电脑开关电源制作及工作原理
- 格式:doc
- 大小:1.57 MB
- 文档页数:17
计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。
对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。
下边我们就来具体讲解一下电源的构造以及工作流程。
首先,我们要知道计算机开关电源的工作原理。
电源先将高电压交流电(220V)通过全桥二极管(图1、2)整流以后成为高电压的脉冲直流电,再经过电容滤波(图3)以后成为高压直流电。
二极管(图1)整流全桥(图2)滤波电容(图3)此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级(图4)。
接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。
其中,控制电路是必不可少的部分。
它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。
在计算机开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。
通过对多台电源的维修,总结出了对付电源常见故障的方法。
高频变压器(图4)一、在断电情况下,“望、闻、问、切”由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。
因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。
首先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。
在初步检查以后,还要对电源进行更深入地检测。
保险管(图5)用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1、VT2击穿。
计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。
对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。
下面对ATX电源控制电路的工作原理进行较详细的阐述,望能对广大维修者有所帮助。
一、ATX型电源电路的组成及工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
请参照图1和ATX电源电路原理图。
1.辅助电源电路只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。
市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。
T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。
反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。
Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。
反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。
同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。
随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。
开关电源工作原理是什么?开关电源原理图分析开关电源工作原理是什么?开关电源就是用通过电路控制开关管进行高速的道通与截止。
将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50HZ变为高频那开关电源就没有意开关电源的工作流程是:电源→输入滤波器→全桥整流→直流滤波→开关管(振荡逆变)→开关变压器→输出整流与滤波。
1. 交流电源输入经整流滤波成直流2. 通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上3. 开关变压器次级感应出高频电压,经整流滤波供给负载4. 输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源.主要用于工业以及一些家用电器上,如电视机,电脑等开关电源原理图分析电路的工作过程:a> 开关S开通后,变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组两端的电压也是上正下负.