太赫兹波的特点
- 格式:docx
- 大小:16.87 KB
- 文档页数:2
基于太赫兹波的无损检测技术研究随着科技的发展,无损检测成为现代工业生产中不可或缺的一部分,而太赫兹波的应用,则正在成为无损检测的一项新技术。
一、太赫兹波的应用和优势太赫兹波是介于微波和红外线之间的电磁波,其频率范围在0.1GHz~10THz。
太赫兹波被广泛应用于材料物性研究、生物医学、通信等多个领域。
太赫兹波具有穿透性强、非电离辐射、对生物和材料无害性等特点。
太赫兹波可以与物质相互作用,根据物质的反射和透射特性,得到物质的信息,因而成为了无损检测领域研究热点。
二、基于太赫兹波的无损检测技术太赫兹波无损检测技术是指利用太赫兹波与被检测物体相互作用,通过检测太赫兹波的透射、反射等特性,得到物体的信息并进行分析和判断的一种检测方法。
基于太赫兹波的无损检测技术具有以下特点:1. 非破坏性太赫兹波是非电离辐射,对被检测物体无任何伤害,不影响物体的物理性质。
2. (成像)分辨率高太赫兹波的波长在0.1mm~1mm之间,远远小于微波和红外线的波长,因此可以获得高分辨率的成像效果。
3. 多参数检测太赫兹波可以同时测量物体的折射率、吸收系数、振动频率等多个参数,从而更全面地了解物体的性质。
三、基于太赫兹波的无损检测技术在工业领域中的应用目前,基于太赫兹波的无损检测技术已经应用于工业领域,主要应用于以下几个方面:1. 金属材料的无损检测太赫兹波可以穿透金属,通过检测金属的电磁性质,可以得到金属的厚度、材质、缺陷等信息,对金属材料进行无损检测。
2. 塑料及复合材料的无损检测太赫兹波可以通过检测材料的电磁性质,来判断材料的密度、水分含量、缺陷等。
3. 铝合金的无损检测太赫兹波可以穿透铝合金,通过测量铝合金的吸收系数、折射率等特性,可以得到铝合金的质量、机械性能等信息。
4. 轮胎内部缺陷检测太赫兹波可以穿透橡胶材料,通过检测轮胎内部橡胶缺陷的电磁性质,可以得到轮胎内部缺陷的位置、大小等信息。
四、基于太赫兹波的无损检测技术的应用前景当前,太赫兹波无损检测技术依然处于发展阶段,但是随着科技的进步和市场的需求,无损检测技术市场将逐步扩大,太赫兹波无损检测技术也将会得到越来越广泛的应用。
太赫兹波段信号处理与应用研究随着科技的发展,太赫兹波(Terahertz wave)成为了一个备受关注的研究领域。
太赫兹波是一种介于红外线与微波之间的电磁波,其频率范围为300GHz至3THz,波长在微米尺度以下,因其良好的穿透力和成像能力,在医学、生物、安检等领域具有广泛的应用前景。
而太赫兹波的信号处理则是太赫兹技术的一个重要环节,在太赫兹波的应用中担任着至关重要的角色。
一、太赫兹波信号特点太赫兹波信号的特点主要有以下几个方面:1、宽带特性。
太赫兹波频率范围宽,信号带宽可达数十GHz,甚至上百GHz,对处理系统的带宽需求很高。
2、穿透性好。
太赫兹波能穿透很多物质,如塑料、石英玻璃、丝绸等,这使得太赫兹波在安检、非破坏性检测、医学成像等方面有着广泛的应用。
3、拥有独特的成像能力。
太赫兹波比较适合制造三维成像,可以用于非破坏性的检测、材料表面缺陷的检验以及海底钻石的探测等。
二、太赫兹波信号处理方法太赫兹波的信号处理方法有以下几种。
1、频域处理法频域分析法是将时域的太赫兹波信号转换为频域信号,再采用数学模型对太赫兹波信号进行处理。
快速傅里叶变换(FFT)是频谱分析的主要方法之一。
2、时域处理法时域的处理方法侧重于处理太赫兹波的波形、幅度和相位等信息。
时域处理的主要方式是数字滤波。
数字滤波是指通过将信号传递到一个特定的过滤器内,来消除信号中某些频率成分或波形畸变的现象。
3、小波分析法小波分析法是将太赫兹波信号分解为多个频段,便于对信号各频段进行分析和处理。
