2018届高三物理第二轮专题七电磁感应与电路《楞次定律及图像问题》学案教师版
- 格式:doc
- 大小:417.50 KB
- 文档页数:6
【7份】新课标2018年高考物理总复习教案第十章电磁感应目录第57课时电磁感应现象和楞次定律(双基落实课) ........................................................... 1第58课时法拉第电磁感应定律(重点突破课) .................................................................. 9第59课时电磁感应的电路问题(题型研究课) ................................................................ 22 第60课时电磁感应中的图像问题(题型研究课) ............................................................ 31 第61课时电磁感应中的动力学问题(题型研究课) ........................................................ 39 第62课时电磁感应中的能量问题(题型研究课) (52)阶段综合评估......................................................................................................................... 61 考纲要求考情分析电磁感应现象Ⅰ 1.命题规律近几年高考对本章内容重点考查了感应电流的产生、感应电动势的方向判断和大小计算等。
常以选择题形式考查对基础知识、基本规律的理解与应用,以计算题的形式考查综合性知识,如动力学、能量、电路、图像等知识与电磁感应结合的问题,一般难度较大,分值较高。
2.考查热点预计2018年高考对本章仍将以法拉第电磁感应定律为核心,利用与之相关的力电综合问题,考查学生的综合分析及运用数学知识解决物理问题的能力。
专题9.1+电磁感应现象、楞次定律1、知道电磁感应现象以及产生感应电流的条件。
2.理解磁通量的定义,理解磁通量的变化、变化率以及净磁通量的概念。
3.理解棱次定律的实质,能熟练运用棱次定律来分析电磁感应现象中感应电流的方向。
4.理解右手定则并能熟练运用该定则判断感应电流的的方向。
一、磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
2.公式:Φ=BS。
3.单位:1 Wb=1T·m2。
4.公式的适用条件(1)匀强磁场;(2)磁感线的方向与平面垂直,即B⊥S。
二、电磁感应现象1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
2.产生感应电流的条件(1)条件:穿过闭合电路的磁通量发生变化。
(2)特例:闭合电路的一部分导体在磁场内做切割磁感线运动。
3.产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势,而无感应电流。
三、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.楞次定律中“阻碍”的含义谁阻碍谁→感应电流的磁场阻碍引起感应电流的磁场(原磁场)的磁通量的变化↓阻碍什么→阻碍的是磁通量的变化,而不是阻碍磁通量本身 ↓↓阻碍效果→阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行 3.楞次定律的使用步骤4.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.高频考点一 电磁感应现象的判断例1.在一空间有方向相反、磁感应强度大小均为B 的匀强磁场,如图1所示,垂直纸面向外的磁场分布在一半径为a 的圆形区域内,垂直纸面向里的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b (b >2a )的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a 的圆形区域是同心圆.从某时刻起磁感应强度大小开始减小到B2,则此过程中该线圈磁通量的变化量的大小为( )图1A.12πB (b 2-2a 2)B .πB (b 2-2a 2)C .πB (b 2-a 2) D.12πB (b 2-2a 2)答案 D解析 计算磁通量Φ时,磁感线既有垂直纸面向外的,又有垂直纸面向里的,所以可以取垂直纸面向里的方向为正方向.磁感应强度大小为B 时线圈磁通量Φ1=πB (b 2-a 2)-πBa 2,磁感应强度大小为B 2时线圈磁通量Φ2=12πB (b 2-a 2)-12πBa 2,因而该线圈磁通量的变化量的大小为ΔΦ=|Φ2-Φ1|=12πB (b 2-2a 2),故选项D 正确.【变式探究】在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A .将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D .绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化答案 D【举一反三】现将电池组、滑动变阻器、带铁芯的线圈A 、线圈B 、电流计及开关按如图2所示连接.下列说法中正确的是( )图2A .开关闭合后,线圈A 插入或拔出都会引起电流计指针偏转B .线圈A 插入线圈B 中后,开关闭合和断开的瞬间电流计指针均不会偏转C .开关闭合后,滑动变阻器的滑片P 匀速滑动,会使电流计指针静止在中央零刻度D .开关闭合后,只有滑动变阻器的滑片P 加速滑动,电流计指针才能偏转答案 A解析 只要闭合回路磁通量发生变化就会产生感应电流,故A 正确,B 错误;开关闭合后,只要滑片P 滑动就会产生感应电流,故C 、D 错误.【方法规律】电磁感应现象能否发生的判断流程 1.确定研究的闭合回路.2.明确回路内的磁场分布,并确定该回路的磁通量Φ.3.⎩⎨⎧Φ不变→无感应电流Φ变化→⎩⎪⎨⎪⎧回路闭合,有感应电流不闭合,无感应电流,但有感应电动势高频考点二 楞次定律的理解及应用例2如图所示为一个圆环形导体,圆心为O ,有一个带正电的粒子沿图中的直线从圆环表面匀速飞过,则环中的感应电流的情况是( )A .沿逆时针方向B .沿顺时针方向C .先沿逆时针方向后沿顺时针方向D .先沿顺时针方向后沿逆时针方向答案: D【变式探究】很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率( )A .均匀增大B .先增大,后减小C .逐渐增大,趋于不变D .先增大,再减小,最后不变答案 C解析 开始时,条形磁铁以加速度g 竖直下落,则穿过铜环的磁通量发生变化,铜环中产生感应电流,感应电流的磁场阻碍条形磁铁的下落.开始时的感应电流比较小,条形磁铁向下做加速运动,且随下落速度增大,其加速度变小.当条形磁铁的速度达到一定值后,相应铜环对条形磁铁的作用力趋近于条形磁铁的重力.