当前位置:文档之家› 甲醇-水分离过程填料精馏塔设计

甲醇-水分离过程填料精馏塔设计

甲醇-水分离过程填料精馏塔设计
甲醇-水分离过程填料精馏塔设计

化工原理课程设计

起止时间2010年12月27日~2011年1月7日题目甲醇-水分离过程填料精馏塔设计学院名称核资源与核燃料工程学院

学生姓名林江平

班级核化082 指导教师肖志海

职称副教授

院长谭凯旋

2010年12月27日

甲醇—水分离过程填料精馏塔设计

目录

一,设计任务 (3)

二,中英文摘要 (4)

三,前言 (5)

四,设计方案的确定 (6)

五,设计计算 (8)

1,精馏塔的物料衡算 (8)

2,塔板数的确定 (8)

3,精馏塔的工艺条件及物性数据的计算 (10)

4,精馏塔的塔体工艺尺寸计算 (11)

5,填料层压降计 (13)

6,设计一览表 (13)

六,设计过程心得 (14)

七,参考文献 (16)

一设计任务书

1.处理量:8000 (吨/年)

2. 料液浓度:45%(wt%)

3.产品浓度:98%(wt%)

4.易挥发组分回收率:99.5%

5.每年实际生产时间:7200小时/年

6.操作条件

1)塔顶压力: 4KPa(表压)

2)进料热状况:饱和液体进料

3)回流比: 4

4)塔底加热蒸汽压力: 0.3MPa(表压)

7. 填料类型:金属阶梯环填料

8.设计内容

a)精馏塔的物料衡算;

b)塔板数的确定;

c)精馏的工艺条件及有关物性数据的计算;

d)精馏塔的塔体工艺尺寸计算;

e)填料层压降计算;

f)绘制生产工艺流程图;

g)绘制精馏塔设计条件图;

h)对设计过程的评述和有关问题的讨论。

甲醇-水溶液汽液相平衡数据(摩尔)

x y x y x y

0.00 0.000 0.15 0.517 0.70 0.870

0.02 0.134 0.20 0.579 0.80 0.915

0.40 0.234 0.30 0.665 0.90 0.958

0.60 0.304 0.40 0.729 0.95 0.979

0.80 0.365 0.50 0.779 1.00 1.000

0.10 0.418 0.60 0.825

1.2

1

0.8

0.6

0.4

0.2

00.51 1.5

1.2

1

0.8

0.6

0.4

0.2

00.51 1.5

0.20.40.60.811.20

0.5

1

1.5

甲醇—水分离过程填料精馏塔设计

林江平

(南华大学核资源与核燃料工程学院,衡阳,421001)

摘要:本设计对甲醇—水分离过程填料精馏塔装置进行了设计,主要进行了以下工作:1、对主要生产工艺流程进行了选择和确定。2、对生产的主要设备—填料塔进行了工艺计算设计,其中包括:①精馏塔的物料衡算;②塔板数的确定;③精馏塔的工艺条件及有关物性数据的计算;④精馏塔的塔体工艺尺寸计算;⑤填料层压降的计算。3、绘制了生产工艺流程图和精馏塔设计条件图。4、对设计过程中的有关问题进行了讨论和评述。本设计简明、合理,能满足生产工艺的需要,有一定应用

价值。

关键字:甲醇—水;分离过程;精馏塔

The Design of Filled-Fractionating Tower about the Separating

Process of Methyl Alcohol-Water

linjiangping

( College of nuclear chemistry and nuclear fuel Engineering,Nanhua

University,Hengyang,421001)

Director:xiaozhihai

Abstract: The design of a continuous distillation filled-rectification column, in the material, product requirements and the main physical parameters and the tower plank number and to determine the size, process design . And production craftwork flow chart and design condition chart of the rectification tower has been drawn, completion of the methyl -water distillation process and equipment design theme. The design is concise and reasonable, and can satisfy the request of the craftwork. It has the applied value.

Keyword: methyl -alcohol separating process fractionating tower design

三前言[1]

混合物的分离是化工生产中的重要过程。蒸馏是分离液体混合物的典型单元操作。它是通过加热造成气液两相物系,利用物系中各组分的挥发度不同的特性以实现分离目的。填料塔结构简单,压降小,填料易用耐腐蚀材料制造。过去,由于填料本体及塔内构件不够完善,填料塔大多局限于处理腐蚀性介质或不适宜安装塔板的小直径塔。近年来,由于填料结构的改进和新型高效、高负荷填料的开发,既提高了塔的通过能力和分离效率,又保持了压力降小及性能稳定的特点,因此,填料塔已经被推广到许多大型气液传质的操作中。

精馏塔操作的基本要求是在连续定态和最经济的条件下处理更多的原料液,达到预定的分离要求或组分的回收率,即在允许范围内采用较小的回流比和比较大的再沸器传热量。所以在设计精馏塔的过程中,必须保持精馏定态操作的条件如:塔压稳定;进、出塔系统的物料量平衡和稳定;进

料组成和热状况稳定;回流比恒定;再沸器和冷凝器的传热条件稳定;塔系统与环境间散热稳定等。

填料塔操作时,液体自塔上部进入,通过液体分布装置均匀淋洒于填料层上,继而沿填料表面缓慢下流。气体自塔下部进入,穿过栅板沿着填料间隙上升。这样,气液两相沿着塔高在填料表面与填料自由空间连续逆流接触,进行传质和传热。

甲醇-水属于难分离物系,选用填料精馏塔的分离效率较高,容易满足生产要求。

四设计方案的确定

本设计任务为:分离甲醇-水混合物。对于二元混合物的分离,一般采用连续精馏流程。精馏是分离液体混合物最常用的一种操作,它通过汽、液两相的直接接触,利用组分挥发度的不同,使易挥发组分由液相向汽相传递,难挥发组分由汽相向液相传递,是汽、液两相之间的传质过程。精馏对塔设备的要求大致包括:

1,生产能力大,即单位塔截面可通过较大的汽、液相流率,不会产生液泛等不正常流动。2,效率高,汽、液两相在塔内流动时能保持充分的密切接触,具有较高的塔板效率或较大的传质速率。3,流动阻力小,流体通过塔设备的阻力降小,可以节省动力费用,在减压操作时易于达到要求的真空度。4,有一定的操作弹性,当汽、液相流率有一定的波动时,两相均能维持正常的流动,且不会使效率产生较大的变化。5,结构简单,造价低,安装检修方便。6,能满足物性每些工艺特性,如腐蚀性、热敏性、气泡性等特殊要求。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。甲醇常压下的沸点为64.7℃,故可采用常压操作。用30℃的循环水进行冷凝。塔顶上升蒸汽用全冷凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至储槽。因所分离物系的重组分为水,故选用直接蒸汽加热方式,釜残液直接排放。甲醇-水物系分离难易程度适中,气液负荷适中。

