齿轮受力分析
- 格式:doc
- 大小:234.00 KB
- 文档页数:7
齿轮受力综合分析齿轮是一种常用的机械传动元件,主要用于将一个轴上的动力或运动传递给另一个轴。
齿轮的工作原理是利用两个齿轮之间的啮合来传递动力和转矩,因此齿轮的强度和刚度是十分重要的。
齿轮传动在使用的过程中,由于外界的作用,会受到不同方向的力和力矩的作用,因此齿轮在设计时需要考虑各种力和力矩的综合作用。
齿轮的受力综合分析就是针对齿轮在使用过程中受到的各种力和力矩进行分析和计算,以确保齿轮能够安全、稳定地工作。
下面将介绍齿轮受力综合分析中需要考虑的各种因素。
1. 齿轮轴向力对于两个相啮合的齿轮,轴向力是沿着齿轮轴线方向上的力。
轴向力的大小和方向取决于齿轮在传递动力时所受的载荷和加速度,以及齿轮位置和啮合角度等因素。
一般情况下,齿轮所受的轴向力都会导致轴承的不必要负荷,因此在设计和制造齿轮时需要考虑这一因素。
齿轮切向力是指沿齿轮齿向方向的力,它与齿轮的强度和刚度密切相关。
齿轮工作时,由于啮合处的弯曲应力和拉伸应力的作用,会产生齿面接触处的切向力,这对齿轮的耐磨性和稳定性都有很大的影响。
因此,在设计齿轮时需要根据切向力的大小和方向制定相应的强度和刚度要求。
3. 齿轮弯曲应力齿轮在工作时会产生弯曲应力,主要集中在齿根和齿尖处。
由于齿轮的齿根处和齿谷处是应力集中部位,因此设计时需要特别注意这些位置的强度和刚度。
4. 齿轮振动齿轮振动是指齿轮在工作时由于啮合错位或不平衡造成的振动。
振动会导致齿面磨损加剧,甚至引起齿面的破坏。
因此在设计齿轮时需要考虑振动的影响,采取相应的措施进行消除或控制。
综合以上因素,在设计齿轮时需要根据所要传递的动力和转矩大小、啮合角度、齿数等因素,结合材料强度和制造工艺等因素进行综合分析和计算,以确保齿轮能够在安全、稳定的工作状态下工作。
齿轮传动受力分析(补)齿轮传动受力分析是传动机械设计过程中必不可少且重要的步骤。
齿轮传动特性决定了齿轮各种受力状态。
任何一个受力状态下的齿轮都会受到外界不同形式的受力作用,需要进行受力分析和识别各种受力的作用,从而工程设计者可以依据受力状况来判断齿轮的强度和承载能力是否能满足工程使用的要求。
齿轮传动的受力的来源主要有内外力扭矩、载荷再力和热膨胀压力三种。
其中,内外力扭矩和载荷再力是决定齿轮受力状况的两个因素。
内力扭矩是齿轮传动系统中必经因素,是齿轮受力的主要来源。
外力扭矩是指齿轮系统外部的动力源,例如异步电动机的初始动力,将直接作用于齿轮上,驱动旋转,使齿轮系统具有传动功能,而载荷再力是通过齿轮传动上的运动物体产生的受力,例如,当齿轮的轴线上的传动装置传动一个重物时,重物给予齿轮系统以反作用力,使其受到这个重物所施加的载荷再力。
此外,热膨胀压力也是齿轮受力来源之一,热膨胀压力是当齿轮传动系统受到持续长时间驱动和加热影响时,齿轮系统因热变形而产生的受力。
由于热膨胀受力和内外力扭矩和载荷再力之间关系复杂,齿轮传动受力分析时,必须考虑热膨胀受力的影响。
齿轮传动的受力分析主要由齿轮系统运动力学理论、齿轮系统在减速机体系中的动力学性能和齿轮系统动力传动时的受力情况组成。
其中,齿轮系统的运动力学理论多以实体力学分析为基础,包括齿轮系统运动原理、摩擦噪声分析、齿轮传动效率分析、参考齿轮受力学分析等方面,来对齿轮受力情况进行研究和分析,以便更好地掌握齿轮传动系统的受力情况,设计更高效的齿轮传动系统。
此外,现代数字技术的发展带给了齿轮传动系统更多的受力分析工具,比如数字动力学分析可以准确地模拟和研究齿轮传动系统受力情况,使齿轮系统的模型设计和优化更加容易。
另外,还可以做台架试验以评估齿轮传动实际状况,从而更好地控制齿轮传动系统受力情况并保证高效率传动性能。
总之,齿轮传动受力分析是传动机械设计过程中必不可少的一环,根据齿轮的受力状况,及时采取有效措施可以较好地分析研究和控制齿轮传动系统,以提高齿轮传动性能和实现高效率传动,从而保证工程使用的需求。
齿轮传动的受力分析齿轮传动是一种常见的机械传动方式,其主要特点在于能够有效地将输入轴的旋转速度转换为输出轴的旋转速度,并将旋转力矩进行传递。
齿轮传动具有传递功率大、传动效率高、运转平稳、使用寿命长等优点,广泛应用于机械制造领域。
