Id-Vd仿真的例子
- 格式:docx
- 大小:15.65 KB
- 文档页数:6
《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。
(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。
(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。
(4)了解三种不同负载电路的工作原理及波形。
二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。
其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。
(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。
(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。
2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。
如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。
设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。
α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。
西工大CMOS实验课8全差分运放的仿真方法一.Gm-Id 曲线仿真1.给定NMOS的宽长W=10um,L=0.5um,采用cis018.l库中model,仿真得到NMOS管的gm-Id曲线。
衬底电位0.仿真图如下:gm-Id曲线2.给定PMOS的宽长W=10um,L=0.5um,采用cis018.l库中model,仿真得到PMOS管的gm-Id曲线。
衬底电位3.3V。
仿真图如下:gm-Id曲线二.如图所示电路,采用cis018.l 库中model 设计 A VDD=1.65V ,A VSS=-1.65V VDDM=0,IDMP1=500uA IDMN1=IDMN2=50uA 问题:限制条件:Cin ≥5pF 1、写出正确的网表。
2、如何确定静态工作点?3、此电路如何实现将电流信号转换成电压信号?如何保证电路正常工作?4、仿真开环增益解:NOMS 的过驱动电压取0.3V ,PMOS 的过驱动电压取0.4V ,阈值电压均取0.7V ,因为()2n 21TH GS ox D V V L W C I -??=μ 50uA500uA 583.3,434.19-9e 9.314-e 85.8DMN2DMN1DMP1r o ro ===-=-=====I I I e C e C t t C ox P ox n ox oxox μμεεεε解得3.161633.91,29.8210321=?=??? ??=???=??? ??=??? ??=?MP MP MN MN MN MN L W L W L W L W L W L W ,1、网表如下:MP2 1 VB1 A VDD A VDD PCH3 L=1E-6 W=16.3E-6MN1 1 VB1 2 0 NCH3 L=1E-6 W=8.29E-6MP1 2 IN VDDM A VDD PCH3 L=1E-6 W=163E-6 M=40MN0 2 VB2 A VSS 0 NCH3 L=1E-6 W=91E-6MN2 A VDD 1 OUT 0 NCH3 L=1E-6 W=8.29E-6MN3 OUT VB3 A VSS 0 NCH3 L=1E-6 W=8.29E-6Cin如下:maximum nodal capacitance= 2.111E-11 on node0:vddmnodal capacitance tablenode = cap node =cap node=cap+0:1 = 95.3783f 0:2 = 5.6510p 0:avdd =14.5071p+0:avss = 509.1362f0:in=19.2273p 0:out=25.1917f+0:vb1 = 108.7357f 0:vb2= 390.2403f 0:vb3 = 34.5431f+0:vddm = 21.1067p2、确定静态工作点:通过改变Vin,观察V out的变化element 0:mp1 0:mn1 0:mn0 0:mp2 0:mn2 0:mn3 model 0:pch3.3 0:nch3.7 0:nch3.3 0:pch3.3 0:nch3.7 0:nch3.7 region Saturati Saturati Saturati Linear Saturati Saturatiid -482.1061u 72.3275u 554.4338u -72.6294u 86.6833u 86.6833u ibs 2.9120f -14.9024a -8.93E-20 8.78E-21 -14.9024a -1.50E-20 ibd 30.7536p -301.8432n -140.2780a 21.1317a -476.3502p -82.6879p vgs -1.5 1.2387 1.04 -1.65 1.6363 1.1 vds -1.239 2.7881 411.2525m -100.6906m 1.737 1.563vbs 1.65 -411.2525m 0 0 -1.563 0vth -1.38 997.1848m 823.4621m -706.0486m 1.3736 821.4963m vdsat -145.3641m 213.8544m 187.6576m -721.3657m 247.5361m 225.6300m vod -120.2468m 241.5627m 216.5379m -943.9514m 262.7101m 278.5037m beta 51.6352m 2.6402m 27.0295m 896.2115u 2.5508m 2.6651m gam eff 653.5583m 1.0839 1.0797 772.6100m 1.1167 1.0687 gm 5.7594m 488.1844u 4.1722m 68.2283u 532.9764u 517.9321u gds 6.1575u2.1537u 75.1740u 667.9622u3.0704u 1.7918u gmb 2.0017m 185.4162u 1.9434m 45.4014u 143.6472u 238.8658u cdtot 1.1392p4.1679f 51.4698f 36.6034f 4.1499f 4.5961f cgtot5.3266p 9.9288f 100.0161f 25.9245f 9.8013f 10.0505f cstot6.3843p 13.3144f 141.6930f 35.8585f 12.0378f 14.3840f cbtot 3.1052p 9.8270f 116.9513f 26.8457f 8.3305f 11.3597f cgs 4.7420p7.4805f 74.7973f 14.9395f 7.5125f 7.5479f cgd 387.1155f 1.4315f 14.5701f 11.8539f 1.4226f 1.4347f3、通过改变从端口VDDM输入的电流值,可以改变流过MN1中的电流,从而改变MN2的栅极电压,实现了改变输出电压的目的。
MOS管相关仿真实验报告
一.MOS管共源放大电路仿真(基本要求)
电路如右图所示,
注意:1)设置静态工作点时,调整电位器Rp,使Vd为5~6V.
2)仿真时输出端必须接负载,否则会报错(可以将阻值设为很大的值来仿真开路情况)
放大电路仿真验证设计与仿真要求
(1)电路图
(2)静态工作点:ID、VGs、Vs
得ID=1.34862mA,VGs=2.16362V,Vs=1.41740V
(3)输入、输出电压波形,并计算电压增益A
即得电压增益为Av=45.4773
(4)幅频响应曲线:db((vo)(vs:+),测中频增益、上限频率fH和下限频率fL
如图,由图可知,测得中频增益为45.5854,上限频率fH=797.844kHz,下限频率fL=33.4688Hz (5)相频响应曲线:Vp(Vo)-p(vs:+)或p(V(vo)/Vvs:+))
(6)输入电阻的频率响应:Ri—V(v(i))/I(Vs)
(7)输出电阻的频率响应:Ro—V(V(o))/I(Vs)
(8)非线性失真现象
1)将Rp调整为最大值,做静态分析和瞬态分析,记录静态工作点和波形。
静态分析如下
瞬态分析如下
2)将Rp调整为最小值(不能为0,0是非法值),再做静态分析和瞬态分析,记录静态工作点和波形。
(如果发现没有失真,可以增大输入信号幅值。
)
静态分析如下
瞬态分析如下
由于此时失真不明显,故将输入振幅调至9V得到波形如下
得到明显失真图像。
选做部分
二.MOS管特性曲线仿真任务一:MOSFET输出特性曲线仿真
任务二:MOSFET转移特性曲线仿真。
D触发器的设计和仿真D触发器是一种基本的数字电路元件,用于存储和传递数字信号。
它在数字系统中具有重要的作用,可用于时序逻辑电路的设计和实现。
以下是关于D触发器的设计和仿真的详细说明。
设计:D触发器是一种双稳态(两个稳定状态之间切换)存储器件,通常由两个反馈电路组成,即RS(复位-设置)锁存器和时钟。
它有一个输入端(称为D输入),一个输出端(称为Q输出),和一个时钟输入端(CLK)。
D-----Clk---,---, ____________,_D,/----&,\/,__________Y在这个电路中,CLK为时钟输入,D为输入信号,Q为输出信号。
当CLK为高电平时,D的输入信号被存储在Q输出端;当CLK为低电平时,Q 输出端的数值保持不变。
仿真:可以使用电路仿真工具来验证和验证D触发器的设计。
其中最常用和广泛使用的电路仿真工具是Spice(Simulation Program with Integrated Circuit Emphasis)。
在Spice中,可以使用硬件描述语言(HDL)来描述电路的连接和元件属性。
以下是一个基于Spice的D触发器仿真的示例代码:```*D触发器M1QCLKVDD0CMOSPL=1uW=0.5uM2QD0VDDCMOSPL=1uW=0.5uM3DCLKGNDGNDCMOSNL=1uW=0.5uR1QOUT1kV1CLK0DC5VV2 D 0 PULSE 0 5 0 50ns 50ns 20us 40us.tran 0.1ns 100us.end```在这个示例中,M1、M2和M3分别代表CMOSP(pMOS)和CMOSN (nMOS)开关,并使用L和W定义它们的尺寸。
R1是输出端电阻,V1和V2分别是时钟输入端和D输入端的电压源。
