粉体工程与设备共31页文档
- 格式:ppt
- 大小:2.27 MB
- 文档页数:31
宿迁学院粉体工程实验指导书实验一激光法测量粉体颗粒的粒度一、实验目的:掌握激光法测量粉体颗粒的粒度的基本原理了解利用激光粒度仪测量粉体颗粒的粒度的工作流程了解BT-9300-H激光粒度仪基本构造,利用激光粒度仪测量粉体的粒度二、激光法测量粉体颗粒的粒度基本原理与过程:颗粒的粒度与形状对其产品的性质与用途影响很大,因此,粒度与形状的测量非常重要。
例如,水泥的强度与其细度有关,磨料的粒度和粒度分布决定其质量等级,粉碎和分级也需要对其粒度进行测量。
随着纳米级材料的发展,人们对粒度测量提出了更高的要求。
表1列出了颗粒粒度测量的主要方法。
表1 粒度测量的方法筛分法:用于粒度分布的测量已有很长的历史了,制造筛网的技术也不断提高,国外可制造小到5μm的筛网。
筛分分析适用于粒径约100mm~20μm之间的粒度分布测量。
筛孔大小尺寸用“目”来表示,即1英寸长度的筛网上的筛孔数表示。
标准筛的规格见本书后的附录。
BET吸附法:流体通过法一般采用空气,使其通过粉体料层,由空气的流速、压力差等参数计算粉体的比表面积,然后计算出粉体的平均粒径。
比重计法:比重天平和沉降天平曾一度广泛地使用过。
但这些仪器测量时间太长,且不适合细颗粒的测量,将逐渐被淘汰。
沉降法:原理:当光束通过装有悬浮液的测量容器时,一部分光被反射或有吸收,一部分光到达光电传感器,将光强转变成电信号。
透过光强与悬浮液的浓度或颗粒的投影面积有关。
另一方面,颗粒在力场中沉降,可用斯托克斯定律计算其粒径大小,从而得到累积粒度分布。
(1)重力场光透过沉降法其测量范围在0.1~1000μm。
光源为:可见光、激光和X光。
颗粒的沉降速度与颗粒与悬浮液的密度有关,当密度差大时沉降速度快,反之沉降速度慢。
为了提高测量速度,节省测量时间,中国科学院化工冶金所马兴华等人发明了图像沉降法,装置简图如图1所示。
该装置采用一线性图像传感器,将沉降过程可视化,可明显节省测量时间。
例如对平均粒度为5μm的SiC样品测量的结果表明,本仪器仅需5min即可测量完毕,而国外同类仪器则需28min。
粉碎固体物料在外力作用下克服其内聚力使之破碎的过程。
粉碎比物料粉碎前的平均粒径与粉碎后的平均粒径之比称为平均粉碎比。
粉碎级数串联粉碎机台数粉碎流程(1)开路流程从粉(磨)碎机中卸出的物料即为产品,不带检查筛分或选粉设备的粉碎流程。
简单、效率低、产品合格率低(2)闭路流程带检查筛分或选粉设备的粉碎流程。
效率高循环负荷率不合格粗粒作为循环物料重新回至粉碎机中再进行粉碎,粗颗粒回料质量与该级粉碎产品质量之比。
选粉效率检查筛分或选粉设备分选出的合格物料质量与进该设备的合格物料总质量之比。
强度:指对外力的抵抗能力,通常以材料破坏时单位面积所受的力来表示(N/m2)理论强度不含任何缺陷的完全均质材料的强度(相当于原子、离子或分子间的结合力)实际强度一般为理论强度的1/100~1/1000硬度材料抵抗其他物体刻划或压入其表面的能力,也可理解为在固体表面产生局部变形所需的能量易碎(磨)性一定粉碎条件下,将物料从一定粒度粉碎至某一指定粒度所需的比功耗。
----比功耗单位质量物料从一定粒度粉碎至某一指定粒度所需的能量。
脆性脆性材料受力破坏时直到断裂前只出现极小的弹性变形而不出现塑性变形,抗冲击能力较弱。
采用冲击粉碎方法可粉碎。
材料的韧性指在外力作用下,塑性变形过程中吸收能量的能力。
断裂材料的断裂和破坏实质上是在应力作用下达到其极限应变的结果。
脆性材料在应力达到其弹性极限时,材料即发生破坏,无塑性变形出现。
韧性材料在应力略高于弹性极限并达到屈服极限时,尽管应力不断增大,但此时材料并未破坏,自屈服点以后的变形为塑性变形。
粉碎方式(a)挤压粉碎(b)冲击粉碎(c)摩擦-剪切粉碎(d)劈裂-裁断粉碎挤压粉碎:粉碎设备的工作部件对物体施加挤压作用,物料在压力作用下发生粉碎(挤压磨及鄂氏破碎机)挤压-剪切粉碎:挤压和剪切两种粉碎方法相结合的方式(雷蒙磨,立式磨)。
冲击粉碎:包括高速运动的粉碎体对被粉碎物料的冲击和高速运动的物料向固定壁或靶的冲击。
北方民族大学课程设计报告院(部、中心)材料科学与工程学院姓名王芳学号专业材料科学与工程班级 082 同组人员王选、高稳成、闫晓展、代新、马海龙课程名称粉体工程与设备项目名称年产3000吨碳化硅微粉的生产线的可行性研究报告起止时间2010-11-21至2009-12-3成绩指导教师王正粟祁利民北方民族大学教务处制目录一、项目的目的和意义··············································二、工艺参数的计算··············································三、设备的选择依据··············································四、成本核算··············································五、效益分析··············································六、环境保护及措施··············································七、小节··············································八、参考文献··············································一、目的及意义碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。
