第二节 地球重力场的基本原理
(3)引力位的物理意义 引力所做功等于位函数在终点和起点的函数值之差。 在某一位置处质体的引力位就是将单位质点从无穷远处移动到
该点所做功。
Q
A dVVQVQ0
Q0
Q
M
Q0
F
m
第二节 地球重力场的基本原理
2 离心力位
x r cos cos , y r cos sin , z r sin
空间点S的坐标(x,y,z),地面质点M的坐标(xm,ym,zm)
则有
z
(Xm,ym,zm)
dm
Rψ
o
φm φ
λm λ
ρ
r S0
Se
y
(X,y,z) S
V f dm
x
第二节 地球重力场的基本原理
将 引力位函数
用级数展开,再代入 有:
再将
代入,按(R/r)合并集项得:
第二节 地球重力场的基本原理
(2) 位函数的性质 ① 位函数是标量函数,可对各分量求和,也可对某个质体进行积 分。 V=V1+V2+·····+ Vn 所以,地球总体的位函数应等于组成其质量的各基元分体位 函数dVi之和,对整个地球而言,则有
dm
V dV f
M
M
z
(Xm,ym,zm)
dm Rψ
(X,y,z) S
第二节 地球重力场的基本原理
讨论前三项: ① 先看v0
可见,V0就是把地球质量集中到地球质心处时的点的引力位。 ② 再讨论v1,ψ 为R,r之间的夹角
r x iyjz k Rxmiymjzmk
第二节 地球重力场的基本原理
上式两边同除以地球质量M,又因为