故条形磁铁先加速运动,但加速度变小,最后的速度趋近于某个定值.选项C正确.【举一反三】(多选)如图4,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形,则磁场可能()图4A.逐渐增强,方向向外B.逐渐增强,方向向里C.逐渐减弱,方向向外D.逐渐减弱,方向向里答案CD【变式探究】如图5所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为M、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置由静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面,则线框中感应电流的方向是()图5A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d答案 B解析摆动过程中ab、dc边切割磁感线,v ab<v dc,所以以dc边切割为主,由右手定则判断电流方向为d→c,故选B.【方法规律】应用楞次定律判断感应电流和电动势的方向1.利用楞次定律判断的电流方向也是电路中感应电动势的方向,利用右手定则判断的电流方向也是做切割磁感线运动的导体上感应电动势的方向.若电路为开路,可假设电路闭合,应用楞次定律或右手定则确定电路中假想电流的方向即为感应电动势的方向.2.在分析电磁感应现象中的电势高低时,一定要明确产生感应电动势的那部分电路就是电源.在电源内部,电流方向从低电势处流向高电势处.高频考点三三定则一定律的综合应用例3.(多选)如图6所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一如图所示的闭合电路,当PQ在一外力的作用下运动时,MN向右运动,则PQ 所做的运动可能是()图6A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动答案BC【变式探究】(多选)如图7所示,一电子以初速度v沿与金属板平行的方向飞入MN极板间,突然发现电子向M板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是()图7A.开关S闭合瞬间B.开关S由闭合后断开瞬间C.开关S是闭合的,变阻器滑片P向右迅速滑动D.开关S是闭合的,变阻器滑片P向左迅速滑动答案AD解析电子向M板偏转,说明M板为正极,则感应电流如图:由安培定则得,感应电流磁场方向水平向左,而原磁场方向水平向右,由楞次定律得原磁场增强,即原电流增加,故A、D正确.【举一反三】(多选)如图8所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引()图8A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动答案BC【方法技巧】三定则一定律的应用技巧1.应用楞次定律时,一般要用到安培定则.2.研究感应电流受到的安培力时,一般先用右手定则确定电流方向,再用左手定则确定安培力方向,有时也可以直接应用楞次定律的推论确定.1.【2016·北京卷】如图1所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直.磁感应强度B随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响.下列说法正确的是()图1A.E a∶E b=4∶1,感应电流均沿逆时针方向B .E a ∶E b =4∶1,感应电流均沿顺时针方向C .E a ∶E b =2∶1,感应电流均沿逆时针方向D .E a ∶E b =2∶1,感应电流均沿顺时针方向【答案】B 【解析】由法拉第电磁感应定律可知E =n ΔΦΔt ,则E =n ΔBΔt πR 2.由于R a ∶R b=2∶1,则E a ∶E b =4∶1.由楞次定律和安培定则可以判断产生顺时针方向的电流.选项B 正确.2.【2016·江苏卷】电吉他中电拾音器的基本结构如图1所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音,下列说法正确的有( )图1A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D .磁振动过程中,线圈中的电流方向不断变化3.(2016·海南单科·4)如图,一圆形金属环与两固定的平行长直导线在同一竖直面内,环的圆心与两导线距离相等,环的直径小于两导线间距。
3楞次定律知识内容楞次定律考试要求必考加试c课时要求1.正确理解楞次定律的内容及其本质.2.掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式.3.能够熟练运用楞次定律和右手定则判断感应电流的方向.一、楞次定律[导学探究] 根据如图1甲、乙、丙、丁所示进行电路图连接与实验操作,并填好实验现象.图1甲乙丙丁条形磁铁运动的情况N极向下插入线圈S极向下插入线圈N极向上拔出线圈S极向上拔出线圈原磁场方向(向上或向下)向下向上向下向上穿过线圈的磁通量变化情况(增加或减少)增加增加减少减少感应电流的方向(在螺线管上俯视)逆时针顺时针顺时针逆时针感应电流的磁场方向(向上或向下)向上向下向下向上原磁场与感应电流磁场的方向关系相反相反相同相同[知识梳理]1.楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.2.楞次定律的理解:当磁通量增加时,感应电流的磁场与原磁场方向相反,当磁通量减少时,感应电流的磁场与原磁场方向相同,即增反减同.[即学即用] 判断下列说法的正误.(1)感应电流的磁场总是与引起感应电流的磁场方向相反.( )(2)感应电流的磁场可能与引起感应电流的磁场方向相同.( )(3)感应电流的磁场总是阻碍引起感应电流的磁通量的变化.( )(4)所有的电磁感应现象都可以用楞次定律判断感应电流方向.( )答案(1)×(2)√(3)√(4)√二、右手定则[导学探究] 如图2所示,导体棒ab向右做切割磁感线运动.图2(1)请用楞次定律判断感应电流的方向.(2)感应电流I的方向、原磁场B的方向、导体棒运动的速度v的方向三者之间满足什么关系?根据课本右手定则,自己试着做一做.答案(1)感应电流的方向a→d→c→b→a.(2)满足右手定则.[知识梳理]右手定则:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.[即学即用] 判断下列说法的正误.(1)右手定则只能用来判断导体垂直切割磁感线时的感应电流方向.( )(2)所有的电磁感应现象,都可以用右手定则判断感应电流方向.( )(3)当导体不动,而磁场运动时,不能用右手定则判断感应电流方向.( )答案(1)×(2)×(3)×一、楞次定律的理解1.因果关系:楞次定律反映了电磁感应现象中的因果关系,磁通量发生变化是原因,产生感应电流是结果.2.“阻碍”的含义:(1)谁阻碍——感应电流产生的磁场.(2)阻碍谁——阻碍引起感应电流的磁通量的变化.(3)如何阻碍——当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同.