小波分析处理方法是一种全新的信号处理方法,它可以在时域和频域同时进行信号分析,被广泛用于图像压缩、信号过滤、噪声去除等领域。
三、太赫兹波信号处理在不同领域的应用1、物质检测太赫兹波可以穿透大多数物质,可实现对物质的非破坏性检测。
太赫兹波在物质检测中的应用包括检测液体中的污染物、食品中的添加剂、药品中的成分等。
2、医学成像太赫兹波在医学成像方面的应用也越来越广泛,包括皮肤病诊断、乳腺癌检测等。
太赫兹概念太赫兹波是介于红外光和微波波段之间的电磁波,它的频率范围在100千赫兹至30太赫兹之间。
太赫兹波的具体频率范围因不同的应用领域而有所不同。
太赫兹技术是近年来发展较为迅速的一种射频技术,具有广泛的应用前景。
下面将详细介绍太赫兹概念及其相关参考内容。
1. 太赫兹概念及特点太赫兹波是指介于红外和微波之间的电磁波,其频率范围在0.1到30太赫兹之间。
太赫兹波的特点包括穿透性强、非离散可调频、波长适中,以及与生物体和物质之间的相互作用等。
2. 太赫兹波的应用领域(1) 安全检测领域:太赫兹波技术可以用于检测和辨别常见的危险物质,如爆炸物、毒品等,具有非接触、高分辨率的特点。
(2) 无损检测领域:太赫兹波技术可以通过材料的透过、反射、散射等特性,实现对各种物质中的缺陷、污染、结构等问题的检测。
(3) 医学领域:太赫兹波技术可以用于医学成像,如乳腺癌早期检测、皮肤疾病诊断等,具有无辐射、高分辨率等特点。
(4) 通信领域:太赫兹通信是一种新兴的无线通信技术,具有大带宽、高安全性等特点,可应用于高速数据传输和室内通信等领域。
(5) 物质研究领域:太赫兹波技术可以用于研究物质的结构、振动、能带等性质,有助于深入了解和研究各种材料。
3. 太赫兹技术的关键技术及发展趋势(1) 天线与射频电路设计:太赫兹波天线和射频电路的设计是太赫兹技术的关键。
有效设计和制备合适的天线和射频电路可以显著提高太赫兹波的传输和探测效果。
(2) 图像处理与算法:图像处理和算法是太赫兹成像和数据分析的重要部分,能够提取有效信息和改善图像质量,从而为太赫兹技术的应用提供更好的支持。
(3) 光学元件与系统:太赫兹技术中的光学元件和系统设计对传输和探测效果起到关键作用。
通过研究和改进太赫兹波在光学元件和系统中的传输特性,可以进一步提高太赫兹技术的性能。
(4) 前沿研究:太赫兹技术在不同领域的应用正在不断拓展,如太赫兹光子学、太赫兹超材料等前沿研究领域的发展,将进一步推动太赫兹技术的创新和应用。
太赫兹技术在医学检测和诊断中的应用研究
太赫兹技术是近年来发展迅猛的一种新兴技术,其频率处于红外光和微波之间。
太赫兹波具有穿透深度大、非离子性、灵敏度高等特点,被广泛用于生命科学、医学等领域的研究。
在医学检测和诊断中,太赫兹技术有广泛应用前景。
一、医学成像
太赫兹波能够穿透生物组织,与组织内的分子发生相互作用,因此可用于生物组织成像。
太赫兹成像技术广泛应用于皮肤成像、乳腺肿瘤检测和眼部成像等方面。
例如,太赫兹成像技术可用于口腔癌的早期诊断,可以检测出癌细胞并区分不同类型的癌细胞,具有很高的判断精度。
二、药物研究
太赫兹成像技术还可用于药物研究。
通过太赫兹光谱分析,研究人员可以了解药物分子的振动和转动状态,从而更好地理解药物的分子结构和性质。
这不仅有助于药物的开发和设计,还可提高药物疗效。
三、病变检测
太赫兹波与生物组织的交互作用能够检测出病变细胞对电磁辐射的吸收和散射情况。
因此,太赫兹技术可用于筛查人体内的病变细胞,例如癌细胞。
这些癌细胞有着独特的吸收和散射特征,可以通过太赫兹波的成像研究方法被提取出来,从而帮助
医生进行更加准确的诊断。
四、组织成分分析
太赫兹光谱分析技术可用于分析不同种类的生物大分子,如多糖、蛋白质等的振动和转动情况,也可用于分析药物、食品中的物质组成。
