端系统设计:客户端设计主要包括农田数据采集、数据传输、信息查询、定位导航;服务端设计主要包括数据接收与传输,数据存取,数据检索以及地图服务等。
通过试验,结果表明基于Jav a 手机的野外农田数据采集与传输系统设计切实可行,在野外数据采集方面具有良好的移植性,数据传输较快,费用较低,具有较大的研究与实用价值。
关键字:J av a 手机;农田数据;数据采集;数据传输;J2M E 中图分类号:T P274.2;S126 文献标识码:A 文章编号:1002-6819(2006)11-0165-05牟伶俐,刘 钢,黄健熙.基于J av a 手机的野外农田数据采集与传输系统设计[J ].农业工程学报,2006,22(11):165-169.M u Lingli,Liu Gang ,Hua ng J ia nx i.Desig n of far m field da ta co llectio n and transmissio n system based on J av a pho ne [J].T ransac tio ns of th e CSA E ,2006,22(11):165-169.(in Chinese w ith Eng lish abstr act )收稿日期:2005-08-08 修订日期:2006-02-22作者简介:牟伶俐(1977-),男,湖北利川人,博士,主要从事移动GIS,空间数据库,遥感应用研究等。
基于ARM平台的嵌入式实时数据库的设计与实现作者:李贺朱廷劭徐新国来源:《物联网技术》2014年第07期摘要:根据对嵌入式实时数据库的分析,设计出基于专用文件系统的嵌入式实时数据库,该文件系统以块为单位进行存储,使用来表示一条具有完整意义的数据,根据数据特点,建立了针对实时数据存储的文件系统索引结构,最后完成了专用文件系统在嵌入式Linux上的运行,它提供专用的调用接口进行读写。
关键词:ARM;实时数据库;专用文件系统;Linux;中图分类号:TP391文献标识码:A 文章编号:2095-1302(2014)07-0075-030引言嵌入式系统是一种“完全嵌入受控件内部,为特定应用而设计的专用计算机系统”。
据不完全统计,目前世界上嵌入式处理器的品种总量超过一千多种,流行的体系结构也有30多个系列。
但是没有一种微处理器和微处理器公司可以主导嵌入式系统。
由于嵌入式系统设计的差异性极大,因此选择也是多样化的。
ARM是近年来在嵌入式系统很有影响力的微处理制造商,ARM的设计非常适用于小的嵌入式系统。
嵌入式系统必须根据应用需求对软硬件进行剪裁,满足应用系统的功能、可靠性等要求。
随着嵌入式系统的广泛应用及嵌入式操作系统的不断普及,嵌入式环境下的数据管理问题成为系统的重要环节,工业系统要求严格的时间性,要求在一定的时刻或时间段内对外部采集数据按照顺序进行存储,并及时作出响应。
所处理的数据往往是“短暂”的,只在一定的时间段内有效,过时则没有任何意义,传统的嵌入式数据库主要用于处理永久性数据,设计时主要强调维护数据的完整性、一致性,提高系统的吞吐量和降低系统代价,没有考虑与数据处理相关联的时间因素,因而传统的嵌入式数据库无法满足工业实时应用的需求,因此我们开发了一款嵌入式实时数据库系统,实现了与操作系统的融合,建立属于实时数据库独有的缓冲区管理,将数据库的归档文件建立在专用的文件系统之上,该文件系统提供独立的访问接口及管理磁盘空间。
基于DSP的数据采集及FFT实现基于数字信号处理器(DSP)的数据采集和快速傅里叶变换(FFT)实现在信号处理和频谱分析等领域具有广泛的应用。
通过使用DSP进行数据采集和FFT实现,可以实现高速、高精度和实时的信号处理。
首先,数据采集是将模拟信号转换为数字信号的过程。
数据采集通常涉及到模拟到数字转换器(ADC),它将模拟信号进行采样并进行量化,生成离散的数字信号。
DSP通常具有内置的ADC,可以直接从模拟信号源获取数据进行采集。
采集到的数据可以存储在DSP的内存中进行后续处理。
数据采集的关键是采样频率和采样精度。
采样频率是指在单位时间内采集的样本数,它决定了采集到的频谱范围。
采样频率需要满足奈奎斯特采样定理,即至少为信号最高频率的2倍。
采样精度是指每个采样点的位数,它决定了采集到的数据的精确程度。
常见的采样精度有8位、16位、24位等。
在数据采集之后,可以使用FFT算法对采集到的数据进行频谱分析。
FFT是一种用于将时间域信号转换为频域信号的算法,它能够将连续时间的信号转换为离散频率的信号。
FFT算法的核心是将复杂度为O(N^2)的离散傅里叶变换(DFT)算法通过分治法转化为复杂度为O(NlogN)的算法,使得实时处理大规模数据成为可能。
在使用DSP进行FFT实现时,可以使用DSP芯片内置的FFT模块,也可以通过软件算法实现FFT。
内置的FFT模块通常具有高速运算和低功耗的优势,可以在较短的时间内完成大规模数据的FFT计算。