因此VD1处于通态,VD2为断态,电感L的电流逐渐增长;b> S关断后,电感L通过VD2续流,VD1关断.S关断后变压器的激磁电流经N3绕组和VD3流回电源,所以S关断后承受的电压为 .c> 变压器的磁心复位:开关S开通后,变压器的激磁电流由零开始,随着时间的增加而线性的增长,直到S关断.为防止变压器的激磁电感饱和,必须设法使激磁电流在S关断后到下一次再开通的一段时间内降回零,这一过程称为变压器的磁心复位.正激电路的理想化波形:变压器的磁心复位时间为:Tist=N3*Ton/N1输出电压:输出滤波电感电流连续的情况下:Uo/Ui=N2*Ton/N1*T磁心复位过程:2、反激电路反激电路原理图反激电路中的变压器起着储能元件的作用,可以看作是一对相互耦合的电感.工作过程:S开通后,VD处于断态,N1绕组的电流线性增长,电感储能增加;S关断后,N1绕组的电流被切断,变压器中的磁场能量通过N2绕组和VD向输出端释放.S关断后的电压为:us=Ui+N1*Uo/N2反激电路的工作模式:电流连续模式:当S开通时,N2绕组中的电流尚未下降到零.输出电压关系:Uo/Ui=N2*ton/N1*toff电流断续模式:S开通前,N2绕组中的电流已经下降到零.输出电压高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下, ,因此反激电路不应工作于负载开路状态.反激电路的理想化波形。
电脑开关电源原理及电路图2.1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。
图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
2.2、高压尖峰吸收电路D18、R004和C01组成高压尖峰吸收电路。
当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。
2.3、辅助电源电路整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。
Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。
一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。
1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。
这样对开机时的浪涌电流起到有效的缓冲作用。
电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。
采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。
图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。
3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。
一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。
C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。
高频开关电源电路原理高频开关电源由以下几个部分组成:一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
二、控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
三、检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。
四、辅助电源提供所有单一电路的不同要求电源。
开关控制稳压原理开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。
可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。
图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。
电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D 释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。
在 AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。
开关电源工作原理超详细解析开关电源是一种常见的电源供应器件,它通过将输入电源的直流电转换为高频脉冲电流,再经过整流、滤波和稳压等环节,输出稳定的直流电。
本文将详细解析开关电源的工作原理,包括开关电源的基本组成部分、工作原理的流程、常见的开关电源拓扑结构以及其优点和应用。