例如,在食品中检测普通安乐死,换成使用太赫兹技术,不仅检测更为准确,而且不会对人体造成任何危害。
总之,太赫兹技术在医学检测和诊断中有广泛的应用前景,可以提高医学领域的准确性和可靠性。
随着技术的不断发展,相信太赫兹技术将为医学发展带来更多的惊喜。
太赫兹科学技术的综述引言太赫兹科学技术是指利用太赫兹波段的电磁波进行研究和应用的科学领域。
太赫兹波段是指位于红外光和微波之间的频段,频率范围在0.1 THz到10 THz之间。
太赫兹波段具有许多独特的特性,使其在材料科学、生物医学、安全检测等领域具有广泛的应用前景。
本文将对太赫兹科学技术的研究进展和应用进行综述。
太赫兹波的特性太赫兹波有许多独特的特性,使其在科学研究和技术应用中具有广泛的应用前景。
1. 非破坏性:太赫兹波可以透过许多非透明材料,如塑料、陶瓷等,从而可以进行非破坏性的材料检测和成像。
2. 光谱信息:太赫兹波可以提供物质的光谱信息,帮助研究物质的结构和性质。
3. 低能量:太赫兹波的能量较低,对生物体和材料影响较小,使其在生物医学和安全检测中具备潜力。
太赫兹科学技术的研究进展太赫兹科学技术的研究取得了许多重要进展,以下是其中的几个方面:太赫兹波的发射和检测技术太赫兹波的发射和检测是太赫兹科学技术的基础。
近年来,研究人员开发了许多新的太赫兹波发射和检测器件,例如太赫兹波源、太赫兹探测器等。
这些技术的发展大大提高了太赫兹科学技术的研究水平和应用能力。
太赫兹波在材料科学中的应用太赫兹波在材料科学中具有广泛的应用前景。
研究人员利用太赫兹波可以对材料的结构、成分、缺陷等进行非破坏性的检测和表征。
此外,太赫兹波还可以被用于材料的表面和界面分析等领域。
太赫兹波在生物医学中的应用太赫兹波在生物医学领域也有重要的应用价值。
太赫兹波可以透过皮肤、血液等生物组织,对生物体进行非侵入性的检测和成像。
这使得太赫兹波在病理学、药物筛选等领域具有巨大的潜力。
太赫兹波在安全检测中的应用由于太赫兹波对许多非透明材料的透射性,以及对爆炸物、毒品等物质的特异性吸收能力,太赫兹技术在安全检测领域有广阔的应用前景。
太赫兹波可以用于空港、火车站等场所的安全检查,帮助发现隐藏的危险物品。
结论太赫兹科学技术在过去几年取得了令人瞩目的研究进展和应用成果。
太赫兹波概念
太赫兹波是指波长在3μm到1000μm之间,频率在之间的电磁波,位于电磁波谱中的毫米波和远红外之间(30um~3mm)。
这种电磁波具有直进性、穿透性和吸收性等特点。
太赫兹波可以根据其产生方式和特性进一步分为两种类型:干涉太赫兹波(人工波,单一波)和太赫兹波(自然光,复合波)。
干涉太赫兹波由红外线激光和光电导体共振或激光自由电子与半导体的共振产生,而太赫兹波则包括月亮、星星的光以及宇宙光(暗黑宇宙空间的光)等自然光。
太赫兹波由于在电磁波谱上的特殊位置,表现出很多独特的性质。
其瞬态性太赫兹脉冲的宽度在亚皮秒范围,具有很高的时间分辨率,可以对多种材料(包括液体、气体、半导体、高温超导体、铁磁体、生物样品等)进行时域光谱研究。
此外,超快光电子技术,特别是超快激光技术,以及低尺度半导体技术的发展,为太赫兹辐射的产生提供了稳定、可靠的光源和探测方法,使得太赫兹科学与技术得以飞速发展。
以上内容仅供参考,建议查阅关于太赫兹波的专业书籍或者咨询该领域专家以获取更全面和准确的信息。
1.3 太赫兹波的独特性质目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。
它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对于物质结构的探索具有重要意义;其次是因为太赫兹脉冲光源与传统光源相比具有很多独特的性质。
