潜艇动力装置
- 格式:ppt
- 大小:3.43 MB
- 文档页数:25
军舰动力装置概况-柴油机军舰动力装置概况——柴油机柴油机作为主动力装置在舰艇上得到广泛应用已有50多年历史。
为了提高市场竞争力,世界的柴油机制造厂出现了兼并或联合组成大行业集团,所以目前只有少数几家能制造舰艇高速大功率柴油机。
它们是德国的MTU公司、法国的SEMTPielstick公司、意大利的GMT公司和英国的Paxman公司等。
其中德国的MTU公司的舰艇柴油机,由于系列完整、功率覆盖面广、通用性强、寿命长、低负荷性能好和起动方便等优点而占据世界舰用柴油主机的绝大部分市场,雄居主导地位。
这些年来,除了MTU公司新开发了595系列柴油机和GMT公司在B230.2DVM型柴油机上发展了A250.16HVM型柴油机外,新型高速大功率柴油机发展较平稳,多数是在原来机型的基础上进一步完善提高,扩大用途。
就是说,继承并发展各自的技术特色,进行系列化设计,通过机型变型来扩大用途,如MTU396机废气涡轮增压用于潜艇,396系列机继04型后又推出TE型;595系列机有9种变型机。
PielstickPA4-200型机功率提高后由VG型发展成VGA型,采用复合增压用于潜艇等。
有的发展成长冲程以扩大用途,如GMT公司的B230/BL230、法国S.A.C.M公司的UD45/UD50、Pielstick公司的PA6B-STC等。
舰用高速大功率柴油机由于其应用范围的特殊性和使用条件的限制,使它们的技术难度极大。
一方面要求具有较高转速、大功率、结构紧凑、坚实耐冲击、重量轻、体积小、比功率大、工作可靠并同时保持相应的经济性,使用寿命和维修方便;另一方面在性能上必须机动性好,起动时不冒白烟,运行中不冒黑烟和低工况性能好。
随着柴油机技术的发展,舰用柴油机在性能、可靠性和装舰技术方面已取得明显的进展,单机功率比过去同型机功率提高30%以上,意大利GMTA250.20HVM型机最大功率7750kW,德国MTU-24V1163-93型机最大功率8824kW,法国SEMT-Pielstick20VPA6-280BTS 型机10%超负荷功率可达9705kW。
船舶核动力装置一、背景:1955年4月,世界上第一艘核动力船舶——美国核潜艇“舡鱼“号正式编队下水服役。
为了建造者艘核潜艇的动力装置,美国提前5年在艾德华州兴建了陆上模式堆,这就是世界上第一个核动力装置。
从那时起到现在的近50年时间里,世界上先后有近十个国家的约470多艘采用核动力推进的潜艇、水面舰艇、客货商船、矿砂船、破冰船等相继游弋在宽阔的海洋上了。
事实充分说明,船舶在使用核动力装置以后,船舶推进能源就又进入了一个崭新的阶段。
可以肯定,随着核能事业的发展,大规模建造核动力舰船,将会成为有关各国造船业今后十分关注的发展方向。
过去的两个多世纪,由于人类掌握了利用煤、石油等化石燃料产生动力的技术,使人们摆脱了单纯依靠人力、畜力进行劳动的困境,推动了社会生产突飞猛进的发展。
与有限的化学能源相比较,核能将会成为人类的一个全新的、蕴藏量更为丰富的动力资源,它必将有力地推动社会生产力的发展。
二、基本介绍:核动力装置以原子核裂变能作为产生推进动力的能源。
它包括核反应堆、为产生功率推动船舶前进所必需的有关设备以及为提供装置正常运行,保证对人员健康和安全不会造成特别危害的那些结构、系统和部件。
船舶核动力装置是以反应堆代替普通燃料来产生蒸汽的汽轮机装置。
它可以作为船舶的一种主动力装置。
核动力装置功率大,一次装填核燃料可以用上好几年。
装备核动力装置的舰船,几乎有无限的续航力。
所以核动力装置主要用于大型军舰和潜艇。
三、基本原理:核燃料在核动力装置的反应堆中产生裂变反应,释放巨大能量,被不断循环的冷却水吸收,后者又通过蒸汽发生器将热量传给第二个回路中的水,使之变为蒸汽后到汽轮机中作功。