设计中选用金属散装阶梯环D n50填料。因废甲醇溶液中含有少量的药物固体微粒,应选用金属散装填料,以便定期拆卸和清洗。阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少一半,并在一端增加了一个锥型翻边。由于高经比减少,使的气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥型翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变为点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环型填料中最为优良的一种。同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用增加很多。而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低,根据计算故选用D n50规格的。

五设计计算

(一)精馏塔的物料衡算

1.原料液及塔顶、塔底产品的摩尔分率

甲醇的摩尔质量 M A=32.04kg/kmol

水的摩尔质量 M A=18.02 kg/kmol

D=8000×45%×99.5%/98%=3655.1吨/年

F=D+W W=4344.9吨/年

w w(质量%)=8000×45%×0.5%/4344.9=0.0414%

x F=0.45/32.04/(0.45/32.04+0.55/18.02)=0.3151

x D=0.98/32.04/(0.98/32.04+0.2/18.02)=0.965

x w=0.000414/32.04/(0.000414/32.04+0.999586/18.02)=0.000233

2.原料液及塔顶、塔底产品的平均摩尔质量

M F=0.3151×32.04+(1-0.3151)×18.02=22.44kg/kmol

M D=0.965×32.04+(1-0.965)×18.02=31.549kg/kmol

M W=0.000233×32.04+(1-0.000233)×18.02=18.02 kg/kmol

3.物料衡算

F=8000×1000/(7200×22.44)=49.51kmol/h

D=3655.1×1000/(7200×31.549)=16.091kmol/h

W=4344.9×1000/(7200×18.02)=33.488kmol/h

(二)塔板数的确定[2]

1.利用平衡数据,在直角坐标图上绘平衡曲线及对角线,如下图:

在图上定出点a(x D ,x D)、点e(x F ,x F)和 c(x W ,x W)三点。

2.精馏段操作线截距=x D/(R+1)=0.965/5=0.193,在y轴上定出点b。连ab,即得到精馏段操作线。q=1,q线垂直于x轴,q线与精馏段操作线交与点d.

3. q=1,q线垂直于x轴,q线与精馏段操作线交与点d.

4.连cd,即为提馏段操作线。

在图上定出点a(x D ,x D)、点e(x F ,x F)和 c(x W ,x W)三点。

2.精馏段操作线截距=x D/(R+1)=0.965/5=0.193,在y轴上定出点b。连ab,即得到精馏段操作线。q=1,q线垂直于x轴,q线与精馏段操作线交与点d.

3. q=1,q线垂直于x轴,q线与精馏段操作线交与点d.

4.连cd,即为提馏段操作线。

5.自点 a开始在操作线和平衡线之间绘梯级,得理论板层数为8块(包括再沸器),自塔顶往下数

第5层为加料板。

(三)精馏的工艺条件及有关物性数据的计算

塔顶温度: t D=64.5℃

塔釜温度: t w=99.2℃

进料板温度: t F=76.9℃

1.精馏段

塔顶第1块板有关参数

R=L/D=4 L=4×D=4×16.091=64.364kmol/h

V=L+D=64.364+16.091=80.455kmol/h

气相流量: V1=80.455 kmol/h

液相流量: L1=64.364 kmol/h

气相组成: y1=x D=0.965

液相组成: x1=0.9100

气相平均摩尔质量:M V1=(80.455×0.965×32.04+80.455×(1-0.965)×

18.02) /80.455=31.299

液相平均摩尔质量:M L1=(64.364×0.91×32.04+94.364×(1-0.91)×18.02) /64.364=31.53

气相密度:ρv1=M V/22.4=31.55/22.4=1.4085kg/m3

塔顶温度为64.9℃时甲醇与水的密度由内插法得:[3]

液相密度:ρL1=752.394 kg/m3

由t=64.9℃查手册[3]得:μ甲=0.330mpa.s μ水=0.4355mpa.S

Lgμl1=0.98×lg0.33+0.2×lg0.4355

液相粘度:μL1=0.3318mPa·s

2.提馏段

塔釜最后一块板有关参数

L’=L+F=64.364+49.51=113.87kmol/h

V’=V= 80.455 kmol/h

气相流量: V’ = 80.455 kmol/h

液相流量: L’ =113.87kmol/h

气相组成: x’=0.000233

液相组成: y’=0.000233

气相平均摩尔质量:M V’=(80.455*0.000233*32.04+80.455*(1-0.000233)*18.02) /80.455=18.03 液相平均摩尔质量:M L’=18.016

气相密度:ρv’= M V’/22.4=0.8043kg/m3塔底液相,由于产品中易吸收组分回收率为99.5%,则近似为水得密度,ρ水=957.4kg/m3

液相密度:ρL’=957.4 kg/m3

液体的粘度在釜底近似于水的粘度[3]:

液相粘度:μL’=0.2866 mPa·s

(四)精馏塔的塔体工艺尺寸计算

(五)采用Eckert通用关联图计算填料层压降(如图):

1.精馏段塔径

液相质量流量为

w L=64.364×31.53=2029.40kg/h

气相质量流量为

w V=80.455×31.299=2518.16 kg/h

(w L/w V)(ρV/ρL)0.5=(2029.40/2518.16)(1.4085/752.294)0.5=0.035 查

图得、(u2max Φψ/g)×(ρV/ρL)μL0.2=0.211

用D N 50的金属阶梯环填料[4]Φ=140

Y=ρ水/ρL=957.4/752.394=1.272

u max=(0.210ρL g/u L0.2ρVΦψ)0.5

=(0.210×752.394×9.81/0.33180.2×1.4085×140× 1.272)0.5

=2.688m/s

u=0.7u max=0.7×2.688=1.8816m/s

D=(4V S/πu)0.5

V S=31.299×80.455/(1.4085×3600)=0.4966m/s

D=(4×0.4966/(3.14×1.8816))0.5=579.9mm 圆整为600mm.

u=4V S/πD2=0.4966×4/(3.14×0.602)=1.7573m/s.

U min=(L W)min a t=0.08×109=8.72m3/(m2·h)

U=L h/0.785D2=64.364×31.366/(752.394×0.785×0.602)=9.45 m3/(m2·h)

则,U>U min. D=600mm.