(4)阻碍效果——阻碍并不是阻止,结果增加的还是增加,减少的还是减少.注:从相对运动的角度看,感应电流的效果是阻碍相对运动.例1(多选)关于楞次定律,下列说法正确的是 ( )A.感应电流的磁场总是要阻碍引起感应电流的磁通量的变化B.闭合电路的一部分导体在磁场中运动时,必受磁场阻碍作用C.原磁场穿过闭合回路的磁通量增加时,感应电流的磁场与原磁场反向D.感应电流的磁场总是跟原磁场反向,阻碍原磁场的变化答案AC解析感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,选项A正确;闭合电路的一部分导体在磁场中平行磁感线运动时,不受磁场阻碍作用,选项B错误;原磁场穿过闭合回路的磁通量增加时,感应电流的磁场与原磁场反向,选项C正确;当原磁场增强时感应电流的磁场跟原磁场反向,当原磁场减弱时感应电流的磁场跟原磁场同向,选项D错误.二、楞次定律的应用例2(多选)如图3所示,闭合金属圆环沿垂直于磁场方向放置在有界匀强磁场中,将它从匀强磁场中匀速拉出,以下各种说法中正确的是( )图3A.向左拉出和向右拉出时,环中的感应电流方向相反B.向左或向右拉出时,环中感应电流方向都是沿顺时针方向的C.向左或向右拉出时,环中感应电流方向都是沿逆时针方向的D.将圆环左右拉动,当环全部处在磁场中运动时,圆环中无感应电流答案BD解析将金属圆环不管从哪边拉出磁场,穿过闭合圆环的磁通量都要减少,根据楞次定律可知,感应电流的磁场要阻碍原磁通量的减少,感应电流的磁场方向与原磁场方向相同,应用安培定则可以判断出感应电流的方向是顺时针方向的,选项B正确,A、C错误;另外在圆环离开磁场前,穿过圆环的磁通量没有改变,该种情况无感应电流,D正确.楞次定律应用四步曲(1)确定原磁场方向;(2)判定产生感应电流的磁通量如何变化(增大还是减小);(3)根据楞次定律确定感应电流的磁场方向(增反减同);(4)判定感应电流的方向.该步骤也可以简单地描述为“一原二变三感四螺旋”,一原——确定原磁场的方向;二变——确定磁通量是增加还是减少,三感——判断感应电流的磁场方向;四螺旋——用右手螺旋定则判断感应电流的方向.针对训练(2015·宁波高二月考)如图4所示,金属环所在区域存在着匀强磁场,磁场方向垂直纸面向里.当磁感应强度逐渐增大时,内、外金属环中感应电流的方向为( )图4A.外环顺时针、内环逆时针B.外环逆时针、内环顺时针C.内、外环均为逆时针D.内、外环均为顺时针答案 B解析首先明确研究的回路由外环和内环共同组成,回路中包围的磁场方向垂直纸面向里且内、外环之间的磁通量增加.由楞次定律可知两环之间的感应电流的磁场方向与原磁场方向相反,垂直于纸面向外,再由安培定则判断出感应电流的方向是:在外环沿逆时针方向,在内环沿顺时针方向,故选项B正确.三、右手定则的应用1.右手定则和楞次定律实质是等效的,但在判断闭合电路的部分导体切割磁感线产生感应电流方向时较为方便.2.右手定则反映了磁场方向、导体运动方向和电流方向三者之间的相互垂直关系.(1)大拇指的方向是导体相对磁场切割磁感线的运动方向,既可以是导体运动而磁场未动,也可以是导体未动而磁场运动,还可以是两者以不同速度同时运动.(2)四指指向电流方向,切割磁感线的导体相当于电源.例3(多选)下列图中表示闭合电路中的一部分导体ab在磁场中做切割磁感线运动的情景,导体ab上的感应电流方向为b→a的是( )答案BCD解析题中四图都属于闭合电路的一部分导体切割磁感线,应用右手定则判断可得:A中电流方向为a→b,B中电流方向为b→a,C中电流方向沿a→d→c→b→a,D中电流方向为b→a.故选B、C、D.1.(多选)磁场垂直穿过一个圆形线圈,由于磁场的变化,在线圈中产生顺时针方向的感应电流,如图5所示,则以下说法正确的是( )图5A.若磁场方向垂直线圈向里,则此磁场的磁感应强度是在增强B.若磁场方向垂直线圈向里,则此磁场的磁感应强度是在减弱C.若磁场方向垂直线圈向外,则此磁场的磁感应强度是在增强D.若磁场方向垂直线圈向外,则此磁场的磁感应强度是在减弱答案BC解析线圈所产生的感应电流方向为顺时针方向,由安培定则知感应电流的磁场方向垂直纸面向里,由楞次定律中“增反减同”可知,原因可能是方向垂直纸面向里的磁场正在减弱或是方向垂直纸面向外的磁场正在增强,故选B、C.2.(2016·诸暨市期末)(多选)如图6所示,线圈放置在水平桌面上,S极向下的条形磁铁沿线圈轴线向桌面运动,此过程中,以下判断正确的是( )图6A.穿过线圈的磁通量变大B.穿过线圈的磁通量变小C.从上向下看,线圈感应电流方向为顺时针D.从上向下看,线圈感应电流方向为逆时针答案AC3. (多选)如图7所示,光滑平行金属导轨PP′和QQ′,都处于同一水平面内,P和Q之间连接一电阻R,整个装置处于竖直向下的匀强磁场中.现在垂直于导轨放置一根导体棒MN,用一水平向右的力F拉动导体棒MN,以下关于导体棒MN中感应电流方向和它所受安培力的方向的说法正确的是 ( )图7A.感应电流方向是N→MB.感应电流方向是M→NC.安培力水平向左D.安培力水平向右答案AC解析由右手定则知,MN中感应电流方向是N→M,A正确,再由左手定则可知,MN所受安培力方向垂直导体棒水平向左,C正确,故选A、C.4.如图8所示,匀强磁场与圆形导体环平面垂直,导体ef与环接触良好,当ef向右匀速运动时( )图8A.圆环中磁通量不变,环上无感应电流产生B.整个环中有顺时针方向的电流C.整个环中有逆时针方向的电流D.环的右侧有逆时针方向的电流,环的左侧有顺时针方向的电流答案 D解析由右手定则知ef上的电流由e→f,故右侧的电流方向为逆时针,左侧的电流方向为顺时针,选D.一、选择题1.根据楞次定律可知,感应电流的磁场一定是 ( )A.与引起感应电流的磁场反向B.阻止引起感应电流的原磁通量的变化C.阻碍引起感应电流的原磁通量的变化D.使电路磁通量为零答案 C解析由楞次定律可知,感应电流的磁场总是阻碍引起它的原磁通量的变化.具体来说就是“增反减同”.因此C正确.2. 如图1所示,在一水平、固定的闭合导体圆环上方,有一条形磁铁(N极朝上,S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触.关于圆环中感应电流的方向(从上向下看),下列说法正确的是( )图1A.总是顺时针B.总是逆时针C.先顺时针后逆时针D.先逆时针后顺时针答案 C3.如图2所示,CDEF是一个矩形金属框,当导体棒AB向右移动时,回路中会产生感应电流,则下列说法中正确的是( )图2A.导体棒中的电流方向由B→AB.电流表A1中的电流方向由F→EC.电流表A 1中的电流方向由E→FD.电流表A2中的电流方向由D→C答案 B解析根据右手定则,电源内部电流方向为A到B,所以电流表A1中的电流方向由F→E,A、C错,B对.同理电流表A2中的电流方向由C→D,D错.4. 如图3所示,一对大磁极,中间处可视为匀强磁场,上、下边缘处为非匀强磁场,一矩形导线框abcd保持水平,从两磁极间中心上方某处开始下落,并穿过磁场,则( )图3A.线框中有感应电流,方向是先a→b→c→d→a后d→c→b→a→dB.线框中有感应电流,方向是先d→c→b→a→d后a→b→c→d→aC.受磁场力的作用,线框要发生转动D.