软件算法实现FFT较为灵活,可以根据实际需求进行调整和优化。
通常,FFT实现涉及到数据的预处理、FFT计算和结果后处理。
数据的预处理通常包括去除直流分量、加窗等操作,以减小频谱泄漏和谱漂的影响。
FFT计算是将采集到的数据通过FFT算法转换为频域信号的过程。
结果后处理可以包括频谱平滑、幅度谱归一化、相位分析等。
通过合理的数据预处理和结果后处理,可以获得准确的频谱信息。
除了基本的数据采集和FFT实现,基于DSP的数据采集和FFT还可以进行其他扩展和优化。
DSP课程论文(设计)题目基于DSP语音信号采集系统的设计院系专业学生姓名学号指导教师二O一四年五月二十八日基于DSP语音信号采集系统的设计摘要:为了研究数字信号处理,提出了一个基于DSP TMS320VC5502的语音信号采集系统的设计。
给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP与A/D芯片的连接等,以及软件流程图。
通过MATLAB得到语音信号的波形和频谱图。
实验表明: 所设计的基于DSP的硬件和软件系统是一个很好的语音信号采集系统,该系统结构清晰,电路简洁,易于实现。
关键词:语音信号;数据采集;DSP;TLC320AD501.引言20世纪50年代以来,随着数字信号处理各项技术的发展,语音信号处理技术得到不断提高, 语音合成、语音识别、语音记录与语音控制等技术已开始逐步成熟并得到应用。
在语音信号处理过程中, 要实现语音信号处理技术的精确性、实时性目的,语音信号采集和无误差存储成为语音信号处理中的前提。
TMS320VC5502是德州仪器公司公司在2002年基于TMS320VC5502推出的定点数字信号处理器,它采用修正的哈佛结构,包括1个程序存储总线、3个数据存储总线和4个地址总线,这种结构允许同时执行程序指令和对数据操作,运行速度快,单周期定点指令执行时间为5ns,远高于语音信号采集和处理的要求。
在语音信号采集中, 模拟信号向数字信号转换(ADC)的精度和实时性对后续信号处理过程起到了重要作用。
设计中采用TLC320AD50完成语音信号的A/D转换。
TLC320AD50是TI公司提供的一款16 bit 同步串口A/D和D/A转换芯片,ADC之后有1个抽取滤波器以提高输入信号的信噪比, 其采样频率最高可达22.5 Kb/s,满足语音信号处理中关于采样频率的要求。
2.总体设计基于TMS320VC5502的语音信号采集系统的结构如图2–1所示,该系统的中央处理单元采用美国TI(德州仪器)公司的高性能定点数字信号处理芯片TMS320VC5502,TMS320VC5502是TI 公司推出的定点数字信号处理器,它采用修正的哈佛结构,包括12组独立总线,即1组程序读总线,1组程序地址总线,3组数据读总线,2组数据写总线,5组数据地址总线。
基于物联网的甘蔗农田数据采集系统设计一、引言随着物联网技术的不断发展和普及,其在农业领域的应用也呈现出快速增长的趋势。
甘蔗是热带地区重要的经济作物之一,为了提高甘蔗的生产效率和质量,需要对甘蔗农田进行科学管理和监测。
因此,设计一套基于物联网的甘蔗农田数据采集系统,能够实时收集农田的有关环境信息,帮助农民进行精细化管理和决策,具有重要的实际意义。
二、系统架构设计1.传感器网络传感器网络是系统的核心,用于感知农田环境的参数。
可以设置多种传感器,如温度传感器、湿度传感器、土壤湿度传感器、光照传感器等,以全方位地监测甘蔗农田的环境信息。
通过将传感器网络布设在农田中,可以实时采集数据,并将数据发送给数据传输模块进行处理和传输。
2.数据传输数据传输模块负责将传感器采集到的数据进行处理和传输。
可以采用无线通信技术,如WiFi、蓝牙、LoRa等,将数据传输到云平台。
为了保证数据的准确性和可靠性,可以设置数据压缩算法和数据校验机制。
3.云平台云平台是整个系统的数据存储和处理中心。
数据传输模块将采集到的数据传输到云平台后,云平台将对数据进行存储、管理和分析。
可以利用云计算技术和大数据分析技术对采集到的数据进行实时分析和预测,提供精准的农田管理建议。
农民可以通过手机、电脑等终端设备访问云平台,查看甘蔗农田的实时数据和历史数据,并进行决策。
三、系统功能设计1.实时监测功能:实时采集甘蔗农田的温度、湿度、土壤湿度、光照等环境参数的数据,并将数据实时显示在云平台上。
2.数据分析功能:利用云计算和大数据分析技术对采集到的数据进行实时分析和预测,提供农田管理建议。
3.告警功能:当甘蔗农田的环境参数超过预设的阈值时,系统将发送告警信息给农民,及时提醒农民进行相应的处理和调整。
4.历史数据查询功能:农民可以查询甘蔗农田的历史数据,了解农田环境的变化情况,并为决策提供依据。
5.远程控制功能:农民可以通过手机、电脑等终端设备对甘蔗农田的灌溉系统、施肥系统进行远程控制,提高农田管理的灵活性和效率。