基于中子引起这种反应后又产生更多的新中子,在一定的条件下,新中子又可能去轰击另一个可裂变的原子核,使之又分裂为两个次级裂变产物的部分,又再放出大量的能量和两到三个新中子;同样条件下,新中子又可能去轰击另外的又一个可裂变的原子核而连续不断地把这种裂变反应持续下去,连续不断地释放出能量。
潜艇泵喷推进器原理理论说明以及概述1. 引言1.1 概述潜艇泵喷推进器是一种先进的水下推进技术,它通过将水流引导到泵中,并通过喷射产生推力来推动潜艇。
相比传统的螺旋桨推进系统,潜艇泵喷推进器具有更高的效率和更好的机动性能。
本文主要介绍潜艇泵喷推进器的原理和工作原理,解释其流体力学原理、压力传递机制以及能量转化过程。
1.2 文章结构本文共分为五个部分。
首先,在引言部分我们将对本文进行总体概述和结构安排。
其次,介绍潜艇泵喷推进器的原理,包括其工作原理、结构组成以及优缺点。
接着,在理论说明部分我们将详细探讨潜艇泵喷推进器涉及的流体力学原理、压力传递机制以及能量转化过程。
然后,在实际应用与发展现状部分我们将分析现有的潜艇推进系统应用实例,并探讨技术改进与创新发展趋势以及当前所面临的挑战和解决方案。
最后,在结论与展望部分我们将对文章进行总结,展望未来潜艇泵喷推进器技术的发展,并提出相关的建议和可能的改进方向。
1.3 目的本文旨在深入解析潜艇泵喷推进器的原理和工作机制,从流体力学和能量转化等角度进行理论阐述,并对其现实应用与发展现状进行分析和评估。
通过对该技术的全面研究,我们可以更好地了解潜艇泵喷推进器在海洋探索、军事应用以及科学研究等领域的实际效果和应用前景,为未来该技术的发展提供参考和指导。
2. 潜艇泵喷推进器原理:2.1 工作原理:潜艇泵喷推进器是一种基于马达流体力学原理的推进装置,它通过动力的提供和流体力学原理的应用,实现潜艇在水下前进的目的。
其工作原理主要包括以下几个步骤:首先,在潜艇内部通过压缩空气或者液压系统产生高压能。
这些高压能会被输送到潜艇泵喷推进器中。
接着,高压能被潜艇泵喷推进器中的泵转化为高速水流。
这些水流会经过推进器中的导向器进行方向调整,并注入到反推系统中。
然后,在反推系统内部,高速水流以极高速度从喷嘴中释放出来。
这个过程类似于火箭发动机的工作原理,因此也被称为“水下火箭”。
最后,由于动量守恒定律,高速水流从反向释放出来时会产生一个相等但相反方向的反作用力,从而使得潜艇在水中获得向前的推进力。
潜艇发动机工作原理
潜艇发动机是潜艇上的主要动力装置,驱动潜艇在水下航行。
潜艇发动机的工作原理主要涉及内燃机、电池、涡轮机和电推进系统等。
内燃机是潜艇发动机的核心部分。
它可以利用柴油或者其他燃料的燃烧产生高温高压气体,然后通过活塞运动转化为机械能。
这种机械能会驱动潜艇的传动系统,使潜艇前进或后退。
潜艇发动机还配备了电池组,用于潜艇在水下航行时提供动力。
电池组通过充电的方式储存电能,然后将电能转化为机械能驱动潜艇的螺旋桨前进。
当内燃机需要维修或者潜艇需要保持静默时,电池组就会发挥重要作用。
在一些现代化的潜艇中,还配备了涡轮机和电推进系统。
涡轮机可以利用发动机排出的废气产生高速旋转的气流,驱动涡轮发电机。
电推进系统则可以利用由涡轮发电机提供的电能以及电池组的电能,驱动潜艇的电动螺旋桨前进。
总之,潜艇发动机工作原理是通过内燃机、电池、涡轮机和电推进系统的配合,将燃料能源转化为机械能或电能,实现潜艇的水下航行。
、[定义]:装置以原子核的裂变所产生的巨大能量通过工质(蒸汽或燃气)推动汽轮机或燃气轮机工作的一种装置。
其工作原理是:核反应堆将核能转化为热能,再利用冷却剂将热能输出堆芯,冷却剂携带的热量通过蒸汽发生器传递给二回路工质,工质受热形成蒸汽,蒸汽进入透平作功,带动螺旋桨转动。