2.提馏段塔径

液相质量流量为 w L=113.87×0.000233 ,气相质量流量为 w V=80.455×0.000233 (w L/w V)(ρV/ρL)0.5=(113.87/80.455)(0.8049/957.4)0.5=0.041

查图得、(u2maxΦψ/g)(ρV/ρL)m L0.2=0.182

u max=(0.182×957.42×9.81/(0.28660.2×0.8049×140×957.4))

0.5=4.41m/s

u=4.41×0.7=3.087m/s

V S=80.775×18.03/(0.8049×3600)=0.5007m/s D=(4V S/πu)0.5

D=(4×0.5007/(3.14×3.087))0.5=454mm. 圆整为500mm.

u=4V S/πD2=4×0.5007/(3.14×0.52)=2.551m/s

U=L h/0.785D2=113.87×18.03/(957.4×0.785×0.52)=10.92 m3/(m2·h)

U>U min, D=500mm

3.填料层高度计算

直径为50mm的填料,等板高度接近1m;直径在0.6m以下的填料塔,等板高

度约与塔径相等。 Z=HETP ×N T

Lg(HETP)=h-1.292lnd l +1.47lnm l

查表有h =7.0653对于阶梯环填料,要求h/D =8~15,h ≤6m HETP 精=0.6m HETP 提=0.5m

Z 精=0.6×4=2.4m Z 精’=1.25×2.4=3m Z 提=0.5×3=1.5m Z 提’=1.25×1.5=1.875m (五)填料层压降计算 1.精馏段

横坐标 (w L /w V )(ρV /ρL )0.5

=0.035

纵坐标 (u 2

Φψ/g)×(ρV /ρL )×μL 0.2

=1.77852

×0.03=0.00950

p/Z=90×9.77=879.3Pa/m

p=9×879.3=7.914Kpa

3. 提馏段

横坐标 (w L /w V )(ρV /ρL )0.5

=0.041

纵坐标 (u 2

Φψ/g)×(ρV /ρL )×μL 0.2

=2.772

×9.75×10-3

=0.075 p/Z=70×9.79=685.3Pa/m

p=2.5×689.7=1.724 Kpa

(六)设计一览表

7 液体

名 称 数 据 名称 数据 摩尔

数 原料液(x F ) 0.3151 理论板数 8层 塔顶产品(x D ) 0.965 进料板层 5层 塔底产品(x W ) 0.000233 精馏段塔径 600mm 塔顶温度 64.5℃ 提馏段塔径 500mm

塔釜温度 99.2℃ 精馏段填料高度 300mm 进料板温度 76.9℃ 提馏段填料高度 188mm 精馏段填料层压降

7.914kpa

提馏段填料压降

1.1724kpa

分布器的简要设计

7.1 该精馏塔塔径较小,故此选用管式液体分布器.

7.2 分布点密度计算.

该精馏塔塔径较小,且D N50金属环矩鞍的比表面积较小,故应选用较小分布点密度,设计中取分布点密度为220点/ m2

布液点数:

n=(π/4)*D*D*200=0.785*0.45*0.45*220=34.9点=35点

按分布点几何均匀的原则进行布点设计,设计结果为:主管径Ф48*4.5,支管直径Ф28*4,采用7根支管,支管中心距为65mm,采用正方形排列,实际布点数为n=37,布液点示意图如图所示:

7.3 布液计算:

L S=(π/4)* d o2Nф(2g△H) 0.5

取ф=0.60 △H=160mm

d o =[4 L S/(πnф(2g△H) 0.5 ) ] 0.5

=[4*829.44/(839.69*3600*3.14*37*0.6*(2*9.81*0.16) 0.5)] 0.5

=0.003m

设计取d o=3.0mm

8 生产工艺流程图

9精馏塔设计条件图(见手绘图)

六设计过程心得

本设计所需的各种相关资料是通过图书馆查阅资料、上网等各种途径查找的。通过以上的计算和设计分析,确定和优化了一套年分离五千吨甲醇-水溶液的生产装置和工艺流程。其生产方式采用连续式,主体设备填料塔、换热器再沸器。对塔设备进行了物料衡算,确定了塔的塔板数,计算了精馏塔的工作条件及有关物性数据,并对塔体工艺尺寸和填料层压降进行了计算。

在设计中釜液直接排放,而经计算釜液的温度很高,有99.2℃,釜液的流量也不小,故其热量很高,可以加以运用。如可以考虑用其加热原料液,也可以用来加热蒸汽。物质的混合过程是一个不可逆过程,它可以自动进行。但将一个均匀混合物在恒温,恒压下分离成两个不同组分的产物,则要消耗一定的功。

不管用什么办法去完成分离过程,达到一定的分离目的时所需的最小功总可以通过一个假

象的可逆过程来计算出来。因为由热力学第二定律必然应该得出这样的结论,即完成同一变化

的任何可逆过程所需的功均相等。而实际过程所需的功一定大于可逆过程时的值。所需的最小

功决定于要分离的混合物的组成、压力和温度以及分离所得产品的浓度、压力和温度。

提高精馏过程热力学效率的途径

要降低分离过程的能耗就应提高其热力学效率。一般精馏过程的不可逆性表现为以下几个

方面:

①在流体流动时有压力降:

②塔内上升蒸汽与下流液体直接接触产生热交换时有温差,以及在再沸器和冷凝器中传热

介质与物料之间存在温差;

上升蒸汽与下流液进行传质过程时,两相浓度与平衡浓度的差别。

要使上述这三个过程(流体流动、传热、传质)有较大的速率,就得有一定的推动力,而

推动力越大,则不可逆性就越大。反之,要提高热力学效率就必须减小压差,降低温差和缩小

化学位的差别。

当塔板数较多时,一般说来,压力降也要加大,同时塔釜与塔顶的温差也会增大。按式W净

=QT0(1/T L-1/T H),W净就增大。原则上要降低压力降可增大塔径,降低板面液层厚度。但增大塔

径意味着加大设备投资;降低板面液层厚度则使板效率变小。因此,实际上要综合考虑这些因

素以确定塔径。

进出每块塔板的气液相在组成与温度上的相互不平衡是使精馏过程热力学效率下降的重要因素。由下一块板上来的蒸汽比上一块下来的液体温度要高些,其易挥发组分的含量小于下流液体平衡时之值。要降低净功必须减小各板传热和板质上午推动力。这可以归结为应尽量使操作线与平衡线相接近。在工业实践中,使用中间再沸器以利用低压蒸汽或其它低品位的加热介质,以及采用中间冷凝器以利用温度较高的冷却介质,其吸引力却常常都不很大。但在低温精馏时,例如裂解气分离中的脱甲烷塔等,使用中间再沸器,实际上不是使用低品位加热介质的问题,而是可以借此回收一部分冷量;中间冷凝器的使用则可使冷却介质的冷冻级位不致太低。