一、开关电源的基本组成部分开关电源通常由以下几个基本组成部分构成:1. 输入电路:用于接收外部交流电源,并将其转换为适合开关电源工作的直流电压。
2. 整流电路:将输入电压转换为脉冲电流,通常采用整流桥或者整流电路来实现。
3. 滤波电路:用于平滑整流后的脉冲电流,以减小输出电压的波动。
4. 开关器件:通常采用晶体管或者功率MOSFET等开关器件,用于控制电流的开关状态。
5. 控制电路:用于控制开关器件的开关频率和占空比,以控制输出电压的稳定性。
6. 输出电路:将经过整流、滤波和稳压处理后的直流电压输出给负载。
二、开关电源的工作原理流程开关电源的工作原理可以分为以下几个流程:1. 输入电路接收交流电源:开关电源的输入电路通常采用变压器来降低输入电压,然后通过整流电路将交流电转换为直流电。
2. 整流电路将交流电转换为脉冲电流:整流电路通常采用整流桥或者整流电路来将交流电转换为脉冲电流,这样可以减小能量损耗。
3. 滤波电路平滑脉冲电流:滤波电路通常采用电容器和电感器来平滑脉冲电流,以减小输出电压的波动。
4. 控制电路控制开关器件的开关频率和占空比:控制电路通过对开关器件的控制,可以控制开关频率和占空比,从而控制输出电压的稳定性。
5. 输出电路将处理后的直流电压输出给负载:经过整流、滤波和稳压处理后的直流电压将被输出给负载,供其正常工作。
三、常见的开关电源拓扑结构开关电源有多种拓扑结构,常见的有以下几种:1. 单端开关电源:输入电源和输出电源共用一个地线,适用于低功率应用。
2. 双端开关电源:输入电源和输出电源分别有独立的地线,适用于高功率应用。
计算机开关电源工作原理由于ATX电源品牌繁多,电路各有千秋,但基本原理还是一致的,大同小异,只要弄明白一种,就能懂得其他各种基本原理,举一反三迎刃而解。
现以300W ATX电源为例,分十个部分进行讲解。
220V交流输入电路和高压整流滤波电路220V交流输入电路主要由保护电路和抗干扰电路两部分组成。
保护电路由保险F1、热敏电阻NTCR1、过流保护器组成,主要起过流过压保护和限流作用。
抗干扰电路由C1、C2、R1、扼流圈T1、差模扼流圈T5组成,主要用于由市电电网进入的高于50HZ的干扰信号和由开关电源本身振荡时产生的谐波信号同时进行正向和反向抑制,防止电网干扰对ATX电源的影响和ATX电源的振荡谐波通过电网反输出对临近计算机和显示器等设备干扰。
高压整流滤波电路由整流二极管D21—D24当电网电压L为正时D22、D23导通,当N为正时D24、D21导通,输出脉动的直流电压,通过扼流圈T和C5、C6组成的L型滤波电路后输出较平滑的300V 直流电压,同时T还是功率因素校正线圈,用来提高电能的利用率,R2、R3为半桥交换电路的均压电阻。
此主题相关图片如下:计算机ATX电源工作原理(三)作者:何家祯辅助电源工作原理辅助电源本身也是一个完整的变压器耦合并联型开关电源,输出+5VSB电源,为主板待机供电。
同时也为保护电路,控制电路等供电。
只要有交流电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,都在为开关电源控制电路提供工作电压。
当电源接通市电,高压整流电路就有300V直流电压输出,一路往R55、R56至开关管Q12基极,另一路经开关变压器T6的初级线圈L1加到Q12集电极,使Q12导通。
Q12导通后,其集电极电流在T6的L1上产生上正下负的自感电动势,同时在正反馈绕组L2上产生上正下负的互感电动势,此互感电动势通过C31、R56加到Q12基极使Q12迅速饱和导通。
在Q12饱和导通期间,由于T6的次级L3、L4与初级L1极性相反,次级L3、L4的互感电动势为上负下正,所以整流管D29、D30均为反向截止无输出,L3、L4的互感电动势就以磁能的形式储存在线圈内。
开关电源的工作原理与维修在现代电子设备中,开关电源作为一种常见的电源供应模块,被广泛应用于各种设备中,如电脑、手机充电器、电视等。
开关电源相比于传统的线性电源具有更高的效率和稳定性,因此备受青睐。
本文将介绍开关电源的工作原理以及常见的维修方法。
工作原理开关电源的工作原理主要基于三个关键元件:变压器、整流器和滤波器。
当输入交流电压被整流器转换为直流电压后,变压器通过开关管(如晶体管)来控制电流的开闭,进而实现将直流电压转换为高频脉冲信号。
这些脉冲信号经过变压器的变压作用,最终输出所需的稳定直流电压。
开关电源的高频工作使得其输出更为稳定、效率更高。
通过控制开关管的导通时间,可以调整输出电压的大小,实现对电压的精确控制。
同时,开关电源内部还配备了保护机制,如过流保护、过压保护等,确保设备和用户的安全。
维修方法尽管开关电源具有高效稳定的特点,但在长时间使用过程中仍可能出现各种故障。