通过运行这个Spice仿真文件,可以获得D触发器的输入和输出波形,以验证其功能和性能。
总结:。
altiumdesigner仿真实例Altium Designer是一款强大的电子设计自动化软件,它具有广泛的设计功能,包括原理图设计、模拟仿真、PCB设计、布线和布局等。
在本文中,我们将以Altium Designer仿真为例,探讨其使用方法和实际应用。
一、Altium Designer仿真简介Altium Designer内置了强大的仿真工具,可以对电路进行数字仿真、模拟仿真和混合信号仿真。
用户可以通过仿真工具对电路进行分析和验证,从而提高设计质量和性能。
Altium Designer仿真工具支持的仿真类型包括时域仿真、频域仿真、交互仿真、脉冲响应仿真等。
用户可以根据设计需求选择不同的仿真类型进行分析和验证。
二、Altium Designer仿真的使用方法1.创建仿真模型在Altium Designer中,用户可以通过创建仿真模型对电路进行仿真分析。
用户需要定义电路的元件模型、信号源和仿真参数等,以便进行仿真模型的建立和设置。
2.电路连接用户可以通过Altium Designer的仿真工具进行电路连接,将设计好的原理图和信号源连接起来。
在连接电路时,用户需要确保电路的连接正确,以便进行后续的仿真分析。
3.设置仿真参数用户可以通过仿真工具设置仿真参数,包括仿真类型、仿真时间、输出结果的显示格式等。
在设置仿真参数时,用户需要根据设计需求进行合理的设置,以保证仿真分析的准确性和有效性。
4.运行仿真分析用户可以通过Altium Designer的仿真工具对电路进行仿真分析。
在运行仿真分析时,用户需要确保仿真参数设置正确,并对仿真结果进行实时监测和分析。
5.仿真结果分析用户可以通过仿真工具对仿真结果进行分析和验证。
用户需要根据仿真结果对电路进行调整和优化,以提高设计质量和性能。
三、Altium Designer仿真实例分析我们将以一个简单的放大器电路为例,探讨Altium Designer仿真的实际应用。
半导体专业实验补充silvac o器件仿真————————————————————————————————作者:————————————————————————————————日期:实验2 PN结二极管特性仿真1、实验内容(1)PN结穿通二极管正向I-V特性、反向击穿特性、反向恢复特性等仿真。
(2)结构和参数:PN结穿通二极管的结构如图1所示,两端高掺杂,n-为耐压层,低掺杂,具体参数:器件宽度4μm,器件长度20μm,耐压层厚度16μm,p+区厚度2μm,n+区厚度2μm。
掺杂浓度:p+区浓度为1×1019cm-3,n+区浓度为1×1019cm-3,耐压层参考浓度为5×1015cm-3。
0 Wp n n图1普通耐压层功率二极管结构2、实验要求(1)掌握器件工艺仿真和电气性能仿真程序的设计(2)掌握普通耐压层击穿电压与耐压层厚度、浓度的关系。
3、实验过程#启动Athenago athena#器件结构网格划分;line x loc=0.0 spac=0.4line x loc=4.0 spac= 0.4lineyloc=0.0spac=0.5line y loc=2.0 spac=0.1line y loc=10spac=0.5line y loc=18spac=0.1line y loc=20 spac=0.5#初始化Si衬底;initsilicon c.phos=5e15 orientation=100 two.d#沉积铝;deposit alum thick=1.1div=10#电极设置electrode name=anode x=1electrodename=cathode backside#输出结构图structureoutf=cb0.strtonyplotcb0.str#启动Atlasgo atlas#结构描述doping p.typeconc=1e20 x.min=0.0 x.max=4.0 y.min=0y.max=2.0 uniformdopingn.type conc=1e20x.min=0.0 x.max=4.0y.min=18y.max=20.0 uniform#选择模型和参数models cvt srh printmethod carriers=2impact selb#选择求解数值方法methodnewton#求解solve initlog outf=cb02.logsolve vanode=0.03solve vanode=0.1vstep=0.1 vfinal=5 name=anode#画出IV特性曲线tonyplot cb02.log#退出quit图2为普通耐压层功率二极管的仿真结构。
三相桥式电压型逆变器电路的建模与仿真实验摘要:本文在对三相桥式电压型逆变电路做出理论分析的基础上,建立了基于MATLAB的三相桥式电压型逆变电路的仿真模型并对其进行分析与研究,用MATLAB 软件自带的工具箱进行仿真,给出了仿真结果,验证了所建模型的正确性。
关键词:逆变;MATLAB;仿真第一章概述1.1电力电子技术顾名思义,可以粗略地理解,所谓电力电子技术就是应用于电力领域的电子技术。
电子技术包括信息电子技术和电力电子技术两大分支。
通常所说的模拟电子技术和数字电子技术都属于信息电子技术。
电力电子技术中所变换的"电能"和"电力系统"所指的"电力"是有一定差别的。
两者都指"电能",但后者更具体,特指电力网的"电力",前者则更一般些。
具体地说,电力电子技术就是对电能进行变换和控制的电子技术。