采用两效或多效精馏是充分利用能级的一个办法,泵流程是另一种有效的提高热力学效率的手段。塔顶蒸汽经过压缩,使其冷凝温度高于釜液的沸点,冷凝时所释放的热量供给釜液蒸发之用。冷凝器和再沸器就是同一个设备,因而减小了传热中的不可逆性。

在计算的过程中遇到了不少问题,深感知识的不足。一般的书上对填料精馏塔的设计中的一些问题都是用计算机计算的,而我是用手工计算的,所以会有很多不足的地方,还请老师多多指导。

七参考文献

[1] 刘道德等.长沙:化工设备的选择与设计,2003

[2] 贾绍义,柴诚敬等.化工原理课程设计.天津:天津大学出版社,2002

[3] 刘光启,马连湘等编.化学化工物性参数手册.北京:化学工业出版社,2002

[4] 姚玉英等.化工原理,下册.天津:天津大学出版社,2005

[5] 王明辉化工单元过程课程设计. 北京化学工业出版社,2002

化工原理甲醇—水连续填料精馏塔

化工原理课程设计说明书 设计题目:甲醇—水连续填料精馏塔 设计者: 专业: 学号: 指导老师: 2007年7 月13日

目录 一、设计任务书 (1) 二、设计的方案介绍 (1) 三、工艺流程图及其简单说明 (2) 四、操作条件及精熘塔工艺计算 (4) 五、精熘塔工艺条件及有关物性的计算 (14) 六、精馏塔塔体工艺尺寸计算 (19) 七、附属设备及主要附件的选型计算 (23) 八、参考文献 (26) 九、甲醇-水精熘塔设计条件图

一、设计任务书 甲醇散堆填料精馏塔设计: 1、处理量:12000 吨/年(年生产时间以7200小时计算) 2、原料液状态:常温常压 3、进料浓度:41.3%(甲醇的质量分数) 塔顶出料浓度:98.5%(甲醇的质量分数) 塔釜出料浓度:0.05%(甲醇的质量分数) 4、填料类型:DN25金属环矩鞍散堆填料 5、厂址位于沈阳地区 二、设计的方案介绍 1、进料的热状况 精馏操作中的进料方式一般有冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料五种。本设计采用的是泡点进料。这样不仅对塔的操作稳定较为方便,不受厦门季节温度影响,而且基于恒摩尔流假设,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。 2、精熘塔的操作压力 在精馏操作中,当压力增大,混合液的相对挥发度减小,将使汽相和液相的组成越来越接近,分离越来越难;而当压力减小,混合液的相对挥发度增大,α值偏离1的程度越大,分离越容易。但是要保持精馏塔在低压下操作,这对设备的要求相当高,会使总的设备费用大幅度增加。在实际设计中,要充分考虑这两

甲醇—水分离过程填料精馏塔设计

甲醇—水分离过程填料精馏塔设计 1.设计方案的确定 设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。甲醇常压下的沸点为64.7℃,故可采用常压操作。用30℃的循环水进行冷凝。塔顶上升蒸汽用全冷凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至储槽。因所分离物系的重组分为水,故选用直接蒸汽加热方式,釜残液直接排放。甲醇-水物系分离难易程度适中,气液负荷适中,设计中选用金属环矩鞍DN50填料。 2.精馏塔的物料衡算 2.1原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量: M 甲 =32.04kg/kmol 水的摩尔质量: M 水 =18.02kg/kmol X F =(0.46/32.04)/[0.46/32.04+0.54/18.02]=0.324 X D =(0.997/32.04)/[0.997/32.04+0.003/18.02]=0.995 X W =(0.005/32.04)/(0.005/32.04+0.995/18.02)=0.0028 2.2 原料液及塔顶、塔底产品的平均摩尔质量 M F =0.324*32.04+(1-0.324)*18.02=22.56kg /kmol M D =0.995*32.04+(1-0.995)*18.02=31.97kg/kmol M W =0.0028*32.04+(1-0.0028)*18.02=18.06kg/kmol 2.3物料衡算 原料处理:q n,F =3000/22.56=132.98 kmol/h 总物料衡算: 30.728=q n,D +q n,W 甲醇物料衡算: 132.98*0.324=0.995 q n,D +0.0028q n,W 解得: q n,D =43.05kmol/h q n,W =89.93kmol/h 3塔板数的确定 3.1甲醇-水属理想物系,故可用图解法求理论板层数. 3.1.1由以知的甲醇-水物系的气液平衡数据,绘出x-y图.

甲醇水分离过程板式精馏塔的设计

化工原理课程设计计算说明书 题目:甲醇—水精馏塔设计 学院名称:化学工程学院 专业:化学工程与工艺 班级: 11-1 姓名:赵讯 学号:11402010116 指导教师:张亚静 2014年1月10日

目录 第一章设计任务书 (1) 第二章设计原则 (2) 第三章设计步骤 (3) 第四章精馏塔的工艺计算 (4) 第五章精馏塔的工艺条件及有关物性数据的计算 (9) 第六章塔板主要工艺尺寸的计算 (11) 第七章筛板的流体力学验算 (15) 第八章塔板负荷性能图 (18) 第九章辅助设备的计算和选型 (21) 设计评述 (27) 参考文献 (27)

第一章设计任务书 1.1 设计题目 设计题目:甲醇—水分离过程板式精馏塔的设计 设计要求:年产纯度为99%(质量分数,下同)的甲醇,塔底馏出液中含甲醇不得高于0.05%,原料液中含甲醇22%。 生产能力11100L/h 1.2操作条件 1) 操作压力常压 2) 进料热状态饱和进料 3) 回流比自选 4) 塔底加热蒸气压力0.3Mpa(表压) 1.3塔板类型 筛孔塔 1.4 工作日 每年工作日为330天,每天24小时连续运行。 1.5 设计说明书的内容 (1) 流程和工艺条件的确定和说明 (2) 操作条件和基础数据 (3) 精馏塔的物料衡算; (4) 塔板数的确定; (5) 精馏塔的工艺条件及有关物性数据的计算; (6) 精馏塔的塔体工艺尺寸计算; (7) 塔板主要工艺尺寸的计算; (8) 塔板的流体力学验算; (9) 塔板负荷性能图; (10)主要工艺接管尺寸的计算和选取 (11) 塔板主要结构参数表 (12) 对设计过程的评述和有关问题的讨论

