第4章 与或图搜索
- 格式:ppt
- 大小:1.67 MB
- 文档页数:49
第4章超越经典的搜索1 局部搜索算法和最优化问题1.1 爬山法(贪婪局部搜索)1.1.1 爬山法(最陡上升版本)1.1.2 随机爬山法1.1.3 首选爬山法1.1.4 随机重启爬山法1.2 模拟退火搜索1.2.1 特点1.3 局部束搜索(Local beam search)1.4 遗传算法(Genetic algorithm,GA)1.4.1 例子:八皇后问题1.4.2 遗传算法伪代码:2 使用不确定动作的搜索2.1 与或搜索树3 使用部分可观察信息的搜索3.1 无观察信息的搜索3.2 部分可观察问题的搜索3.2.1 联机搜索4 总结1 局部搜索算法和最优化问题在第3章中讨论的无信息搜索和有信息搜索有如下性质:环境都是在可观察、确定的、已知的,问题解是一个行动序列。
本章将不受这些环境性质的约束,讨论局部搜索(local search)算法,考虑对一个或多个状态进行评价和修改,而不是系统地搜索从初始状态开始的路径。
局部搜索(local search)算法:从单个当前结点出发,通常只移动到它的邻近状态而不保留搜索路径局部搜索不关心路径代价,但是关注解状态。
Agent不知道前面的状态,只知道当前的状态。
比如八皇后问题,不关心是怎么到目的状态的,只关心最终布局对不对,许多重要应用都有这样的性质,如作业空间调度,自动程序设计等。
虽然局部搜索算法不是系统化的,但是有两个关键优点:占用内存少,通常只用常数级的内存通常能在系统化算法不适用的很大或无限的(连续的)状态空间中找到合理的解。
此外,局部搜索算法对于解决纯粹的最优化问题十分有用,其目标是根据目标函数找到最佳状态。
如果存在解,最优的局部搜索算法总能找到全局最大/最小值???1.1 爬山法(贪婪局部搜索)定义:不断向值增大的方向移动,直到到达局部最优。
也被称为贪婪局部搜索,因为它只选择邻居中状态最好的一个,而不考虑下一步怎么走。
贪婪算法很容易改善一个坏的状态,但却经常陷入局部最优无法跳出。