以下是一些常见的开关电源故障及其维修方法:1.电容故障:开关电源中的电容可能会出现漏液、爆裂等情况,导致输出电压不稳定甚至无法正常工作。
此时需要更换损坏的电容并进行电源校准。
2.开关管故障:开关管长时间工作后可能会损坏,导致整个电源无法正常工作。
此时需要测量开关管的导通情况,确认是否需要更换新的开关管。
3.滤波器故障:滤波器在使用过程中可能会被过载、过压等问题影响而损坏,导致输出的电压波动较大。
对于此类故障,需要检查并更换损坏的滤波器。
4.散热系统故障:开关电源长时间工作会产生一定的热量,如果散热系统不良,可能导致电源温度过高而引发故障。
因此,定期清洁和确保散热系统正常工作至关重要。
在进行开关电源的维修时,应首先确保断开电源并排除电容器电压,避免触电危险。
同时,维修人员需要具备一定的电子知识和技能,以便更好地识别和解决各种故障。
总的来说,开关电源作为现代电子设备中不可或缺的部件,其工作原理和维修方法都需要得到深入理解和熟练掌握。
电脑电源工作原理一、开关电源工作原理ATX开关电源的原理框图:上图工作原理简述:220V交流电经过第一、二级EMI滤波后变成较纯净的50Hz交流电,经全桥整流和滤波后输出300V的直流电压。
300V直流电压同时加到主开关管、主开关变压器、待机电源开关管、待机电源开关变压器。
由于此时主开关管没有开关信号,处于截止状态,因此主电源开关变压器上没有电压输出,上图中的-12V至+3.3V,5组电压均没电压输出。
但我们同时注意到,300V直流电加到待机电源开关管和待机电源开关变压器后,由于待机电源开关管被设计成自激式振荡方式,待机电源开关管立即开始工作,在待机电源开关变压器的次级上输出二组交流电压,经整流滤波后,输出+5VSB和+22V电压,+22V电压是专门为主控IC供电的。
+5VSB加到主板上作为待机电压。
当用户按动机箱的Power启动按键后,(绿)色线处于低电平,主控IC内部的振荡电路立即启动,产生脉冲信号,经推动管放大后,脉冲信号经推动变压器加到主开关管的基极,使主开关管工作在高频开关状态。
主开关变压器输出各组电压,经整流和滤波后得到各组直流电压,输出到主板。
但此时主板上的CPU仍未启动,必须等+5V的电压从零上升到95%后,IC检测到+5V上升到4.75V时,IC发出P.G信号,使CPU启动,电脑正常工作。
当用户关机时,绿色线处于高电平,IC内部立即停止振荡,主开关管因没有脉冲信号而停止工作。
-12至+3.3的各组电压降至为零。
电源处于待机状态。
输出电压的稳定则是依赖对脉冲宽度的改变来实现,这就叫做脉宽调制PWM。
由高压直流到低压多路直流的这一过程也可称DC-DC变换,是开关电源的核心技术。
采用开关变换的显著优点是大大提高了电能的转换效率,典型的PC电源效率为70—75%,而相应的线性稳压电源的效率仅有50%左右。
二、保护电路的工作原理在正常使用过程中,当IC检测到负载处于:短路、过流、过压、欠压、过载等状态时,IC内部发出信号,使内部的振荡停止,主开关管因没有脉冲信而停止工作。
开关电源结构和工作原理小伙伴们!今天咱们来唠唠开关电源这个超有趣的东西。
先说说开关电源的结构吧。
开关电源就像是一个小小的电力魔法盒,它有好几个重要的组成部分呢。
咱先聊聊输入部分。
这就像是电源的小嘴巴,它负责把外面的电给吃进来。
不管是从插座来的交流电,还是其他来源的电,都得从这儿进来。
这个输入部分呀,有时候还挺挑剔的呢,得把那些不稳定的电稍微处理一下,就像我们吃东西得先嚼碎了才能咽下去一样。
比如说,可能会有一些滤波电路在这儿,把电里的一些小杂质,像是杂波之类的东西给过滤掉,让进来的电稍微干净整齐一点。
然后就是开关部分啦。
这可是开关电源的心脏,超级酷的哦。
这个开关就像一个调皮的小闸门,一会儿开一会儿关。
当它开的时候,电流就像一群欢快的小蚂蚁一样,快速地跑过去;当它关的时候呢,电流就只能在那儿等着啦。
这个开关的速度可快啦,每秒能开关好多次呢。
而且呀,这个开关的状态决定了后面好多事情的发展。
它可不是随便开关的哦,是按照一定的规律来的,就像我们跳舞得跟着音乐的节奏一样。
接着就是变压器部分啦。
变压器就像一个神奇的电力魔术师的帽子。
它能把电的电压变来变去。
比如说,从输入的比较高或者比较低的电压,变成我们需要的电压。
这个变压器有初级绕组和次级绕组,电流在初级绕组里跑来跑去的时候,就像在给次级绕组传递魔法一样,在次级绕组那边就会产生不一样的电压啦。
这就好像是把一个大苹果通过魔法变成了几个小苹果,或者把几个小苹果变成了一个大苹果,超级神奇的。
再就是输出部分啦。
这就是电源的小屁股,把处理好的电送出去给需要的设备。
这个输出部分也很讲究呢,它得保证送出去的电是稳定的、干净的。
这里也有滤波电路,就像给电再做一次美容,让电变得更加平滑、稳定。
就像我们送礼物给朋友,得把礼物包装得漂漂亮亮的一样。