填料精馏塔设计示例

4.3 填料精馏塔设计示例 4.3.1 化工原理课程设计任务书 1 设计题目 分离甲醇-水混合液的填料精馏塔 2 设计数据及条件 生产能力:年处理甲醇-水混合液0.30万吨(年开工300天) 原料:甲醇含量为70%(质量百分比,下同)的常温液体 分离要求:塔顶甲醇含量不低于98%,塔底甲醇含量不高于2% 建厂地址:沈阳 3 设计要求 (1)编制一份精馏塔设计说明书,主要内容: ①前言; ②流程确定和说明; ③生产条件确定和说明; ④精馏塔的设计计算; ⑤主要附属设备及附件的选型计算; ⑥设计结果列表; ⑦设计结果的自我总结评价与说明; ⑧注明参考和使用的设计资料。 (2)编制一份精馏塔工艺条件单,绘制一份带控制点的工艺流程图。 4.3.2 前言

在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大,应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 塔设备按其结构形式基本上可分为两类:板式塔和填料塔。以前,在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小以性能稳定等特点。因此填料塔已被推广到大型汽液操作中。在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 板式塔为逐级接触式汽液传质设备,它具有结构简单、安装方便、操作弹性大、持液量小等优点。同时也有投资费用较高、填料易堵塞等缺点。 本设计目的是分离甲醇-水混合液,处理量不大,故选用填料塔。 塔型的选择因素很多。主要因素有物料性质、操作条件、塔设备的制造安装和维修等。 1 与物性有关的因素 ①易起泡的物系在板式塔中有较严重的雾沫夹带现象或引起液泛,故选用填料塔为宜。因为填料不易形成泡沫。本设计为分离甲醇和水,故选用填料塔。 ②对于易腐蚀介质,可选用陶瓷或其他耐腐蚀性材料作填料,对于不腐蚀的介质,则可选金属性质或塑料填料,而本设计分离甲醇和水,腐蚀性小可选用金属填料。 2 与操作条件有关的因素 ①传质速率受气膜控制的系统,选用填料塔为宜。因为填料塔层中液相为膜状流、气相湍动,有利于减小气膜阻力。 ②难分离物系与产品纯度要求较高,塔板数很多时,可采用高效填料。 ③若塔的高度有限制,在某些情况下,选用填料塔可降低塔高,为了节约能耗,故本设计选用填料塔。 ④要求塔内持液量、停留时间短、压强小的物系,宜用规整填料。 4.3.3 流程确定和说明 1 加料方式 加料方式有两种:高位槽加料和泵直接加料。采用高位槽加料,通过控制液位高度,可以得到稳定的流量和流速。通过重力加料,可

化工原理课程设计,甲醇和水的分离精馏塔的设计

郑州轻工业学院 ——化工原理课程设计说明书 课题:甲醇和水的分离 学院:材料与化学工程学院 班级: 姓名: 学号: 指导老师: 目录 第一章流程确定和说明 (2) 1.1.加料方式 (2)

1.2.进料状况 (2) 1.3.塔型的选择 (2) 1.4.塔顶的冷凝方式 (2) 1.5.回流方式 (3) 1.6.加热方式 (3) 第二章板式精馏塔的工艺计算 (3) 2.1物料衡算 (3) 2.3 塔板数的确定及实际塔板数的求取 (5) 2.3.1理论板数的计算 (5) 2.3.2求塔的气液相负荷 (5) 2.3.3温度组成图与液体平均粘度的计算 (6) 2.3.4 实际板数 (7) 2.3.5试差法求塔顶、塔底、进料板温度 (7) 第三章精馏塔的工艺条件及物性参数的计算 (9) 3.1 平均分子量的确定 (9) 3.2平均密度的确定 (10) 3.3. 液体平均比表面积张力的计算 (11) 第四章精馏塔的工艺尺寸计算 (12) 4.1气液相体积流率 (12) 4.1.1 精馏段气液相体积流率: (12) 4.1.2提馏段的气液相体积流率: (13) 第五章塔板主要工艺尺寸的计算 (14) 5.1 溢流装置的计算 (14) 5.1.1 堰长 (14) 5.1.2溢流堰高度: (15) 5.1.3弓形降液管宽度 (15) 5.1.4 降液管底隙高度 (16) 5.1.5 塔板位置及浮阀数目与排列 (16) 第六章板式塔得结构与附属设备 (24) 6.1附件的计算 (24) 6.1.1接管 (24) 6.1.2 冷凝器 (27) 6.1.3再沸器 (28) 第七章参考书录 (28) 第八章设计心得体会 (29)

甲醇-水分离过程板式精馏塔设计

滨州学院 课程设计任务书 一、课题名称 甲醇——水分离过程板式精馏塔设计 二、课题条件(原始数据) 原料:甲醇、水溶液 处理量:3200Kg/h 原料组成:33%(甲醇的质量分率) 料液初温:20℃ 操作压力、回流比、单板压降:自选 进料状态:冷液体进料 塔顶产品浓度:98%(质量分率) 塔底釜液含甲醇含量不高于1%(质量分率) 塔顶:全凝器 塔釜:饱和蒸汽间接加热 塔板形式:筛板 生产时间:300天/年,每天24h运行 冷却水温度:20℃ 设备形式:筛板塔 厂址:滨州市 三、设计内容 1、设计方案的选定 2、精馏塔的物料衡算 3、塔板数的确定 4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数) 5、精馏塔塔体工艺尺寸的计算 6、塔板主要工艺尺寸的计算 7、塔板的流体力学验算

8、塔板负荷性能图(精馏段) 9、换热器设计 10、馏塔接管尺寸计算 11、制生产工艺流程图(带控制点、机绘,A2图纸) 12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸) 13、撰写课程设计说明书一份 设计说明书的基本内容 ⑴课程设计任务书 ⑵课程设计成绩评定表 ⑶中英文摘要 ⑷目录 ⑸设计计算与说明 ⑹设计结果汇总 ⑺小结 ⑻参考文献 14、有关物性数据可查相关手册 15、注意事项 ⑴写出详细计算步骤,并注明选用数据的来源 ⑵每项设计结束后列出计算结果明细表 ⑶设计最终需装订成册上交 四、进度计划(列出完成项目设计内容、绘图等具体起始日期) 1、设计动员,下达设计任务书0.5天 2、收集资料,阅读教材,拟定设计进度1-2天 3、初步确定设计方案及设计计算内容5-6天 4、绘制总装置图2-3天 5、整理设计资料,撰写设计说明书2天 6、设计小结及答辩1天