更具体一点,电力电子技术是通过对电子运动的控制对电能进行变换和控制的电子技术。
其中,用来实现对电子的运动进行控制的器件叫电力电子器件。
目前所用的电力电子器件均由半导体材料制成,故也称电力半导体器件。
电力电子技术所变换的"电力",功率可以大到数百兆瓦甚至吉瓦,也可以小到数瓦甚至是毫瓦级。
信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换,这是二者本质上的不同。
1.2电力电子技术的应用(1)一般工业中,采用电力电子装置对各种交直流电动机进行调速,一些对调速性能要求不高的大型鼓风机近年来也采用变频装置以达到节能的目的,除此之外,有些对调速没有特别要求的电机为了避免启动时的电流冲击而采用软启动装置,这种软启动装置也是电力电子装置。
电化学工业大量使用直流电源,电解铝、电解食盐水以及电镀装置均需要大容量整流电源。
电力电子产品还大量应用于冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合。
LD光纤耦合模拟演示[精品文档]-图文LD耦合模拟演示目录第一章绪论............................................................. ...........................................3第二章半导体激光与光纤耦合的理论............................................................. (4)2.1半导体激光器输出光束特性............................................................. .........42.2光纤的基本理论............................................................. .........................52.3光纤耦合条件............................................................. ............................6第三章10WLD耦合模拟............................................................. . (7)3.1光路结构及器件参数............................................................. ..................73.2耦合模拟............................................................. ...................................73.3光路优化............................................................. ...................................9第四章大功率LD耦合模拟............................................................. . (10)4.1光路结构..............................................................................................104.2耦合模拟............................................................. .................................11第五章结论............................................................. . (16)第一章绪论本文利用Zema某对10W与30W两种LD耦合方式进行了模拟,除对现有10WLD耦合工作进行验证之外,也为30WLD的光纤耦合工作提供了设计指导。
Id-Vd仿真的例子Electrode {{ Name="source" Voltage=0 }{ Name="drain" Voltage=0 }{ Name="gate" Voltage=0 }{ Name="sub_con" Voltage=0 }}File {Grid = "@grid@"Doping = "@doping@"# Parameter = "@parameter@"Output = "@log@"Plot = "@dat@"Current = "@plot@"}Physics {EffectiveIntrinsicDensity( Nobandgapnarrowing )Recombination( SRH )}Physics (Material=Silicon) {Mobility( DopingDependent HighFieldsat Enormal ) EffectiveIntrinsicDensity( OldSlotboom NoFermi )Recombination( SRH(DopingDep) )Temperature=300}Plot {ElectrostaticPotentialeTrappedCharge hTrappedChargeeDensity