线框中始终没有感应电流答案 D解析由于线框从两极间中心上方某处开始下落,根据对称性知,下落过程中穿过线框abcd 的磁通量始终是零,没有变化,所以始终没有感应电流,因此不会受磁场力的作用.故选项D 正确.5.(2015·嘉兴高二期末)(多选)如图4所示,当磁铁运动时,电路上会产生由A经R到B的电流,则磁铁的运动可能是( )图4A.向下运动B.向上运动C.向左平移D.以上都不可能答案BC解析由安培定则知感应电流在线圈中产生的磁场与磁铁磁场方向相同,由楞次定律知螺线管内的磁通量是减少的,选项B、C会引起上述变化,故B、C正确.6. 1931年,英国物理学家狄拉克曾经从理论上预言:存在只有一个磁极的粒子,即“磁单极子”.1982年,美国物理学家卡布莱拉设计了一个寻找磁单极子的实验.他设想,如果一个只有N极的磁单极子从上向下穿过如图5所示的超导线圈,那么,从上向下看,超导线圈上将出现( )图5A.先顺时针方向,后逆时针方向的感应电流B.先逆时针方向,后顺时针方向的感应电流C.顺时针方向持续流动的感应电流D.逆时针方向持续流动的感应电流答案 D解析N极磁单极子从上向下通过时,穿过线圈的磁通量先向下增加,接着突变为向上减少.故由楞次定律知,感应电流的磁场一直向上,故电流始终为逆时针.7.(2015·绍兴上虞高二检测)(多选)如图6所示,相距较近的a、b线圈,要使b线圈中产生图示I方向的电流,可采用的办法有( )图6A.闭合S瞬间B.S闭合后把R的滑动片向右移动C.闭合S后把a中铁芯从左边抽出D.闭合S后把b向a靠近答案AD解析闭合开关,b中的磁场从无到有,根据楞次定律,b中的感应电流方向与图示相同,A 正确;闭合开关S后,把R的滑片右移,b中的磁场方向从左向右,且在减小,根据楞次定律,b中的感应电流方向与图示相反,B错误;闭合开关S后,将a中的铁芯从左边抽出,b中的磁场方向从左向右,且在减小,根据楞次定律,b中的感应电流方向与图示相反,C错误;闭合开关,将b靠近a,b中的磁场方向从左向右,且在增强,根据楞次定律,b中的感应电流方向与图示相同,D正确.8.(多选)如图7所示,通电直导线L和平行直导线放置的闭合导体框abcd,当通电导线L运动时,以下说法正确的是 ( )图7A.当导线L向左平移时,导体框abcd中感应电流的方向为abcdaB.当导线L向左平移时,导体框abcd中感应电流的方向为adcbaC.当导线L向右平移时(未到达ad),导体框abcd中感应电流的方向为abcdaD.当导线L向右平移时(未到达ad),导体框abcd中感应电流的方向为adcba答案AD解析当导线L向左平移时,闭合导体框abcd中磁场减弱,磁通量减少,abcd回路中产生的感应电流的磁场将阻碍原磁通量的减少,由于导线L在导体框abcd中磁场方向垂直纸面向里,所以abcd中感应电流的磁场方向应为垂直纸面向里,由安培定则可知感应电流的方向为abcda,选项A正确;当导线L向右平移时(未到达ad),闭合导体框abcd中磁场增强,磁通量增加,abcd回路中产生的感应电流的磁场将阻碍原磁通量的增加,可知感应电流的磁场为垂直纸面向外,再由安培定则可知感应电流的方向为adcba,选项D正确.9. (多选)如图8所示,导体棒AB、CD可在水平轨道上自由滑动,当导体棒AB向左移动时( )图8A.AB中感应电流的方向为A到BB.AB中感应电流的方向为B到AC.CD向左移动D.CD向右移动答案AD解析由右手定则可判断AB中感应电流方向为A→B,CD中电流方向为C→D,由左手定则可判定CD受到向右的安培力作用而向右运动.10.(多选)如图9所示,AOC是光滑的金属轨道,AO沿竖直方向,OC沿水平方向,PQ是一根金属直杆立在轨道上,直杆从图示位置由静止开始在重力作用下运动,运动过程中Q端始终在OC上,空间存在着垂直纸面向外的匀强磁场,则在杆PQ滑动的过程中,下列判断正确的是( )图9A.感应电流的方向始终是P→QB.感应电流的方向先是由P→Q,后是由Q→PC.PQ受磁场力的方向垂直于杆向左D.PQ受磁场力的方向先垂直于杆向左,后垂直于杆向右答案BD解析在杆PQ滑动的过程中,杆与导轨所围成的三角形面积先增大后减小,三角形POQ内的磁通量先增大后减小,由楞次定律可判断B项对,A项错.再由PQ中电流方向及左手定则可判断C项错误,D项正确.二、非选择题11.如图10所示,试探究在以下四种情况中小磁针N极的偏转方向.图10(1)开关S闭合时.(2)开关S闭合后.(3)开关S闭合后,调节滑动变阻器使电流增强.(4)开关S断开时.答案见解析解析开关S闭合时,左边线圈的电流及磁场情况和穿过右边线圈磁通量方向如图所示.(1)S闭合时,穿过右边线圈的磁通量Φ增加,由楞次定律可知,感应电流b→a,再由安培定则可知,N极指向垂直纸面向外的方向.(2)S闭合后,穿过右边线圈的磁通量Φ不变,不产生感应电流,小磁针不偏转.(3)此种情况同(1)现象相同,即N极指向垂直纸面向外的方向.(4)此种情况与(1)现象相反,即N极指向垂直纸面向里的方向.。
电磁感应现象楞次定律教案考情分析本章是高考的必考内容,在历年高考中所占分值较高,本章内容单独考查时以选择题为主,涉及综合问题时以计算题为主。
重要考点1.电磁感应现象(Ⅰ)2.磁通量(Ⅰ)3.法拉第电磁感应定律(Ⅱ)4.楞次定律(Ⅱ)5.自感、涡流(Ⅰ)考点解读1.应用楞次定律和右手定则判断感应电流的方向。
2.法拉第电磁感应定律的应用。
3.结合各种图像(如Φ-t图像、B-t图像和i-t图像),考查感应电流的产生条件及其方向的判定,以及感应电动势的计算等。
4.电磁感应与磁场、电路、力学等知识的综合应用,特别是在实际问题中的应用。
5.自感现象和涡流现象在生活和生产中的应用。
第1讲电磁感应现象楞次定律知识点磁通量Ⅰ1.磁通量(1)定义:匀强磁场中,磁感应强度(B)与01垂直磁场方向的面积(S)的乘积叫作穿过这个面积的磁通量,简称磁通。
我们可以用穿过这一面积的磁感线条数的多少来形象地理解。
(2)公式:02Φ=BS。
(3)公式的适用条件:①匀强磁场;②S是03垂直磁场方向的有效面积。
(4)单位:韦伯(Wb),1 Wb=041_T·m2。
(5)标量性:磁通量是05标量,但有正负之分。
磁通量的正负是这样规定的:任何一个平面都有正、反两面,若规定磁感线06从正面穿出时磁通量为正,则磁感线07从反面穿出时磁通量为负。
2.磁通量的变化量在某个过程中,穿过某个平面的磁通量的变化量等于08末磁通量Φ2与初磁通量Φ1的差值,即ΔΦ=Φ2-Φ1。
3.磁通量的变化率(磁通量的变化快慢)磁通量的变化量与发生此变化所用时间的09比值,即ΔΦ。
Δt知识点电磁感应现象Ⅰ1.电磁感应现象与感应电流01磁生电”的现象叫电磁感应,产生的电流叫作感应电流。
2.产生感应电流的条件02闭合导体回路的03磁通量发生变化时,04闭合导体回路中就产生感应电流。
3.电磁感应现象的两种典型情况(1)05切割磁感线运动。
(2)06发生变化。
4.电磁感应现象的实质电磁感应现象的实质是产生07感应电动势,如果导体回路闭合则产生08感应电流;如果导体回路不闭合,则只产生09感应电动势,而不产生10感应电流。