甲醇-水溶液连续精馏塔课程设计91604

目录 设计任务书 一、概述 1、精馏操作对塔设备的要求和类型 (4) 2、精馏塔的设计步骤 (5) 二、精馏塔工艺设计计算 1、设计方案的确定 (6) 2、精馏塔物料衡算 (6) 3、塔板数的确定 (7) 的求取 (7) 3.1理论板层数N T 3.2实际板层数的求取 (8) 4、精馏塔的工艺条件及有关物性数据的计算 4.1操作温度的计算 (11) 4.2平均摩尔质量的计算 (11) 4.3平均密度的计算 (12) 4.4液相平均表面张力计算 (12) 4.5液体平均粘度计算 (13) 5、精馏塔塔体工艺尺寸计算 5.1塔径的计算 (14) 5.2精馏塔有效高度的计算 (15) 6、塔板主要工艺尺寸计算 6.1溢流装置计算 (16) 6.2塔板的布置 (17) 6.3浮阀计算及排列 (17) 7、浮阀塔流体力学性能验算 (19) 8、塔附件设计 (26) 7、精馏塔结构设计 (30)

7.1设计条件 (30) 7.2壳体厚度计算………………………………………………… 7.3风载荷与风弯矩计算………………………………………… 7.4地震弯矩的计算………………………………………………… 三、总结 (27) 化工原理课程设计任务书 一、设计题目: 甲醇-水溶液连续精馏塔设计 二、设计条件: 年产量: 95%的甲醇17000吨 料液组成(质量分数): (25%甲醇,75%水) 塔顶产品组成(质量分数): (95%甲醇,5%水) 塔底釜残液甲醇含量为6% 每年实际生产时间: 300天/年,每天24小时连续工作 连续操作、中间加料、泡点回流。 操作压力:常压 塔顶压力4kPa(表压) 塔板类型:浮阀塔 进料状况:泡点进料 单板压降:kPa 7.0 厂址:安徽省合肥市 塔釜间接蒸汽加热,加热蒸汽压力为0.5Mpa 三、设计任务 完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书. 设计内容包括: 1、 精馏装置流程设计与论证 2、 浮阀塔内精馏过程的工艺计算 3、 浮阀塔主要工艺尺寸的确定 4、 塔盘设计 5、 流体力学条件校核、作负荷性能图 6、 主要辅助设备的选型 四、设计说明书内容 1 目录 2 概述(精馏基本原理) 3 工艺计算 4 结构计算 5 附属装置评价 6 参考文献 7 对设计自我评价 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主

甲醇精馏的方法

1.4.2 甲醇精馏的典型工艺流程甲醇精馏产生工艺有多种,分为单塔精馏,双塔精馏,三塔精馏与四塔精馏(即三塔加回收塔) (1) 单塔流程描述 采用铜系催化剂低压法合成甲醇,由于粗甲醇中不仅还原性杂质的含量大大减少,而且二甲醚的含量几十倍地降低,因此在取消化学净化的同时,可将预精馏及甲醇-水-重组分的分离在一台主精馏塔内同时进行,即单塔流程,就能获得一般工业上所需要的精甲醇。单塔流程更适用于合成甲基燃料的分离,很容易获得燃料级甲醇。 单塔流程(见图1.1)为粗甲醇产品经过一个塔就可以采出产品。粗甲醇塔中部加料口送入,轻组分由塔顶排出,高沸点的重组分在进料板以下若塔板处引出,水从塔底排出,产品甲醇在塔顶以下若干块塔板引出。 (2) 双塔流程描述 双塔工艺是由脱醚塔,甲醇精馏塔或者主塔组成。主塔在工厂中产量在100万吨/年以下,仅仅能提供简单的过程,所以设备和投资较低。 传统的工艺流程,是最早用于30MPa压力下以锌铬催化剂合成粗甲醇的精制。主要步骤有:中和、脱醚、预精馏脱轻组分杂质、氧化净化、主精馏脱水和重组分,最终得到精甲醇产品。在传统工艺流程上,取消脱醚塔和高锰酸钾的化学净化,只剩下双塔精馏(预精馏塔和主精馏塔)。其高压法锌铬催化剂合成甲醇和中、低压法铜系催化剂合成甲醇都可适用。 从合成工序来的粗甲醇入预精馏塔,此塔为常压操作。为了提高预精馏塔后甲醇的稳定性,并尽可能回收甲醇,塔顶采用两级冷凝。塔顶经部分冷凝后的

大部分甲醇、水及少量杂质留在液相作为回流返回塔,二甲醚等轻组分(初馏分)及少量的甲醇、水由塔顶逸出,塔底含水甲醇则由泵送至主精馏塔。主精馏塔操作压力稍高于预精馏塔,但也可以认为是常压操作,塔顶得到精甲醇产品,塔底含微量甲醇及其它重组分的水送往水处理系统(见图1.2)。 (3) 三塔流程描述 三塔工艺是由脱醚塔,加压精馏塔和常压精馏塔组成,形成二效精馏与二甲醇精馏塔甲醇产品的镏出物的混合物。三塔流程(见图1.3)的主要特点是,加压塔塔顶冷凝潜热用作常压塔塔釜再沸器的热源,形成双效精馏二效精馏,因此热量交换在加压塔顶部和常压塔底部之间进行。这种形式节省大约30%~40%的能源,同时降低了循环冷却水的速度。 从合成工序来的粗甲醇入预精馏塔,在塔顶除去轻组分及不凝气,塔底含水甲醇由泵送加压塔。加压塔操作压力为57bar(G),塔顶甲醇蒸气全凝后,部分作为回流经回流泵返回塔顶,其余作为精甲醇产品送产品储槽,塔底含水甲醇则进常压塔。同样,常压塔塔顶出的精甲醇一部分作为回流,一部分与加压塔产品混合进入甲醇产品储槽。 (4) 四塔流程描述 四塔流程(见图1.4)包含预精馏塔、加压精馏塔、常压精馏塔和甲醇回收塔。粗甲醇经换热后进入预精馏塔,脱除轻组分后(主要为不凝气、二甲醚等),塔底甲醇及高沸点组分加压后进入加压精馏塔,加压精馏塔顶的气相进入冷凝蒸发器,利用加压精馏塔和常压精馏塔塔顶、塔底的温差,为常压塔塔底提供热源,同时对加压塔塔顶气相冷凝。冷凝后的精甲醇进入回流罐,一部分作为加压塔回流,一部分作为精甲醇产品出装置,加压塔塔底的甲醇、高沸组分、

甲醇—水分离过程填料精馏塔塔设计

重庆大学课程设计报告 课程设计题目:甲醇—水分离过程填料 精馏塔塔设计 学院:化学化工学院 专业:制药工程01班 年级: 2008级 姓名: XXX 学号: XXXX 完成时间: 2016年7月6日 成绩: 平时成绩(20%): 图纸成绩(40%): 报告成绩(40%): 指导老师:张红晶