其中最重要的是前四种特性,后三种特性都是基于前四种发展而来。
(1)瞬态性:太赫兹脉冲的典型脉宽在皮秒量级,不但可以方便地对各种材料(包括液体、半导体、超导体、生物样品等)进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪声的干扰。
目前,辐射强度测量的信噪比可以大于104,远远高于傅立叶变换红外光谱技术,而且其稳定性更好。
(2)宽带性:太赫兹脉冲源通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从GHz至几十太赫兹的范围,便于在大的范围里分析物质的光谱性质。
(3)相干性:太赫兹的相干性源于其产生机制。
它是由相干电流驱动的偶极子振荡产生,或是由相干的激光脉冲通过非线性光学效应(差频)产生。
太赫兹相干测量技术能够直接测量出电场的振幅和相位,可以方便地提取样品的折射率、吸收系数,与利用Kramers-Kronig关系来提取材料光学常数的方法相比,大大简化了运算过程,提高了可靠性和精度。
(4)低能性:太赫兹光子的能量只有毫电子伏特,与X射线相比,不会因为电离而破坏被检测的物质。
因此我们可以利用太赫兹做无损检测(毫米波、红外、超声技术也都具有这种优势,但是X-射线除外)。
(5)太赫兹辐射对于很多非极性物质,如电介质材料及塑料、纸箱、布料等包装材料有很强的穿透力, 可用来对已经包装的物品进行质检或者用于安全检查(红外技术,X-射线、超声技术也能实现这种功能)。
ieee白皮书 6g 太赫兹技术的基本原理IEEE白皮书一、引言随着无线通信技术的不断发展,太赫兹波段已成为下一代无线通信的重要候选者。
太赫兹波具有高带宽、低干扰、穿透性强等特点,因此在无线通信、安全监控、医疗诊断、遥感探测等领域具有广泛的应用前景。
本白皮书将介绍太赫兹技术的基本原理,以及其在6G通信中的潜在应用。
二、太赫兹波的基本特性太赫兹波是指频率在0.1-10THz范围内的电磁波,其波长在3-30μm之间。
太赫兹波具有以下基本特性:1. 频带广阔:太赫兹波带宽远大于微波和毫米波,可以支持更高的数据传输速率。
2. 空间分辨率高:太赫兹波具有较高的光子能量,可以穿透人体皮肤和组织,提高医疗诊断的准确性和安全性。
3. 传输特性好:太赫兹波对水和脂肪等物质的吸收系数较小,因此可以更好地穿透物体,提高通信和监控的可靠性。
4. 安全性高:太赫兹波对生物无害,不会对人体造成伤害。
三、6G通信中的太赫兹技术在6G通信中,太赫兹技术具有广阔的应用前景,可以应用于超高速无线通信、安全监控、遥感探测等领域。
1. 超高速无线通信:太赫兹波的高频特性使得6G通信可以获得更高的数据传输速率和更大的系统容量。
通过合理的设计和优化,太赫兹通信可以实现比现有无线通信更高的频谱利用率和更低的延迟。
2. 安全监控:太赫兹波可以穿透人体皮肤和组织,用于人体安全监控和身份识别。
通过结合太赫兹成像技术和无线通信技术,可以实现高精度的人体安全监控和快速的身份识别。
3. 遥感探测:太赫兹波可以穿透云雾和尘埃,用于遥感探测。
通过结合卫星通信和太赫兹技术,可以实现高精度、高分辨率的遥感探测,为环境监测、灾害预警和军事侦察等领域提供新的手段。
四、关键技术实现太赫兹通信的关键技术包括:1. 调制解调技术:太赫兹波的传输速率高,需要采用高速调制解调技术来实现可靠的数据传输。
2. 发射和接收技术:太赫兹波的波长短,需要采用特殊设计的发射和接收器,以提高信号的稳定性和可靠性。
太赫兹毫米波短波
太赫兹波、毫米波和短波是电磁频谱中不同频率范围的电磁波,它们各自具有不同的特性和应用。
具体分析如下:
-太赫兹波:太赫兹波的频率范围在0.1THz到10THz之间,波长在3mm到30μm之间。