那开关电源是怎么工作的呢?当电源开始工作的时候,输入的电进入到开关部分。
开关开始按照它的节奏快速地开合。
每次开关打开的时候,电就流到变压器的初级绕组。
电脑开关电源工作原理
电脑开关电源的工作原理是利用一个交流转直流的电源模块,将输入的交流电转换成电脑需要的直流电。
工作原理如下:
1. 当电脑开关电源插上电源线并接通电源开关后,输入的交流电会通过电源线进入电源模块。
2. 在电源模块内部,有一个整流器,它的作用是将输入的交流电转换成直流电。
整流器一般采用桥式整流电路,将交流电转换成脉冲直流电。
3. 脉冲直流电进入滤波电路,滤波电路中的电容器起到了平滑电流的作用,使得输出的直流电更稳定。
4. 平滑后的直流电经过稳压电路进行调整,以确保输出的电压稳定在电脑所需的工作电压范围内。
稳压电路一般采用反馈控制电路,根据输出电压与设定值的差距,控制开关元件的导通和断开,从而调整输出电压。
5. 最后,稳压后的直流电供给给电脑的各个部件,如主板、显卡、硬盘等,以满足它们的工作需要。
电脑ATX开关电源工作原理与维修技巧一、原理分析1.待机电源待机电源又称辅助电源,电路见附图。
自激振荡部分由Q03,T3,C14,D04,2R21,2R22,2R4等元件组成;稳压部分由IC5(电压基准源),IC1(光祸),Q4(PWM)等元件组成;保护和尖峰吸收部分由Q4,2823、2R10,C02及2R5、C05A,D06等元件组成。
可见待机电源的构成与部分彩电开关电源(带光祸的)基本一致,详细工作过程也大致相同。
T3次级,一路由DOIA和C09整流滤波输出十22V,为驱动电路T2初级和IC2 (TIA94CN )⑩脚提供工作电压。
一路由DOf、C03、IA, C05整流滤波输出+5VSB (Stand By),由一根紫色导线经ATX插头送到主板上“电源监控部件”电路,为该电路提供待机电压。
别看待机电源结构简单,在微机系统中却占据着重要地位,一方面它给主控PWM电路和担任多种信号处理的四比较器供电,保障A TX开关电源自行运转;另一方面,它又像永不熄灭的“火种”,向主机提供待机电压。
2.主开关电源(1)主控PWM型集成电路TL494CN简介TLA94CN内部由振荡器、“死区”比较器、PWM 比较器、两个误差放大器1和2、触发器、逻辑门、三极管Q1,Q2,基准电压调节器以及由两个滞回比较(器施密特触发器)组成的欠压封锁电路等部分组成。
其中⑤脚、⑥脚外接定时电容和定时电阻;由触发器和逻辑门构成的逻辑电路由⑩脚控制输出方式,在电脑A TX开关电源中(13)脚接5V基准电压,使内部三极管QI,Q2工作在推挽输出方式;基准电压调节器将待机电源经(12)脚提供的22V工作电压转换为5V基准电压,由(14)脚输出。
(2)脉宽调制与驱动电路得到主机启动指令后IC2(TL494CN)立刻由待机状态转人工作状态,⑧脚、⑧脚输出相位差为1800的PWM信号,使17初级一侧的Q1,Q2轮流导通或截止,并经T2次级L3 ,LA绕组的藕合,驱动QO1,Q02也为轮流导通或截止,共处于“双管推挽”工作方式。
计算机开关电源工作电压较高,通过的电流较大,又工作在有自感电动势的状态下,因此,使用过程中故障率较高。
对于电源产生的故障,不少朋友束手无策,其实,只要有一点电子电路知识,就可以轻松的维修电源。
下面对ATX电源控制电路的工作原理进行较详细的阐述,望能对广大维修者有所帮助。
一、ATX型电源电路的组成及工作原理ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。
请参照图1和ATX电源电路原理图。
1.辅助电源电路只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。
市电经高压整流、滤波,输出约300V直流脉动电压,一路经R72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。
T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。
反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44充电,随着C44充电电压增加,流经Q15基极电流逐渐减小,T3反馈绕组感应电势反相(上负下正),与C44电压叠加至Q15基极,Q15基极电位变负,开关管迅速截止。
Q15截止时,ZD6、D30、C41、R70组成Q15基极负偏压截止电路。
反馈绕组感应电势的正端经C41、R70、D41至感应电势负端形成充电回路,C41负极负电压,Q15基极电位由于D30、ZD6的导通,被箝位在比C41负电压高约6.8V(二极管压降和稳压值)的负电位上。
同时正反馈支路C44的充电电压经T3反馈绕组,R78,Q15的b、e极等效电阻,R74形成放电回路。