舰艇核动力装置技术是指在舰艇核动力装置的建造、使用中所应用的技术。
[国外概况] 自1954年第一艘核动力潜艇问世以来,核动力装置技术获得了迅猛的发展。
目前,除核潜艇外,现役的核动力舰艇还有巡洋舰、驱逐舰和航空母舰,这些核动力舰艇主要集中在美国和俄罗斯。
一、舰艇核动力装置的优点1、核动力装置使核潜艇能在水下长期连续航行。
核动力装置以核能为能源,核裂变时不需要空气,因此核潜艇能在水下长期连续航行,其隐蔽性远远超过常规动力潜艇。
2、续航力不受限制。
核反应堆一次装料,可运行几年甚至几十年,如美国正在建造的"弗吉尼亚"级潜艇上使用的S9G反应堆,其寿命可达33年。
从而使核潜艇具有"无限"的续航力。
3、大功率。
现在已运行的舰艇动力反应堆,单堆功率在30~300兆瓦(MW)之间,有的核动力舰艇(如航空母舰)装有多个反应堆,强大的动力使得这些庞然大物能以20~50节的高航速航行。
二、国外舰艇核动力装置的应用概况目前,国外有美国、俄罗斯、英国和法国拥有了核动力潜艇,美国和法国拥有核动力航母,美国和俄罗斯拥有核动力巡洋舰。
表一给出了国外舰艇核动力装置的数量。
1、美国核动力装置的情况美国的舰艇核动力,基本上是在西屋公司和通用电气公司两大企业之间的竞争中发展的。
西屋公司设计和建造的是SW系列,包括一座陆上模式堆S1W,及S2W、S3W、S4W、S5W、S5Wa、S5W-Ⅱ、S6W等装艇堆。
通用电气公司设计和建造的是SG系列,包括S1G、S3G(双堆)、S5G、S7G、S8G六座陆上模式堆和S2G、S4G、S5G、S6G、S8G、S9G等装艇堆。
常规潜艇不依赖空气的动力装置AIP之热机类英文名称;Air Independent Plant for Conventional Submarine(AIP)技术类别:船用特种动力;动力推进;苍龙级潜艇使用了瑞典考库姆的斯特林热气机技术[定义]不依赖空气的动力装置是指潜艇在水下不需要外界空气而依靠艇内所带的能量物质提供推进的动力装置,简称AIP系统。
现在核潜艇的动力装置虽然是真正的不依赖空气的推进装置,但不在目前所称的常规潜艇不依赖空气动力装置的讨论范围之列。
目前出现的各种常规潜艇AIP系统不是作为主推进的动力使用,而是在常规潜艇保留原有的柴油机电力推进系统的前提下,加装一套新型的AIP系统,作为其水下低速航行的动力,以达到增加常规潜艇低速潜航的能力、减少暴露率的目的。
常规潜艇AIP系统主要由液氧等能量储存供给系统,能量转换装置、废气物排放处理系统、辅助系统、隔振装置和控制系统等组成。
目前研制的AIP系统依能量转换装置的不同有多种形式,主要有斯特林发动机、闭循环柴油机、闭循环汽轮机、燃料电池和小型核动力装置。
[相关技术]液氧贮存技术;燃料处理技术;降噪技术;材料技术;密封技术[技术难点]不依赖空气的动力装置能否在潜艇上使用主要取决于潜艇要求的技术性能。
因此,其技术难点也表现在满足潜艇的这些技术要求上。
这些技术要求主要是尺寸重量、对潜艇尺度的影响、振动、噪音、红外等特性信号、下潜深度,以及对潜艇性能的影响等。
除此之外,所有不依赖空气的动力装置,除小型核动力装置外,在艇上使用时都需要解决液氧在艇上储存的安全问题,对燃料电池还需解决好氢气产生和安全问题。
目前所有上述不依赖空气的动力装置,其单机功率均较小,只能满足水下低速航行的需要。
提高单机功率,在比较经济的条件下解决好潜艇的潜航是AIP系统今后要解决的重要课题。
[国外概况]不依赖空气的动力装置(AIP)一般有热机类和电化学系统类多种类型。
但当前研究得最多、且最容易在常规潜艇上使用的大概只有5种,即:(1)、斯特林发动机;(2)、闭循环柴油机(又称再循环柴油机);(3)、闭循环汽轮机;(4)、燃料电池;(5)、小型核动力装置。