第九章电磁感应第1课时电磁感应现象楞次定律【考纲解读】1.知道电磁感应现象产生的条件2理解磁通量及磁通量变化的含义,并能计算.3.掌握楞次定律和右手定则的应用,并能判断感应电流的方向及相关导体的运动方向.考点一电磁感应现象的判断1 .磁通量(1)定义:在匀强磁场中,磁感应强度B与垂直于磁场方向的面积的乘积.⑵公式:①二______ .适用条件:①匀强磁场.②S为垂直磁场的______ .面积.(3)磁通量是_____ .(4)磁通量的意义:①磁通量可以理解为穿过某一面积的磁感线的条数.②同一线圈平面,当它跟磁场方向垂直时,磁通量________ ;当它跟磁场方向平行时,磁通量为___ ;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为____ •2.电磁感应现象⑴ 电磁感应现象:当穿过闭合导体回路的磁通量发生_________ 时,闭合导体回路中有___ 产生,这种利用磁场产生电流的现象叫做电磁感应.⑵产生感应电流的条件:穿过闭合回路的_________ 发生变化.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的__________ 生变化,线圈中就有感应电动势产生.(3)电磁感应现象中的能量转化:发生电磁感应现象时,机械能或其他形式的能转化为—,该过程遵循能量守恒定律.【例1】如图1所示,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由I 平移到U,第二次将金属框绕cd边翻转到U,设先后两次通过金属框的磁通量变化量大小分别为△①1和△①2,则( )Ma dt P l cA.△①1>△①2,两次运动中线框中均有沿adcba方向电流出现B.△①1=△①2,两次运动中线框中均有沿abcda方向电流出现C.△①i<△①2,两次运动中线框中均有沿adcba方向电流出现D.△①i<△①2,两次运动中线框中均有沿abcda方向电流出现【递进题组】1.[磁通量的计算]如图2所示,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现若使矩形框以左边的一仝尸于NBS条边为轴转到竖直的虚线位置,则此过程中磁通量的改变量的大小是()2.[电磁感应现象的判断]现将电池组、滑动变阻器、带铁芯的线圈A、线圈B电流计及开关按如图3所示连接.下列说法中正确的是()B.D.A.开关闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,开关闭合和断开的瞬间,电流计指针均不会偏转C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转3.[电磁感应现象的判断]如图4所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面, 且与竖直方向的夹角为9.在下列各过程中,一定能在轨道回路里产生感应电流的是()A.ab向右运动,同时使9减小B.使磁感应强度B减小,9角同时也减小C.ab向左运动,同时增大磁感应强度BD. ab向右运动,同时增大磁感应强度B和B角(0 °<9 <90° )方法提炼电磁感应现象能否发生的判断流程(1)确定研究的闭合回路.(2)弄清楚回路内的磁场分布,并确定该回路的磁通量①①不变—无感应电流、『回路闭合,有感应电流①变化1~—/L不闭合,无感应电流,但有感应电动势考点二楞次定律的应用1•楞次定律的变化.(1)内容:感应电流的磁场总要______ ■引起感应电流的(2)适用情况:所有的电磁感应现象.2.楞次定律中“阻碍”的含义谁阻碍谁阻碍什么如何阻碍阻碍效果3•楞次定律的使用步骤dt+东是哪一个闭备图5【例2 北半球地磁场的竖直分量向下.如图5所示,在北京某中学实验室的水平桌面上,放置着边长为L的正方形闭合导体线圈abed,线圈的ab边沿南北方向,ad边沿东西方向•下列说法中正确的是()A.若使线圈向东平动,贝U a点的电势比b点的电势高B.若使线圈向北平动,贝U a点的电势比b点的电势低C.若以ab边为轴将线圈向上翻转,则线圈中的感应电流方向为a—bf c—dD.若以ab边为轴将线圈向上翻转,则线圈中的感应电流方向为a—d f c—b【变式题组】4.[楞次定律的应用]如图6所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是( )A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大5.[楞次定律的应用]如图7所示,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕0点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a( )A.顺时针加速旋转 B .顺时针减速旋转C.逆时针加速旋转 D .逆时针减速旋转规律总结楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化一一“增反减同”;(2)阻碍相对运动一一“来拒去留”;(3)使线圈面积有扩大或缩小的趋势---- “增缩减扩”;⑷ 阻碍原电流的变化(自感现象)一一“增反减同”.考点三三定则一定律的综合应用1.三定则一定律的比较2.应用技巧 无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断. “电生磁”或“磁生电”均用右手判断.【例3如图8所示,水平放置的两条光滑轨道上有可自由移动的金属棒 MN MN 勺左边有一如图所示的闭合电路,当 PQ 在一外力的作用下运动时, 向右运动,则PQ 所做的运动可能是()A. 向右加速运动 B •向左加速运动【递进题组】6.[多定则的综合应用]两根相互平行的金属导轨水平放置于图 所示的匀强磁场中,在导轨上接触良好的导体棒 AB 和CD 可以自由滑动. 在外力F 作用下向右运动时,下列说法中正确的是( )PQMN C.向右减速运动D .向左减速运动9 当ABA.导体棒CD内有电流通过,方向是CB.导体棒CD内有电流通过,方向是C—DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向左7.[三定则一定律的综合应用]如图10所示的电路中,若放在水平光滑金属导轨上的ab棒突然向右移动,这可能发生在()图10A.闭合开关S的瞬间B.断开开关S的瞬间C•闭合开关S后,减小滑动变阻器R的阻值时D.闭合开关S后,增大滑动变阻器R的阻值时8.[三定则一定律的综合应用]如图11所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引()图11A.向右做匀速运动B .向左做减速运动C.向右做减速运动D .向右做加速运动规律总结多定则应用的区别多定则应用的关键是抓住因果关系:(1)因电而生磁(I - B)一安培定则;(2)因动而生电(v、B—I)—右手定则;(3)因电而受力(I、B—F安)一左手定则.【高考模拟明确考向】1.(2014 •新课标14)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化2.