太赫兹波位于微波和红外线之间,覆盖了部分毫米波与远红外频段。
太赫兹波的特点是具有很强的穿透性,能够穿透非金属物质如塑料、陶瓷等,同时由于光子能量低,不具有电离特性,对人体安全无害,因此非常适合用于安检和无损检测领域。
此外,太赫兹频段还具有海量的频谱资源,可用于超宽带超高速无线通信,如100 Gbps甚至更高速度的数据传输。
-毫米波:毫米波通常指的是频率在30GHz到300GHz之间的电磁波,波长在1mm到10mm 之间。
毫米波技术在5G通信中有广泛应用,因为它们可以提供更高的数据传输速率和更大的带宽。
毫米波的波长短,可以实现更小的天线尺寸和更高的空间分辨率,但它们的传播距离较短,容易受到大气吸收和遮挡的影响。
-短波:短波是指频率在3MHz到30MHz之间的电磁波,波长在10m到100m之间。
短波能够利用电离层反射进行远距离传输,因此广泛用于国际广播和无线电通信。
短波通信不受线路限制,可以实现跨洲际的通信,但由于电离层的不稳定性和多径效应,信号质量可能会受到影响。
综上所述,太赫兹波、毫米波和短波各有其独特的特点和应用领域。
太赫兹波由于其高带宽和安全性,在未来的高速无线通信和安全检测领域有着巨大的潜力;毫米波因其在5G通信中的应用而备受关注;而短波则在长距离无线电通信中发挥着重要作用。
太赫兹波的特点
•(1)高透射性:太赫兹对许多介电材料和非极性物质具有良好的穿透性,可对不透明物体进行透视成像,是X 射线成像和超声波成像技术的有效互补,可用于安检或质检过程中的无损检测。
(2)低能量性:太赫兹光子能量为 4.1meV(毫电子伏特),只是X 射线光子能量的108 分之一。
太赫兹辐射不会导致光致电离而破坏被检物质,非常适用于针对人体或其他生物样品的活体检查。
进而能方便地提取样品的折射率和吸收系数等信息。
(3)吸水性:水对太赫兹辐射有极强的吸收性,因为肿瘤组织中水分含量与正常组织明显不同,所以可通过分析组织中的水分含量来确定肿瘤的位置。
(4)瞬态性:太赫兹脉冲的典型脉宽在皮秒数量级,可以方便地对各种材料包括液体、气体、半导体、高温超导体、铁磁体等进行时间分辨光谱的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪声的干扰。
(5)相干性:太赫兹的相干性源于其相干产生机制。
太赫兹相干测量技术能够直接测量电场的振幅和相位,从而方便地提取样品的折射率、吸收系数、消光系数、介电常数等光学参数。
(6)指纹光谱:太赫兹波段包含了丰富的物理和化学信息。
大多数极性分子和生物大分子的振动和转能级跃迁都处在太赫兹波段,所以根据这些指纹谱,太赫兹光谱成像技术能够分辨物体的形貌,分析物体的物理化学性质,为缉毒、反恐、排爆等提供相关的理论依据和探测技术。
太赫兹波的产生
•(1)通过FTIR(Fourier Transform Infrared Spectrometer)使用热辐射源产生,如汞灯和SiC棒;
(2)是通过非线性光混频产生;
(3)是通过电子振荡辐射产生,如反波管、耿式振荡器及肖特基二极管产生;
(4)是通过气体激光器、半导体激光器、自由电子激光器等THz激光器直接产生。
目前产生THz脉冲常用的方法有光导天线法、光整流法、THz参量振荡器法、空气等离子体法等,其中空气等离子体能产生相对较高强度的THz波而备受关注,此外,还可以用半导体表面产生THz波。
太赫兹波的研究现状
•太赫兹波现象其实早已为人们所发现,然而早期因缺乏有效的太赫兹波产生和探测技术,使得相关研究进展极其缓慢[2]。
进入20世纪80年代后,激光技术的迅速发展为研究有效太赫兹波的产生和探测技术孕育了基础。
据文献报道,1983年
D.H.Anston[3]首次利用光学技术,通过超短激光脉冲激发光电导天线产生了相干脉