1、设计简要 1.1 设计任务及概述 在抗生素类药物生产中,需要甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇50%、水50%(质量分数),另含有少量的药物固体微粒。为使废甲醇溶液重复利用,拟建一套填料精馏塔,对废甲醇进行精馏,得到含水量≦0.3%(质量分数)的甲醇溶液。设计要求废甲醇溶液处理量为日产3吨,塔底废水中甲醇含量≦0.5%(质量分数)。 操作条件: (1) 常压; (2) 拉西环,填料规格。 1.2 设计方案 填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也可以通过专门的改进设计来引导气体和液体的流动。塔的操作性能的好坏无疑会受填料支承的影响); ④:液体分布器(液体分布的好坏是影响填料塔操作效率的重要因素。液体分布不良会降低填料的有效湿润面积,并促使液体形成沟流); ⑤:中间支承和再分布器(液体通过填料或沿塔壁流下一定的高度需要重新进行分布); ⑥:气液进出口。 塔的结构和装配的各种机械形式会影响到它的设计并反映到塔的操作性能上,应该力求在最低压降的条件下,采用各种办法提高流体之间的接触效率,并设法减少雾沫夹带或壁效应带来的效率损失。与此同时,塔的设计必须符合由

甲醇-水精馏塔设计报告

《化工原理课程设计》报告

一、概述...................................................................................................................................... - 4 - 1.1 设计依据....................................................................................................................... - 4 - 1.2 技术来源....................................................................................................................... - 4 - 1.3设计任务及要求........................................................................................................... - 4 - 二、计算过程.............................................................................................................................. - 5 - 2. 1 设计方案.................................................................................................................... - 5 - 2.2 塔型选择....................................................................................................................... - 5 - 2.3工艺流程简介................................................................................................................ - 5 - 2.4 操作条件的确定........................................................................................................... - 6 - 2.41 操作压力............................................................................................................. - 6 - 2.4.2 进料状态............................................................................................................ - 6 - 2.4.3 热能利用............................................................................................................ - 6 - 2.5 有关的工艺计算........................................................................................................... - 6 - 2.5.1精馏塔的物料衡算...................................................................错误!未定义书签。 2.5.2物料衡算............................................................................................................. - 7 - 2.6 塔板数的确定............................................................................................................... - 7 - 2.6.1 理论板层数NT的求取 .................................................................................... - 7 - 2.6.2 实际板层数的求取............................................................................................ - 8 - 2.7精馏塔的工艺条件及有关物性数据的计算............................................................... - 8 - 2.7.1操作压力的计算................................................................................................. - 8 - 2.7.2操作温度的计算(详见附录一(1)) ................................................................ - 9 - 2.7.3 平均摩尔质量的计算........................................................................................ - 9 - 2.7.4 平均密度的计算................................................................................................ - 9 - 2.7.5液相平均表面力的计算................................................................................... - 11 - 2.7.6 液体平均粘度的计算...................................................................................... - 11 - 2.8 精馏塔的塔底工艺尺寸计算..................................................................................... - 12 - 2.8.1塔径的计算....................................................................................................... - 12 - 2.8.2 精馏塔有效高度的计算.................................................................................. - 13 - 2.9 塔板主要工艺尺寸的计算......................................................................................... - 14 - 2.9.1溢流装置的计算............................................................................................... - 14 - 2.9.2 塔板布置.......................................................................................................... - 15 - 2.10 筛板的流体力学验算............................................................................................... - 16 - 2.10.1 塔板压降........................................................................................................ - 16 - 2.10.2 液面落差........................................................................................................ - 18 - 2.10.3 液沫夹带........................................................................................................ - 18 - 2.10.4 漏液................................................................................................................ - 18 - 2.10.5 液泛................................................................................................................ - 18 - 2.11 塔板负荷性能图....................................................................................................... - 19 - 2.11.1液漏线............................................................................................................. - 19 - 2.11.2液沫夹带线..................................................................................................... - 20 - 2.11.3液相负荷下限线............................................................................................. - 20 - 2.11.4液相负荷上限线............................................................................................. - 21 - 2.11.5液泛线............................................................................................................. - 21 -

甲醇-水精馏课程设计—化工原理课程设计

甲醇-水分离过程板式精馏塔的设计 1.设计方案的确定 本设计任务为分离甲醇和水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.8倍。塔釜采用间接蒸汽加热①。 2.精馏塔的物料衡算 2.1.原料液及塔顶、塔顶产品的摩尔分率 甲醇的摩尔质量M A=32.04kg/kmol 水的摩尔质量M B=18.02 kg/kmol x F= 0.46/32.04 0.324 0.46/32.040.54/18.02 = + x D= 0.95/32.04 0.914 0.95/32.040.05/18.02 = + x W= 0.03/32.04 0.0171 0.03/32.040.97/18.02 = + 2.2.原料液及塔顶、塔底产品的平均摩尔质量 M F=0.324*32.04(10.324)*18.0222.56 +-=kg/kmol M D=0.914*32.04(10.914)*18.0230.83 -=kg/kmol M W=0.0171*32.04(10.0171)*18.0218.26 +-=kg/kmol 2.3.物料衡算 原料处理量F= 30000*1000 184.7 24*300*22.56 =kmol/h 总物料衡算184.7=D+W 甲醇物料衡算184.7*0.324=0.914D+0.0171W 联立解得D=63.21 kmol/h W=121.49 kmol/h 3.塔板数的确定 3.1.理论塔板层数N T的求取 3.1.1.由手册查的甲醇-水物系的气液平衡数据

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [ 设计计算] (一)设计方案的确定 本设计任务为分离甲醇- 水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 3 原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T 的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h

甲醇—水填料精馏塔设计示例-精选.