(2013 •新课标^・19)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用•下列叙述符合史实的是()A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化3 . (2014 •广东• 15)如图12所示,上下开口、内壁光滑的铜管P和塑料管Q 竖直放置.小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块()图12A.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大4.线圈在长直导线电流的磁场中,做如图所示的运动:A向右平动,B向下平动,C绕轴转动(ad边向外转动角度9 < 90° ), D向上平动(D线圈有个缺口), 判断线圈中有感应电流的是()a d a d a J aA B C D5.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、开关相连,如图13所示.线圈上端与电源正极相连,闭合开关的瞬间,铝环A.若保持开关闭合,则铝环不断升高B.若保持开关闭合,则铝环停留在某一高度C.若保持开关闭合,则铝环跳起到某一高度后将回落D.如果电源的正、负极对调,观察到的现象不变在下落过程中, 6.如图14所示,金属环从条形磁铁的正上方由静止开始下降, 下列判断中正确的是()A.金属环在下落过程中机械能守恒B.金属环在下落过程中动能的增加量小于其重力势能的减少量C.金属环的机械能先减小后增大D.磁铁对桌面的压力始终大于其自身的重力。
《楞次定律》教学设计《楞次定律》是电磁学中的重要定律之一,它描述了电磁感应现象以及电磁感应电动势的产生。
这个定律的掌握对于学习电磁学、电路学等课程都非常重要。
本文将针对高中物理教学中的《楞次定律》进行教学设计,以帮助学生理解这个定律的含义和应用。
一、教学目标1. 了解和掌握楞次定律的基本概念和定义;2. 能够理解和运用楞次定律解决给定问题;3. 培养学生的实验探究能力,提高学生的物理实验技能。
二、教学内容2. 电磁感应现象的实验演示;3. 实验探究楞次定律的应用。
三、教学过程(1)铁磁材料在磁场中的磁通量将一个铁磁材料置于磁场中,可以观察到磁针的指向发生变化。
用磁通量Φ表示磁场对铁磁材料的穿透程度。
磁通量和磁场强度之间的关系由磁通量密度B给出,即Φ=BS,其中S为所截面积。
(2)电磁感应现象将一个圆形线圈放在变化的磁场中,就会在线圈中感应出电流。
这个现象被称为电磁感应,其基本原理由楞次定律给出。
(3)楞次定律的表述楞次定律表述为:当一个导体在其内部发生的磁通量发生变化时,该导体内部将感应出方向与该磁通量变化方向相对应的电动势。
(1)实验材料和设备:铁芯、线圈、变压器、电阻、电流表、万用表、滑动变阻器等。
(2)实验操作及数据记录① 将线圈与一个可调的直流电源连接,通过调节电压使得电流按照一定的速度变化。
② 在线圈的周围将铁芯固定好,用万用表测量铁芯上磁通量的变化,记录测量值。
③ 将线圈中感应出的电动势与测量到的铁芯上的磁通量之间的关系进行分析和总结。
① 将线圈绕在铁芯上,将动态电磁系统上的磁铁缓慢地靠近线圈,记录线圈中感应出的电动势和电流表的读数。
③ 分析和总结电动势与磁通量变化之间的关系,验证楞次定律的正确性。
四、教学方法1. 归纳法:根据实验数据,归纳总结楞次定律的表述和应用。
2. 实验演示法:通过实验演示,让学生亲自操作并感受电磁感应现象的存在,帮助学生从直观上理解楞次定律的原理。
3. 辅助图像法:使用丰富的图像和动画,帮助学生更好地理解和记忆楞次定律。
第2章楞次定律和自感现象楞次定律和自感现象一、对楞次定律的理解和应用1.感应电流的磁场总要阻碍引起感应电流的磁通量的变化.感应电流的磁场方向不一定与原磁场方向相反,只在磁通量增加时两者才相反,而在磁通量减少时两者同向,即“增反减同”.2.“阻碍”并不是“阻止”,而是“延缓”,回路中的磁通量变化的趋势不变,只不过变化得慢了.3.“阻碍”的表现:增反减同、来拒去留、增缩减扩、增离减靠.例1圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图1所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是( )图1A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力将增大答案 D解析通过螺线管b的电流如图所示,根据右手螺旋定则判断出螺线管b所产生的磁场方向竖直向下,滑片P向下滑动,接入电路的电阻减小,电流增大,所产生的磁场的磁感应强度增强,根据楞次定律可知,a线圈中感应电流产生的磁场方向竖直向上,再由右手螺旋定则可得线圈a中的电流方向为俯视逆时针方向,A错误;由于螺线管b中的电流增大,所产生的磁感应强度增强,线圈a中的磁通量应变大,B错误;根据楞次定律可知,线圈a将阻碍磁通量的增大,因此,线圈a有缩小的趋势,线圈a对水平桌面的压力增大,C错误,D正确.二、电磁感应中的图象问题1.电磁感应中的图象问题有两种:一是给出电磁感应过程,选出或画出正确图象;二是由给定的有关图象分析电磁感应过程,求解相应物理量.2.基本思路:(1)利用法拉第电磁感应定律或切割公式计算感应电动势大小;(2)利用楞次定律或右手定则判定感应电流的方向;(3)写出相关的函数关系式分析或画出图象.例2(2016·云南第一次检测)如图2甲所示,线圈ABCD固定于匀强磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈AB边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是选项中的( )图2答案 D解析 由安培力向右知电流方向为顺时针,由楞次定律知磁场增强,C 错;由乙图知安培力不变,根据F =BIL 知,B 增大,I 必减小,即电动势减小,故B 的变化率减小,因此A 、B 错,D 正确.三、电磁感应中的电路问题1.首先要明确电源,分清内、外电路.磁场中磁通量变化的线圈或切割磁感线的导体相当于电源,该部分导体的电阻相当于内电阻;而其余部分的电路则是外电路.2.路端电压、感应电动势和某段导体两端的电压三者的区别:(1)某段导体不作为电源时,它两端的电压等于电流与其电阻的乘积;(2)某段导体作为电源时,它两端的电压就是路端电压,U 外=IR 外或U 外=E -Ir ;(3)某段导体作为电源,电路断路时导体两端的电压等于感应电动势.例3 如图3甲所示,在水平面上固定有长为L =2 m 、宽为d =1 m 的金属U 形导轨,在U 形导轨右侧l =0.5 m 范围内存在垂直于纸面向里的匀强磁场,且磁感应强度随时间的变化规律如图乙所示.在t =0时刻,质量为m =0.1 kg 的导体棒以v 0=1 m/s 的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1 Ω/m ,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g =10 m/s 2).图3(1)通过计算分析4 s 内导体棒的运动情况;(2)计算4 s 内回路中电流的大小,并判断电流方向;(3)计算4 s 内回路产生的焦耳热.