齿轮传动的受力分析是研究齿轮传动力学特性的重要内容,这主要涉及到力矩传递、载荷分配、齿面接触等方面的问题。
以下将简要介绍齿轮传动的受力分析过程。
一、齿轮传动的力矩传递在齿轮传动中,力矩是通过齿轮齿面间的接触传递的。
因此,在进行齿轮传动的受力分析时,需要先求出齿轮的齿面接触力,从而确定齿轮传递的力矩。
齿轮齿面间的接触力主要由两部分组成:正向接触力和切向接触力。
正向接触力是指沿着齿轮轴向方向的力,主要用于传递齿轮的轴向载荷;切向接触力是指垂直于齿轮轴向方向的力,主要用于传递齿轮的扭矩。
在齿轮传动的受力分析中,通常采用Hertz接触理论来求解齿轮齿面间的接触力。
Hertz接触理论认为,在齿轮齿面间的接触区域内,应力分布呈现出一个类似于椭圆形的曲面。
根据该曲面的形状和大小,可以计算出齿轮齿面间的接触应力和接触面积。
一般来说,齿轮齿面间的接触应力越大,接触面积越小,齿轮的寿命就越短。
二、齿轮传动的载荷分配在齿轮传动中,不同的齿轮会承受不同的载荷,其原因主要是由于齿轮的尺寸、材料、齿形等不同。
因此,在进行齿轮传动的受力分析时,需要对齿轮的载荷分配进行研究。
齿轮载荷分配的主要方法有两种:按齿数配载法和按力配载法。
按齿数配载法是指根据齿轮的齿数比例来确定齿轮的载荷分配,这种方法简单、实用,但往往不能考虑到齿轮的实际情况。
按力配载法是指根据齿轮的载荷情况来计算其分配比例,这种方法更为精确,但需要进行较复杂的数学计算。
三、齿轮传动的齿面接触齿面接触是齿轮传动中的一个重要问题,直接影响到齿轮的使用寿命和传动效率。
在齿轮传动的受力分析中,需要关注齿面接触区域的形状、大小、位置等因素,并采取相应的措施来避免齿面接触问题的发生。
作 业
3-1 某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,
9=m ,试求循环次数N 分别为7000,25000,620000次时的有限寿命疲劳极限。
5-6 已知一个托架的边板用6个螺栓与相邻的机架相连接。
托架受一与边板螺栓组的垂直对称轴线相平行、距离为250mm 、大小为60kN 的载荷作用。
现有如图所示的两种螺栓布置形式,设采用铰制孔用螺栓连接,试问哪一种布置形式所用的螺栓直径较小?为什么
分析:螺栓组连接的受力:横向载荷、转矩、轴向、倾覆力矩
N
r m r rN K N N σσσ==0
6-4 校核键的强度时注意键长l是工作长度。
10-1
主动轮
径向力:指向轴心;
周向力:与旋转方向相反
轴向力:
斜齿轮和蜗杆:右手定则或左手定则
锥齿轮:由小端指向大端
从动轮:与主动轮方向相反
10-1(a)
10-1(b)
11-
1
例13.2 一根装有小圆锥齿轮的轴拟用如图13.3(a )所示的支承方案,两支点均选用轻系 列的圆锥滚子轴承。
已知圆锥齿轮平均分度圆半径r m =100mm ,所受圆周力F te =859.5N ,径向力F re =300.7N ,轴向力F ae =86.2N ,载荷较为平稳,轴的转速n=500r/min ,轴颈直径可在28~38mm 范围内选择。
其他尺寸如图所示。
若希望轴承的基本额定寿命能超过60 000h ,试选择合适的轴承型号。
解:(1)计算轴承所受的径向载荷。
做计算简图如图13.3(b )所示,则
N
2.372)5.71(7.300N 5.71300/)7.3001002.86100(300/)100100(N
5.28611465.859N 14615.859300
400
300400V 2r re V 1r re ae V 2r H 1r te H
2r te H 1r =--=-=-=⨯-⨯=
-=-=-=-==⨯==F F F F F F F F F F F
N
3.2955.715.286N 9.12042.372
14612
22V
2r 2
H
2r 2r 22
2V 1r 2H 1r 1r =+=+==+=+=F
F
F F F F
(2)计算轴承的轴向载荷。
初选30206型轴承,查手册得:C r =43.2kN ,Y=1.6,e=0.37。
查教材表13-7得F d =F r /(2Y),则
N