甲醇—水分离装置的工艺设计 摘要 甲醇是一种重要的化工原料,其用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。 甲醇易于吸收水蒸汽、二氧化碳和某些其它物质,因此只有用特殊的方法才能制得完全无水的甲醇。精馏是应用最广的传质分离操作,板式塔是目前最主要的精馏塔塔型,对它的研究一直长盛不衰。筛板塔和浮阀塔成功地取代泡罩塔是效益巨大的成果。板式塔的设计已达到较高水平,设计结果比较可靠。马伦戈尼效应造成的界面湍动现象和汽液两相间的不同接触工况的研究,使认识得到了深化,对传质效率的研究有所促进。具有各种特点的新型塔板开发研究不断取得成果。对于塔板上汽液两相流动和混合状况、雾沫夹带及它们对效率的影响研究不断深入,但离得到一个通用而可靠的效率估算模型尚有较大距离,特别是多元系统的效率。进一步深入进行塔中汽液两相流动状况的研究,对于预测压降、传质效率和塔板的可操作区域,对于认识至今了解甚少的降液管中状况都十分有意义。 关键词:甲醇;精馏;板式塔

目录 摘要 (1) 目录 (2) 前言 (3) 第一章文献综述 (5) 1.1甲醇 (5) 1.1.1甲醇的性质 (5) 1.1.2甲醇的用途 (5) 1.1.3甲醇工业 (5) 1.1.4甲醇的下游产品 (6) 1.2精馏原理 (7) 1.3板式塔 (8) 1.3.1 板式塔分类 (8) 1.3.2 板式塔的结构 (8) 1.3.3 板式塔的特点 (10) 1.3.4 板式塔的作用 (10) 第二章设计部分 (12) 2.1设计任务 (12) 2.2 设计方案的确定 (12) 2.3 设计计算 (12) 2.3.1 精馏塔的物料衡算 (12) 2.3.2 精馏塔塔板数的确定 (13)

甲醇-水分离板式精馏塔的设计资料

河西学院 Hexi University 化工原理课程设计 题目: 甲醇-水板式分离精馏塔设计学院: 化学化工学院 专业: 化学工程与工艺 学号: 2014210036 姓名: 张小宝 指导教师: 冯敏 2016 年11 月29日

化工原理课程设计任务书一、设计题目 甲醇-水分离板式精馏塔设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)5万吨/年 操作周期每年300天,每天24小时运行 进料组成含甲醇46% (质量分率,下同) 塔顶产品组成甲醇含量不低于99.7% 塔底产品组成甲醇含量不高于0.5% 2.操作条件 操作压力常压 进料热状态自选 塔底加热蒸汽压力0.3MPa(表压) 单板压降≤0.7kPa 3.设备型式筛板或浮阀塔板 4.厂址张掖 三、设计内容 1.设计方案的选择及流程说明 2.塔的工艺计算 3.主要设备工艺尺寸设计 (1)塔径、塔高及塔板结构尺寸的确定 (2)塔板的流体力学校核 (3)塔板的负荷性能图 (4)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及精馏工艺条件图 7.设计评述

目录 1 概述 (1) 1.1 精馏原理及其在化工生产上的应用..................................... (1) 1.2 精馏塔对塔设备的要求 (1) 1.3 常用板式塔类型及本设计的选型 (2) 1.4 流程的确定和说明 (2) 2 精馏塔的物料衡算 (2) 2.1 原料液及塔顶和塔底的摩尔分率 (2) 2.2 原料液及塔顶和塔底产品的平均摩尔质量 (3) 2.3 物料衡算 (3) 3 塔板数的确定 (3) 3.1 理论板层数 N的求取 (3) T 3.1.1 相对挥发度的求取 (3) 3.1.2 求最小回流比及操作回流比 (4) 3.1.3 求精馏塔的气、液相负荷 (5) 3.1.4 求操作线方程 (5) 3.1.5 采用图解法求理论板层数 (6) 3.2 实际板层数的求取 (6) 3.2.1 液相的平均粘度 (6) 3.2.2 精馏段和提馏段的相对挥发度 (7) 3.2.3 全塔效率E T和实际塔板数 (7) 4 精馏塔的工艺条件及有关物性数据的计算 (7) 4.1 操作压力的计算 (7) 4.2 操作温度计算 (8) 4.3 平均摩尔质量计算 (8) 4.4 平均密度计算 (9) 4.4.1 气相平均密度计算 (9) 4.4.2 液相平均密度计算 (9)

化工原理甲醇-水板式精馏塔设计

一、甲醇-水板式精馏塔设计条件 (1)生产能力:3万吨/年,年开工300天 (2)进料组成:甲醇含量65%(质量分数) (3)采用间接蒸汽加热并且加热蒸汽压力:0.3MPa (4)进料温度:采用泡点进料 (5)塔顶馏出液甲醇含量99%(质量分数) (6)塔底轻组分的浓度≤1%(本设计取0.01) (7)塔顶压强常压 (8)单板压降≤0.7Kpa (9)冷却水进口温度25℃ (10)填料类型:DN25金属环矩鞍散堆填料 二、设计的方案介绍 1、工业流程概述 工业上粗甲醇精馏的工艺流程,随着粗甲醇合成方法不同而有差异,其精制过程的复杂程度有较大差别,但基本方法是一致的。首先,总是以蒸馏的方法在蒸馏塔的顶部,脱出较甲醇沸点低的轻组分,这时,也可能有部分高沸点的杂质和甲醇形成共沸物,随轻组分一并除去。然后,仍以蒸馏的方法在塔的底部或侧脱除水和重组分,从而获得纯净甲醇组分。其次,根据精甲醇对稳定性或其他特殊指标的要求,采取必要的辅助办法。 常规甲醇精制流程可以分为两大部分,第一部分是预精馏部分,另一部分是主精馏部分。预精馏部分除了对粗甲醇进行萃取精馏脱出某些烷烃的作用之外,另外的还可以脱出二甲醚,和其它轻组分有机杂质。其底部的出料被加到主塔的中间入料板上,主塔顶部出粗甲醇,底部出废液,下部侧线出杂醇。 2、进料的热状况 精馏操作中的进料方式一般有冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料五种。本设计采用的是泡点进料。这样不仅对塔的操作稳定较为方便,不受厦门季节温度影响,而且基于恒摩尔流假设,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。 3、精馏塔加热与冷却介质的确定 在实际加热中,由于饱和水蒸气冷凝的时候传热的膜系数很高,可以通过改变蒸汽压力准确控制加热温度。水蒸气容易获取,环保清洁不产生环境污染,并且不容易使管道腐蚀,成本降低。因此,本设计是以133.3℃总压是300 kpa的饱和水蒸汽作为加热介质。 冷却介质一般有水和空气。在选择冷却介质的过程中,要因地制宜充分考虑。以茂名市地处亚热带为例,夏天室外平均气温28℃。因此,计算选用28℃的冷却水,选择升温10℃,即冷却水的出口温度为38℃。 4、塔顶的回流方式 对于小型塔采用重力回流,回流冷凝器一般安装在比精熘塔略高的地方,液体依靠自身的重力回流。但是必须保证冷凝器内有一定持液量,或加入液封装置防止塔顶汽相逃逸至

相关主题
文本预览
相关文档 最新文档