答案 (1)导体棒在第1 s 内做匀减速运动,在1 s 后一直保持静止(2)0~2 s 内I =0,2~4 s 内I =0.2 A ,电流方向是顺时针方向(3)0.04 J解析 (1)导体棒先在无磁场区域做匀减速运动,有-μmg =ma ,v t =v 0+at ,x =v 0t +12at 2,导体棒速度减为零时,v t =0,代入数据解得:t =1 s ,x =0.5 m ,导体棒没有进入磁场区域.导体棒在1 s 末已经停止运动,以后一直保持静止.(2)前2 s 磁通量不变,回路电动势和电流分别为E =0,I =0,后2 s 回路产生的电动势为E =ΔΦΔt =ld ΔB Δt=0.1 V , 回路的总长度为5 m ,因此回路的总电阻为R =5λ=0.5 Ω,电流为I =E R=0.2 A ,根据楞次定律,在回路中的电流方向是顺时针方向.(3)前2 s 电流为零,后2 s 有恒定电流,电热Q =I 2Rt ′=0.04 J.四、电磁感应中的动力学问题解决此类问题的一般思路是:先由法拉第电磁感应定律求感应电动势,然后根据闭合电路欧姆定律求感应电流,再求出安培力,再后依照力学问题的处理方法进行,如进行受力情况分析、运动情况分析.流程为:导体切割磁感线产生感应电动势→感应电流→电流受到安培力→合外力变化→加速度变化→速度变化→感应电动势变化.周而复始循环,最终加速度等于零,导体达到稳定运动状态.例4 U 形金属导轨abcd 原来静止放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc 等长的金属棒PQ 平行bc 放在导轨上,棒左边靠着绝缘的固定竖直立柱e 、f .已知磁感应强度B =0.8T ,导轨质量M =2kg.其中bc 段长0.5m ,bc 段电阻R =0.4Ω,其余部分电阻不计;金属棒PQ 质量m =0.6kg 、电阻r =0.2Ω、与导轨间的动摩擦因数μ=0.2.若向导轨施加方向向左、大小为F =2N 的水平拉力,如图4所示.求导轨的最大加速度、最大电流和最大速度(设导轨足够长,g 取10m/s 2).图4答案 0.4m/s 22 A3 m/s解析 导轨受到PQ 棒水平向右的摩擦力f =μmg ,根据牛顿第二定律并整理得F -μmg -F 安=Ma ,刚拉动导轨时,I 感=0,安培力为零,导轨有最大加速度a m =F -μmg M =2-0.2×0.6×102m/s 2=0.4 m/s 2. 随着导轨速度的增大,感应电流增大,加速度减小,当a =0时,速度最大.设速度最大值为v m ,电流最大值为I m ,此时导轨受到向右的安培力F 安=BI m LF -μmg -BI m L =0I m =F -μmg BL代入数据得I m =2-0.2×0.6×100.8×0.5A =2A I =E R +rI m =BLv m R +r解得v m =I m (R +r )BL =2×(0.2+0.4)0.8×0.5m/s =3 m/s. 五、电磁感应中的能量问题1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.(2)若电流变化,则:①利用克服安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.例5 如图5所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω 的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2,问:图5(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.答案 (1)由a 流向b (2)5 m/s (3)1.3 J解析 (1)根据右手定则判知cd 中电流方向由d 流向c ,故ab 中电流方向由a 流向b .(2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大摩擦力,设其为F max ,有F max =m 1g sin θ①设ab 刚好要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BLv ②设电路中的感应电流为I ,由闭合电路欧姆定律有I =ER 1+R 2③设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤联立①②③④⑤式,代入数据解得:v =5 m/s ⑥(3)设cd 棒的运动过程中电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2⑦由串联电路规律有Q =R 1R 1+R 2Q 总⑧联立解得:Q =1.3 J ⑨。
专题七 电磁感应与电路楞次定律及图像问题班别 姓名 学号【例1】如图所示,两个相同的闭合铝环M 、N 套在一根光滑的绝缘水平杆上,螺线管的轴线与铝环的圆心在同一直线上,闭合开关S 后,向左快速移动滑动变阻器的滑片P ,不考虑两环间的相互作用力,则在移动滑片P 的过程中( )A .M 、N 环向左运动,它们之间的距离增大B .M 、N 环向左运动,它们之间的距离减小C .M 、N 环向右运动,它们之间的距离增大D .M 、N 环向右运动,它们之间的距离减小答案 C解析 当滑动变阻器的滑片向左移动时,通过螺线管两端的电压变小,螺线管中的电流变小,螺线管内部、外部的磁场均减小,穿过M 、N 两金属环的水平向右的磁通量减小,根据楞次定律,可知向右运动可以阻碍穿过线圈的磁通量减小,所以环将向右运动;结合条形磁铁的特点可知,靠近通电螺线管的N 处的磁感应强度比较大,所以N 环受到的安培力比较大,加速度比较大,所以两环之间的距离将增大.【变式训练1】如图所示,用一条横截面积为S 的硬导线做成一个边长为L 的正方形,把正方形的一半固定在均匀增大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小随时间的变化率ΔB Δt=k (k >0),虚线ab 与正方形的一条对角线重合,导线的电阻率为ρ.则下列说法正确的是( )A.线框中产生顺时针方向的感应电流B.线框具有扩张的趋势C.若某时刻的磁感应强度为B ,则线框受到的安培力为2kBL 2S 8ρD.线框中ab 两点间的电势差大小为kL 22答案 C解析 根据楞次定律,线框中产生的感应电流方向沿逆时针方向,故A 错误;B 增大,穿过线框的磁通量增大,根据楞次定律,感应电流的磁场为了阻碍磁通量的增加,线框有收缩的趋势,故B 错误;由法拉第电磁感应定律得:E =ΔΦΔt =ΔB Δt S =ΔB Δt ·12L 2=12kL 2, 因线框电阻R =ρ4L S ,那么感应电流大小为I =E R =kSL 8ρ,则线框受到的安培力为:F =BI ×2L =2kBL 2S 8ρ,故C 正确;由上分析,可知,ab 两点间的电势差大小U =12E =14kL 2,故D 错误.【变式训练2】如图甲所示,一能承受最大拉力为16N 的轻绳吊着一质量为m=0.8kg 、边长为的正方形线圈ABCD.已知线圈总电阻为R=0.5Ω,在线圈上半部分布着垂直于线圈平面向里、大小随时间变化的磁场,如图乙所示,已知t 0时刻轻绳刚好被拉断,取g=10m/s 2.