《粉体工程与设备》课程指南粉体工程与设备课程编码:01422010英文名称:Powder Engineering and Equipment课程类别:专业必修课先修课程:机械零件设计、流体力学与设备开课学期:6开课单位:材料科学与工程学院计划学时:70学 分:4授课教师:陶珍东、姜奉华、王介强、张学旭、孙杰景、徐红燕等 课程简介:粉体的制备与处理在现代材料科学与工程中占有极其重要的地位,在各种新材料的研究和开发过程中,高性能粉体的制备甚至成为关键环节。
随着现代科学的飞速发展,粉体工程的跨学科性及学科边缘性和综合性特点日益突出。
本课程是针对材料科学与工程专业科生开设的课程。
本课程的主要任务:系统介绍粉体的几何、填充、流变、力学等基本性质、破碎与粉磨、分级与分离、混合、输送与计量等粉体制备和处理中各种单元操作的基本理论以及相关机械设备的构造、工作原理、设备工艺选型计算方法等,并及时介绍粉体工程领域中技术和机械设备研究开发的最新理论成果及发展动态。
同时配合粉体工程综合实验,使学生了解并学会粉体工程科学研究的思路和方法。
本课程的目的:通过课程学习,使学生从粉体的基本性质出发,熟悉和掌握粉体制备和处理的基本理论、各单元操作的特点及关键,熟悉各单元操作的各种机械设备的构造、工作原理及性能,能正确进行工艺设备选型,并为开发新的粉体工程设备奠定基础。
教材资料:(一)教材陶珍东,郑少华,《粉体工程与设备》,化学工业出版社,2010年。
(二) 主要参考资料1、盖国胜等,《超细粉碎分级技术》,中国轻工业出版社,2000年。
2、郑水林,《超细粉碎原理、工艺设备及应用》,中国建材工业出版社,1993年。
3、卢寿慈,《粉体加工技术》,中国轻工业出版社1999年。
4、李凤生等,《超细粉体加工技术》,国防工业出版社,2000年。
教师简介:陶珍东,男,博士,教授,硕士生导师。
研究领域:粉体科学与工程、材料加工工程。
姜奉华,男,博士,副教授;研究领域:姜奉华,男,工学博士,济南大学副教授;研究领域:主要从事硅酸盐材料、固体废弃物综合利用、纳米材料等。
北方民族大学课程设计报告院(部、中心)材料科学与工程学院姓名王芳学号专业材料科学与工程班级 082 同组人员王选、高稳成、闫晓展、代新、马海龙课程名称粉体工程与设备项目名称年产3000吨碳化硅微粉的生产线的可行性研究报告起止时间2010-11-21至2009-12-3成绩指导教师王正粟祁利民北方民族大学教务处制目录一、项目的目的和意义··············································二、工艺参数的计算··············································三、设备的选择依据··············································四、成本核算··············································五、效益分析··············································六、环境保护及措施··············································七、小节··············································八、参考文献··············································一、目的及意义碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。
《粉体工程》实验指导书武汉工程大学二00六年九月实验— 粒度分析实验一、实验目的学会筛分分析技术,掌握粒度分析曲线的绘制方法。
二、实验要求1、正确取出筛分分析试样;2、正确使用标准套筛;3、认真记录实验数据,并作有关计算;4、用算术坐标法和双对数坐标法绘制粒度分析曲线。
三、实验设备与用具1、标准套筛;2、振筛机;3、托盘天平;4、搪瓷盘;5、秒表。
四、实验步骤1、检查振筛机能否正常工作,将标准筛按规定次序叠好,并套上底盘。
2、称取一定量具有代表性的试样(粒度小于0.418mm )。
3、将称量好的试样倒入最上层筛面上,并套好上盖。
4、将叠好的标准套筛放在振筛机上,筛分大约20分钟。
到达筛分时间后,将筛子从上而下依次取出,将最下层筛子在塑料布上继续用手筛数分钟,检查是否己到达筛分终点。
5、到达筛分终点后,将每一个粒级的物料称重,并记录在筛分分析表中。
6、检查各粒级物料重量之和是否与原物料重量相近,若相对误差超过2%,则应重做。
五、实验数据处理 1、筛分分析表2、在算术坐标纸上绘制“粒度——产率”、“粒度——正累积产率”曲线;在双对数坐标纸上绘制“粒度——负累积产率” 曲线。
3、确定Rosin 方程 中的参数b 和n ,并用粒度特性方程表征物料粒度。
nbx e R -=100实验二 筛分效率测定实验一、实验目的掌握筛分效率的测定和计算方法。
二、实验要求1、仔细观察振动筛的构造,掌握其工作原理;2、测定并计算振动筛的筛分效率;3、分析生产率与筛分效率的关系,验证筛分动力学的应用公式: 三、实验设备与工具1、振动筛;2、检查筛;3、台称;4、料盆;5、秒表。
四、实验步骤1、观察振动筛的构造,检查振动筛是否能正常运转。
注意不要靠近振动筛的转动部件。
2、称取5kg 试样作振动筛的给料。
3、将称好的给料轻倒在振动筛筛面一半的位置,启动振动筛进行筛分;将筛上物料T 和筛下物料C 分别称重,其重量之和应与原物料重量相近,相对误差不超过2%;注意在启动振动筛的同时开始测定试样在筛面上的停留时间t 。