随着C41充电电流逐渐减小,Ub电位上升,当Ub电位增加到Q15的b、e极的开启电压时,Q15再次导通,又进入下一个周期的振荡。
电脑ATX开关电源工作原理与维修技巧一、工作原理ATX电源是电脑中常见的一种开关电源,其主要功能是将交流电转换为直流电提供给电脑使用,同时还能为电脑提供一定的保护功能。
ATX电源的电路主要由输入滤波、PWM控制器、变压器、输出整流滤波等部分组成。
用户将交流电连接到电源的输入端口,电源对该电压进行滤波和整流,然后将动态变化的直流电转换为需要的电压。
处理完这些步骤后,ATX电源通过IDE 和CPU的连接口向电脑提供直流电。
二、维修技巧ATX电源在工作中经常会出现一些故障,比如电源开不了、电源释放的蜂鸣声等。
下面是一些常见的维修技巧:1. 接触不良有时电源无法正常开启的原因是接触松动。
此时,需要检查电源与连接电缆之间的接触情况。
可能需要拆开电源,清除接触处的灰尘、腐蚀物,并确保金属部件间有充分的接触。
2. 故障元件电源的故障元件很少,其中最常见的是变压器和电容。
如果在检查接触不良后没有发现问题,则需要拆开电源检查电容器和变压器是否出现短路或损坏现象。
如果出现了这些问题,需要更换故障元件。
3. 清洁维护ATX电源的内部很容易收集灰尘,这可能会导致散热效果不佳。
因此,需要经常用吸尘器或者零尘布进行清洁维护,以保证电源正常工作。
4. 鉴定电源工作状态当电源发生故障时,需要进行分析诊断。
比如有些电源的状态显示器可以通过颜色变化或灯光来标示电源的状态。
所以需要对电源的指示灯状态进行鉴定,以及排除可能的错误。
三、如何安全地维修电源当维修电源时,需要采取一些安全措施,以防止电源的高电压对用户造成损伤。
下面是一些值得注意的地方:1. 关闭电源在拆解电源之前,需要确保电源已经完全关闭,以避免因为误操作而受伤。
2. 避免静电静电可能会损坏电源中的电路件,因此需要穿戴相应的防静电设备,同时也要保持工作区域的干燥,减少静电产生。
3. 注意高高压电容器当要处理电源中的电容器时,需要特别小心。
在处理时,需要先通过一个电阻将电容器引线连接在同一个地方,然后才能进行操作。
计算机辅助开关电源设计一、引言计算机是现代社会不可或缺的重要工具,而电源作为计算机的供电装置,对计算机的稳定运行至关重要。
为了提高计算机电源的效率和可靠性,计算机辅助开关电源设计应运而生。
二、开关电源的基本原理开关电源是利用电子开关器件(如晶体管、MOSFET等)来控制电源的开关状态,以达到对输出电压进行调节的目的。
其基本原理是通过将输入电源的直流电转换为高频脉冲信号,再经过滤波电路和稳压电路,最终得到稳定的直流输出电压。
三、计算机辅助开关电源设计的优势相比传统的线性电源,计算机辅助开关电源具有以下优势:1. 高效率:开关电源采用高频脉冲调制技术,能够提高电源的转换效率,减少能量的损耗。
2. 小体积:开关电源采用集成电路和高频变压器等高度集成的元器件,使得整个电源模块可以做到体积小、重量轻,便于集成到计算机主机中。
3. 可靠性高:开关电源的关键元器件采用高质量的电子元件,经过精密的工艺制造和严格的质量控制,使得开关电源具有较高的可靠性和稳定性。
4. 多功能:开关电源可以根据计算机的需求,实现电压的调节、过载保护、短路保护等功能,有效保护计算机的正常运行。
四、计算机辅助开关电源设计的关键技术1. 开关器件的选择:选择合适的开关器件是设计开关电源的关键。
常用的开关器件有晶体管、MOSFET、IGBT等,需要根据电源的功率和效率要求进行选择。
2. 控制电路设计:开关电源的控制电路是实现电源输出稳定性的关键,需要考虑电压反馈回路、过载保护、短路保护等功能的设计。
3. 滤波电路设计:开关电源输出的脉冲信号需要经过滤波电路进行平滑处理,以减小输出的纹波和噪声。
4. 稳压电路设计:稳压电路用于确保开关电源输出的电压稳定在设定范围内,需要根据计算机的需求选择合适的稳压方案。
5. 散热设计:开关电源在工作过程中会产生一定的热量,需要考虑散热问题,以确保电源的长时间稳定运行。
五、计算机辅助开关电源设计的应用计算机辅助开关电源广泛应用于计算机主机、服务器、工控设备等领域,以提供稳定、高效的电源支持。
电脑开关电源制作及工作原理直流稳压电源的组成直流稳压电源是将交流电变换成功率较小的直流电的电路,一般由降压、整流、滤波和稳压等几部分组成(见图16-1)。
整流电路用来将交流电压变换为单向脉动的直流电压;滤波电路用来滤除整流后单向脉动电压中的交流成分,使之成为平滑的直流电压;稳压电路的作用是输入交流电源电压波动、负载和温度变化时,维持输出直流电压的稳定。
图16-1 直流稳压电源组成桥式整流电路图16-2为桥式整流电路,图中V1、V2、V3、V4四只整流二极管接成电桥形式,故称为桥式整流。
1.工作原理和输出波形设变压器二次电压22sin()u tω=,波形如电压、电流波形图(a)所示。