求:(1) 在轻绳被拉断前线圈中感应电动势的大小及感应电流的方向.(2) t=0时AB 边受到的安培力的大小.(3) t 0 的大小.甲 乙解析:(1) 由电磁感应定律可知 E=ΔΔB t S=ΔΔB t ·22L =1×22 V=1V.由楞次定律知电流方向为逆时针方向.(2) 由闭合电路欧姆定律知回路中的电流 I=ER =2A.AB 边受到安培力F=BIL=1×2(3) 当轻绳刚被拉断时受力如图所示,2F'cos45°+mg=T ,解得由F'=B'IL 得B'='F IL =2T.由图知t 0=1s.【例2】(多选)如图6所示,abcd 为用粗细均匀的同种材料制成的金属线框,其中ab 的长度只有bc 长度的一半.现将线框放在水平光滑绝缘的桌面上,在外力F 的作用下让线框以速度v 匀速穿过右边两个磁感应强度大小相等、方向相反的磁场区域.若以图示位置开始计时,规定逆时针电流方向为正,磁感线向下穿过线框时的磁通量为正.则下列关于回路电流i 、外力F 大小、cb 间的电势差U cb 及穿过线框的磁通量Φ随时间变化的图象正确的是( )图6解析当线框进入第一个磁场时,由右手定则知电流方向为逆时针,开始进入第二个磁场时,电流方向为顺时针,出第二个磁场,电流方向为逆时针,故A错误;由E=Bl v可知,E保持不变,而开始进入第二个磁场时,两端同时切割磁感线,电动势应为2BL v,电流加倍,故每根导体棒受到安培力加倍,则F=2F安,将变为原来2倍,故B正确;根据U=IR和电流方向知刚进入磁场和出磁场时电压相等,b点电势高,故U cb为负,两边同时切割磁感线时c点电势高,且c、b两点之间的电压为原来的2倍,故C正确;当线框开始进入磁场,磁通量开始增加,当全部进入时达到最大;此后向外的磁通量增加,总磁通量减小;当运动1.5L时,磁通量最小为零,故D错误.答案BC【变式训练3】(多选)如图6甲所示,在水平面上固定宽d=1 m的金属“U”型导轨,右端接一定值电阻R=0.5 Ω,其余电阻不计.在“U”型导轨右侧a=0.5 m的范围存在垂直纸面向里的匀强磁场,磁感应强度随时间变化的规律如图乙所示.在t=0时刻,质量m=0.1 kg 的导体棒以v0=1 m/s的初速度从距导轨右端b=2 m开始向右运动,导体棒与导轨之间的动摩擦因数μ=0.1,不计地球磁场的影响,g=10 m/s2.用E、I、P、Q分别表示4 s内回路中的电动势大小、电流大小、电功率及电热,则下列图象正确的是()图6答案AB解析因为在进入磁场前回路中没有电流产生,并且0~2 s内磁感应强度不变化,回路的磁通量不变化,没有感应电动势产生,故不会从t=0时刻就产生电热,D错误;在进入磁场前导体棒做匀减速直线运动,加速度为a=μmgm=μg=1 m/s2,导体棒速度减小到零所需的时间为t′=v0a =1 s,停止前发生的位移为x=v22a=0.5 m,所以在进入磁场前导体棒就已经停止运动,所以回路中的感应电流是因为磁感应强度发生变化产生的,在t=2 s时,磁感应强度发生变化,产生感应电动势,有了感应电流,根据法拉第电磁感应定律可得E =ΔΦΔt =ΔBS Δt=ΔBad Δt =0.1 V ,感应电流I =E R=0.2 A ,过程中的电功率为P =EI =0.02 W(但是是从t =2 s 才开始有的),故A 、B 正确,C 错误.【巩固训练】:1.如图所示,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab且相互绝缘.当MN 中电流突然减小时,线圈所受安培力的合力方向( )A. 向左B. 向右C. 垂直纸面向外D. 垂直纸面向里2.如图所示,水平放置的平行金属导轨MN 和PQ 之间接有定值电阻R ,导体棒ab 长为l 且与导轨接触良好,整个装置处于竖直向上的匀强磁场中.现使导体棒ab 匀速向右运动,下列说法中正确的是( )A. 导体棒ab 两端的感应电动势越来越小B. 导体棒ab 中的感应电流方向是a →bC. 导体棒ab 所受安培力方向水平向右D. 导体棒ab 所受合力为零3.矩形导线框abcd 放在匀强磁场中静止不动,磁场方向与线圈平面垂直,磁感应强度B 随时间t 变化的图象如下图甲所示.设t=0时刻,磁感应强度的方向垂直纸面向里,则在0~4s 时间内,图乙中能正确反映线框ab 边所受的安培力随时间t 变化的图象(规定ab 边所受的安培力向左为正)是( )甲A B C D5.(2013·全国卷Ⅱ)如图,在光滑水平桌面上有一边长为L 、电阻为R的正方形导线框;在导线框右侧有一宽度为d (d >L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下。
导线框以某一初速度向右运动。
t =0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。
下列v -t图像中,可能正确描述上述过程的是()解析:选D由于导线框闭合,导线框以某一初速度向右运动,其右侧边开始进入磁场时,切割磁感线产生感应电动势和感应电流,右侧边受到安培力作用,做减速运动;导线框完全进入磁场中时,导线框中磁通量不变,不产生感应电流,导线框不受安培力作用,做匀速运动;导线框右侧边开始出磁场时,左侧边切割磁感线产生感应电动势和感应电流,左侧边受到安培力作用,导线框做减速运动;导线框进、出磁场区域时,受到的安培力不断减小,导线框的加速度不断减小,所以可能正确描述导线框运动过程的速度图像是D。
6.(2012·全国卷)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。
已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。
设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是()解析:选A依题意,线框中感应电流方向总是沿顺时针方向,由于线框受到的安培力中左边框受力较大,故以左边框受力为主,由左手定则可知直线电流方向向上时,线框受到向左的安培力,直线电流方向向下时,线框受到向右的安培力,由题意导线中的电流应先为正后为负,故A对。
4.(多选)如图5所示,在0≤x≤L和2L≤x≤3L的区域内存在着匀强磁场,磁场的方向垂直于xOy平面(纸面)向里,具有一定电阻的正方形线框abcd边长为2L,位于xOy平面内,线框的ab边与y轴重合.令线框从t=0时刻由静止开始沿x轴正方向做匀加速直线运动,则线框中的感应电流i(取逆时针方向的电流为正)、bc两端电势差U bc随时间t的函数图象大致是下图中的()图5答案 AC解析 设线框ab 从x =L 运动到x =4L 的时间为t 1,则由运动学公式得t 1= 2×4L a -t 0=2t 0-t 0=t 0,这段时间内穿过线框的磁通量不变,没有感应电流.故B 错误.设线框ab 从x =4L 运动到x =5L 的时间为t 2,则由运动学公式得t 2= 2×5L a - 2×4L a t 0=5t 0-2t 0=0.236t 0的时间内,根据楞次定律得,感应电流方向沿顺时针方向,为负值.感应电流为I=-BL v R =-BLat R,故A 正确.bc 两端电势差U bc =IR ,bc 为外电路,故电势差变化和电流变化相同,C 正确,D 错误.。