7.462)2.865.3763.92max()max(N 5.376)2.863.925.376max()max(N
3.92)6.12/(3.295)2(N 5.376)6.12/(9.1204)2(ae 1d 2d 2a ae 2d 1d 1a 2r 2d 1r 1d =+=
+==-=
-==⨯===⨯==,,,,F F F F F F F F Y F F Y F F
(3)计算轴承的当量动载荷。
由于载荷平稳,所以取f P =1。
e
F F e F F a a >==<==57.13.2957.46232.09.12045.3762r 21r 1
查教材表13-5得X 1=1,Y 1=0,X 2=0.4,Y 2=Y=1.6。
N
5.858)7.462
6.13.2954.0(1)(N
9.12049.120411)(222r 2p 2111r 1p 1=⨯+⨯⨯=+==⨯⨯=+=a a F Y F X f P F Y F X f P
(4)验算轴承寿命。
由于P 1>P 2,故按P 1验算轴承寿命,由滚动轴承的寿命计算公式
得
h 00060h 87606559.204120043500601060103
1066h >=⎪⎪⎭
⎫
⎝⎛⨯=⎪⎭⎫ ⎝⎛=ε
P C n L
所选轴承寿命满足要求。
附录
例13.3 指出图13.4中的结构错误(在有错误处画○编号,并分析错误原因)。
并在轴心线 下侧画出其正确结构图(齿轮油润滑,轴承脂润滑)。
图13.4
解:正确结构如图13.5所示。
①联轴器周向没有定位。
②齿轮周向没有定位。
③齿轮轴向定位不可靠,与轮毂相配的轴段长度应小于轮毂长。
④转动件联轴器与静止件轴承端盖接触。
⑤转动件轴与静止件轴承端盖接触。
⑥箱体加工面与非加工面没有分开。
⑦端盖没有砂轮越程槽。
⑧端盖端面加工面太大。
⑨轴外伸过长。
⑩轴精加工面过长,装拆轴承不便。
○11因齿轮油润滑,轴承脂润滑,所以轴承内侧需要挡油圈。
○12没有垫片,无法调整轴承游隙。
○13外伸轴端没有密封设施。
○14轴肩过高,无法拆卸轴承。
例15.4请将图15.6中轴系结构有错误及不合理处,用序号标出,并按序号简要说明原因。
解:其错误如下:
(1)轴的右端面应缩进带轮右端面1~2mm且应有轴端挡圈固定带轮;
(2)带轮与轴间应有键联接;
(3)带轮左端面靠轴肩定位,下一段轴径加大;
(4)带轮两个槽中没有线;
(5)取消套筒(若保留套筒对带轮定位也可,那么套筒应穿过透盖顶到轴承内圈右端面);(6)透盖与轴之间应有间隙,且还应有密封毡圈;
(7)应改为喇叭口斜线,用角接触球轴承;
(8)与轮毂配合段轴颈长度应比轮毂长小1~2mm;
(9)轮毂与轴之间应有键联接;
(10)两个轴承端盖与箱体间应有调整垫片;
(11)箱体上端盖接触面之外的外表面应低一些;
(12)轴承端盖外圆外侧应倒角。
轴系结构改正如图15.7轴线上半部分。
[评注] 轴的结构改错问题通常可以从以下几方面考虑:
①轴与轴上零件如齿轮、带轮、联轴器等是否用键(或销、紧钉螺钉等)作周向固定联接,若有多个轴上零件时其键槽是否在同一母线上;
②轮毂长度是否略大于安装轴段的长度;
③轴上零件的(两端)轴向定位如何;
④轴上零件(特别是安装于轴中段的齿轮以及轴颈处的轴承等)是如何装上去的,有无该零件两端的轴段径向尺寸均大于轮毂孔(或轴承内径)而无法装拆问题;
⑤轴承的类型选择和组合是否合理,特别是采用向心推力轴承(角接触球轴承、圆锥滚子轴
承)时应检查是否为成对使用,其内外圈传力点处是否设置有传力件,若两个向心推力轴承在轴的一端安装时,另一端游动支点处的轴承类型是否恰当等;
⑥轴承内圈、外圈的厚度是否高出与之相接触的定位元素的高度;
⑦若两支点的滚动轴承为同型号(如一对向心推力轴承在两端支承),且二者是由轴的一端依次装入时,座孔及轴颈的中段是否设有凹槽部分以利于轴承的装拆(同时可以减少精加工长度);
⑧轴伸出透盖处的有无密封及间隙;
⑨轴承的游隙如何调节;
⑩整个轴系相对于箱体(或机架)轴向位置是否可调(例如使齿轮对在全宽度上啮合,特别是对于圆锥齿轮、蜗轮蜗杆装置)等。
带的基准长度L d、带速v、传动比i对传递功率有什么影响?P155。