在u2的正半周,即a点为正,b点为负时,V1、V3承受正向电压而导通,此时有电流流过R L,电流路径为a→V1→R L→V3→b,此时V2、V4因反偏而截止,负载R L上得到一个半波电压,如电压、电流波形图(b)中的0~π段所示。
若略去二极管的正向压降,则u O≈u2。
电压、电流波形在u2的负半周,即a点为负b点为正时,V1、V3因反偏而截止,V2、V4正偏而导通,此时有电流流过R L,电流路径为b→V2→R L→V4→a。
这时R L上得到一个与0~π段相同的半波电压如电压、电流波形图(b)中的π~2π段所示,若略去二极管的正向压降,uO≈-u2。
由此可见,在交流电压u2的整个周期始终有同方向的电流流过负载电阻RL,故R L上得到单方向全波脉动的直流电压。
可见,桥式整流电路输出电压为半波整流电路输出电压的两倍,所以桥式整流电路输出电压平均值为uO=2×0.45U2=0.9U2。
桥式整流电路中,由于每两只二极管只导通半个周期,故流过每只二极管的平均电流仅为负载电流的一半,在u2的正半周,V1、V3导通时,可将它们看成短路,这样V2、V4就并联在u2上,其承受的反向峰值电压为2RMU=。
同理,V2、V4导通时,V1、V3截止,其承受的反向峰值电压也为2RMU=。
二极管承受电压的波形如电压、电流波形图(d)所示。
由上图可见,在交流电压u 2的整个周期始终有同方向的电流流过负载电阻R L ,故R L 上得到单方 向全波脉动的直流电压。
可见,桥式整流电路输出电压为半波整流电路输出电压的两倍。
桥式整流电路与半波整流电路相比较,其输出电压U O 提高,脉动成分减小了。
2.参数估算输出电压的平均值02201sin()()0.9U t d t U πωωπ==⎰流过二极管的平均电流 200.45D LU I I R == 二极管承受的反向峰值电压2RM U =滤波电路整流电路将交流电变为脉动直流电,但其中含有大量的交流成分(称为纹波电压)。
应在整流电路的后面加接滤波电路,滤去交流成分。
1.电容滤波(1)电路和工作原理设电容两端初始电压为零,并假定t=0时接通电路,u 2为正半周,当u 2由零上升时,V 1、V 3导 通,C 被充电,同时电流经V 1、V 3向负载电阻供电。
忽略二极管正向压降和变压器内阻,电容充电时间常数近似为零,因此uo=u c ≈u 2,在u 2达到最大值时,u c 也达到最大值,然后u 2下降,此时,u c >u 2,V 1、V 3截止,电容C 向负载电阻RL 放电,由于放电时间常数τ=R L C 一般较大,电容电压uc 按 指数规律缓慢下降,当下降到|u 2|>u c 时,V 2、V 4 导通,电容C 再次被充电,输出电压增大,以后重复上述充放电过程。
其输出电压波形近似为一锯齿波直流电压。
图16-3 桥式整流滤波简化电路(2)波形及输出电压空载时即负载电阻为无穷大:02U;带负载时:2020.9U U << 通常取 021.2U U =,RC 越大0U 越大,为了获得良好的滤波效果。
图16-4 整流电压输出波形和二极管电流波形2.其他形式滤波电路(1)电感滤波电路电路如图16-5所示,电感L 起着阻止负载电流变化使之趋于平直的作用。
直流分量被电感 L 短路,交流分 量主要降在L 上 ,电感越大,滤波效果越好 。
一般电感滤波电路只使用于低电压、大电流的场合。
(2)π型滤波为了进一步减小负载电压中的纹波可采用π型LC 滤波电路(见图16-6)。
由于C 1、C 2 对交流容抗小,而电 感对交流阻抗很大,因此,负载R L 上的纹波电压很小。
u O -稳压电路16.4.1 并联稳压电路调整管并与负载并联的稳压电路,称为并联型晶体管稳压电路。
硅稳压二极管稳压电路的电路图如图16-7所示。
它是利用稳压二极管的反向击穿特性稳压的,由于反向特性陡直,较大的电流变化,只会引起较小的电压变化。
1.当输入电压变化时如何稳压根据电路图16-7可知: 输入电压V I 的增加,必然引起V O 的增加,即V Z 增加,从而使I Z 增加,I R 增加,使V R 增加,从而使输出电压V O 减小。
这一稳压过程可概括如: V I ↑→V O ↑→V Z ↑→I Z ↑→I R ↑→V R ↑→V O ↓这里V O 减小应理解为,由于输入电压VI 的增加,在稳压二极管的调节下,使V O 的增加 没有那么大而已。
V O 还是要增加一点的,这是 一个有差调节系统。
2.当负载电流变化时如何稳压负载电流I L 的增加,必然引起I R 的增加, 图16-7 硅稳压二极管稳压电路 即V R 增加,从而使V Z =V O 减小,I Z 减小。
I Z 的减小必然使I R 减小,V R 减小,从而使输出电压V O 增加。
这一稳压过程可概括如下:I L ↑→I R ↑→V R ↑→V Z ↓(V O ↓)→I Z ↓→I R ↓→V R ↓→V O ↑稳压二极管的缺点是工作电流较小,稳定电压值不能连续调节。