冲宽带THz辐射。
鉴于D.H.Auston做出的巨大贡献,光导天线后来常被称为“Auston switeh”。
紧接着,D.Grischkowsky和D.H.Auston等又开发出了基于超短激光脉冲激发光电导天线的THz时域光谱探测技术。
这种基于基于超短激光脉冲激发光电导天线的太赫兹波产生和探测技术至今仍然是实验设备应用的主流。
1990-1992年,X.C.zhang和D.H.Auston[4]等又提出了原理上完全不同的太赫兹波产生与探测方法一基于瞬态电光取样及其逆过程的THz产生与探测技术。
至此,太赫兹波的产生与探测技术虽然还不成熟,但已经能够用于相关仪器的制造与生产,为科研人员研究太赫兹波与物质相互作用提供了必备的实验手段。
太赫兹科学和技术有极大的应用潜力,但目前还受太赫兹辐射源的限制,比如:产生的太赫兹辐射强度不高、带宽不够宽、能量转化效率低等因素,所以太赫兹领域的发展还需更大的努力。
太赫兹波以其独特的性质引起了人们的广泛关注。
对
太赫兹波的特性进行研究,有助于我们更好的了解太赫兹波,为使用太赫兹波打下基础。
2.1特别的穿透能力
THz辐射能以很小的衰减穿透如陶瓷、脂肪、碳板、布
料、塑料等物质,还可无损穿透墙壁、沙尘烟雾,使得其能在某些特殊领域发挥作用。
如太赫兹探测器可直接发射太赫兹波透过墙壁,于室外对室内进行探测,免去需将探测设施置于室内的麻烦。
这特别适于防暴警察与室内歹徒对峙时,可从墙外掌握室内情况,如歹徒位置、武器配置等,极大的确保警方安全。
2.2探测安全性高
太赫兹的光子能量很低,只有毫电子伏特,因此不容易
破坏被检测物质。
如果用太赫兹检测物质,就可以发现内部瑕疵而又不损害该物质。
不同于X射线,太赫兹射线是一种不电离的射线,所以,太赫兹波适合于对生物组织进行活体检查。
它们还可以穿透衣服、包装,甚至于渗透人体几毫米深,因此,太赫兹波也是安全检查和医学应用的理想工具。
例如,用于人体成像的X光的光子能量高,对人体所造成非常大的伤害,而应用太赫兹技术制成的成像设备,则能将这种照射对人体的伤害降低100万倍。
2.3具有识别物质和成像能力
研究表明大量有机分子、半导体能量特征在太赫兹范
围,每种材料的太赫兹频谱特征是不同的。
只要建立了这些物质的太赫兹频谱特征数据库,就可以采取“指纹”识别的方法来进行检测。
太赫兹波除了识别物质外,还可以通过反
射波的测量得到物质的图像。
利用成像系统把成像样品振幅或相位信息进行处理和分析,就可以得到样品的THz图像。
太赫兹波成像的一个显著特点是信息量大,可准确显示物质的内外部信息。
目前太赫兹显微成像的分辨率已达到几十微米。
2.4抗背景噪声干扰能力强
太赫兹具有很高的空间分辨率和时间分辨率。
利用取
样测量技术,太赫兹探测器能够有效地抑制背景辐射噪声的干扰。
目前THz辐射强度测量的信噪比可大于10倍以上。
而且,THz波具有非常宽的频谱,可工作在目前隐身技术所能对抗的波段之外,因此它还能探测隐身目标。
以太赫兹波作为辐射源的超宽带雷达可以探测比微波雷达更小的目标和实现更精确的定位,前者具有更高的分辨率和更强的保密性,隐身飞机也难逃它的“法眼”。
2.5大容量、高保密的宽带信息载体
太赫兹波的频带宽、测量信噪比高,适合于大容量与高
保密的数据传输,而且太赫兹波处于高载波频率范围,是目前手机通信频率的1000倍左右,可提供10GB/s的无线传输速率。
利用太赫兹波进行无线电通信,可以极大地增宽无线电通信网络的频带,使无线移动高速信息网络成为现实。
太赫兹波比微波能做到的宽带和讯道数多得多,尤其适合作为卫星间和局域网的宽带移动通讯。
太赫兹波方向性好,散射小,在通信领域会大有作为,如卫星间星际通信、同温层内空对空通信、短程地面无线局域网、短程安全大气通信等。