16.4.2 线性串联型稳压电路 1.线性串联稳压电源原理采用三极管作为调整管 并与负载串联的稳压电路,称为串联型晶体管稳压电路;当调整管工作在线性放大状态则称为线性稳压器。
线性串联稳压电源的工作原理可用图16-8来说明。
显然,V O =V I -V R ,当V I 增加时,R 受控制而增加,使V R 增加,从而在一定程度上抵消了V I 增加对输出电压的影响。
若负载电流I L 增加,R 受控制而减小,使V R 减小,从而在一定程度上抵消了因I L 增加,使V I 减小,对输出电压减小的影响。
图16-8 线性串联稳压电源的工作原理 图16-9 串联型稳压电路 2.实际串联稳压电路组成在实际电路中,可变电阻R 是用一个三极管来替代的,控制基极电位,从而就控制了三极管的管压降V CE ,V CE 相当于V R 。
要想输出电压稳定,必须按电压负反馈电路的模式来构成串联型稳压电路。
3.典型的串联型稳压电路典型的串联型稳压电路如图16-9所示。
它由调整管、放大环节、比较环节、基准电压源,采样电路几个部分组成。
(1)输入电压变化,负载电流保持不变输入电压V I 的增加,必然会使输出电压V O 有所增加,输出电压经过取样电路取出一部R I V V V V V R I R I Z O ==-=-ZL R +=I II分信号V f 与基准源电压V REF 比较,获得误差信号ΔV 。
误差信号经放大后,用V O1去控制调整管的管压降V CE 增加,从而抵消输入电压增加的影响。
V I ↑→V O ↑→V f ↑→V O1↓→V CE ↑→V O ↓ (2)负载电流变化,输入电压保持不变负载电流I L 的增加,必然会使输入电压V I 有所减小,输出电压V O 必然有所下降,经过取样电路取出一部分信号V f 与基准源电压V REF 比较,获得的误差信号使V O1增加,从而使调整管的管压降V CE 下降,从而抵消因I L 增加,使输入电压减小的影响。
I L ↑→V I ↓→V O ↓→V f ↓→V O1↑→V CE ↓→V O ↑(3)输出电压调节范围的计算根据图16-9可知V f ≈V REF , 调节R 2显然可以改变输出电压。
图16-10为实际的串联型稳压电源电路,分别由整流电路、滤波电路、调整管、基准电压电路、比较放大电路、采样电路等部分组成图16-10 串联型稳压电源电路其中:整流电路:D 1~D 4;滤波电路:C 1;调整管:T 1、T 2;基准电压电路:'Z 'D 、R 、R 、D Z ;比较放大电路:A ;取样电路:R 1、R 2、R 3。
为了使电路引入负反馈,集成运放的输入端上为“-”下为“+”。
输出电压的表达式为:Z 3321O Z 32321U R R R R U U R R R R R ⋅++≤≤⋅+++线性串联型稳压电源的工作电流较大,输出电压一般可连续调节,稳压性能优越。
目前这种稳压电源已经制成单片集成电路,广泛应用在各种电子仪器和电子电路之中。
线性串联型稳压电源的缺点是损耗较大,效率低。
16.4.3 三端集成稳压电路 1.线性三端集成稳压器的分类线性三端集成稳压器主要有以下几种类型:三端固定正输出集成稳压器,国标型号为CW78、CW78M 、CW78L 三端固定负输出集成稳压器,国标型号为CW79、CW79M 、CW79L三端可调正输出集成稳压器,国标型号为CW117、CW117M 、CW117L 、 CW217、CW217M 、CW217L 、CW317、CW317M 、CW317L 、三端可调负输出集成稳压器,国标型号为CW137、CW137M 、CW137L 、CW237、CW237M 、CW237L 、CW337、CW337M 、CW337L2.CW7800 系列(正电源),CW7900 系列(负电源)输出电压:5 V/ 6 V/ 9 V/ 12 V/ 15 V/ 18 V/ 24 V输出电流:78L ×× / 79L ×× — 输出电流 100 mA ;78M ×× / 9M ×× — 输出电流 500 mA ;78 ×× / 79 ×× — 输出电流 1.5 A 。
如CW7805 输出 5 V ,最大电REF2321O1O )"'+(1=V R R R R V V ++≈流 1.5 A ;CW78M05 输出 5 V ,最大电流 0.5 A ;CW78L05 输出 5 V ,最大电流 0.1 A 。
封装和符号如图16-11所示图16-11 CW7800 系列、CW7900 系列封装和符号3.三端可调输出集成稳压器三端可调输出集成稳压器是在三端固定输出集成稳压器的基础上发展起来的,集成片的输入电流几乎全部流到输出端,流到公共 端的电流非常小,因此可以用少量的外部 元件方便地组成精密可调的稳压电路,应 用更为灵活。