hDensityeCurrent/Vector hCurrent/VectorElectricField SpaceChargeSRH RadiationGenerationeMobility hMobilitySurfaceRecombinationDoping DonorConcentration AcceptorConcentration }Math {DerivativesRelErrControlDigits=4ErRef(electron)=1.e8ErRef(hole)=1.e8Notdamped=50Iterations=40NewdiscretizationDirectCurrentConstRefPotRhsMin=1e-20#TrapDLN=15}Solve {Set(Trapfilling=Empty)Coupled ( Iterations=100 LineSearchDamping=0.01 ) { Poisson }Coupled { Poisson Electron Hole }Unset(Trapfilling)没有这两个Set、Unset则无法仿真出Id-Vg曲线Plot(FilePrefix="int")Quasistationary (InitialStep=0.1 Minstep=1e-5 MaxStep=0.2 Goal {Name="gate" Voltage=@gate@}) {Coupled { Poisson Electron Hole }}NewCurrent=""Quasistationary (InitialStep=0.1Minstep=1e-5 MaxStep=0.2 increment=1.5 DoZeroGoal {Name="drain" Voltage=1.0}) {Coupled { Poisson Electron Hole }CurrentPlot(Time=(Range=(0 1) Intervals=40))}}自己编写的例子File {* input files:Grid = "@grid@"Doping = "@doping@"Parameter="@parameter@"* output files:Plot = "@dat@"Current = "@plot@"Output = "@log@"}Electrode {{ Name="source" Voltage=0.0 }{ Name="drain" Voltage=0.2 }{ Name="gate" Voltage=0.0 }{ Name="box_10" Voltage=0.0 }}Physics {EffectiveIntrinsicDensity (NobandGapNarrowing) Radiation(DoseRate=2000 DoseTime=(10,30)doseTsigma=0.2)没有在其它的区域内制定复合模型,默认的是没有载流子的产生-复合模型}Physics(Material=Silicon){EffectiveIntrinsicDensity(OldSlotboom NoFermi)Mobility (DopingDep HighFieldSat Enormal)Recombination(SRH(DopingDep))Temperature=300}Physics(RegionInterface="sub/gatox") {Recombination(eBarrierTunneling(PeltierHeat))}Physics(Electrode="gate"){Recombination(eBarrierTunneling hBarrierTunneling)}Plot {eDensity hDensity eCurrent hCurrentPotential SpaceCharge ElectricFieldeMobility hMobility eVelocity hVelocityDoping DonorConcentration AcceptorConcentration}Math {DerivativesRelErrControlDigits=4ErRef(electron)=1.e8ErRef(hole)=1.e8Notdamped=50Iterations=40NewdiscretizationDirectCurrentConstRefPotRhsMin=1e-20#TrapDLN=15}Math(Electrode="gate") {Digits(NonLocal)=3EnergyResolution(NonLocal)=0.001Nonlocal(Length=5e-7)}Solve {#-initial solution:Coupled ( Iterations=100 LineSearchDamping=0.01 ) {Poisson}Coupled { Poisson Electron }#-ramp gate:Quasistationary (InitialStep=0.1 Minstep=1e-5 MaxStep=0.2 Goal{ Name="gate" Voltage=2 } ){Coupled { Poisson Electron }CurrentPlot(Time=(Range=(0 1) Intervals=40))}}可以运行但出来的图像没有曲线的形状,调整了漏段的电压,将Vd由0.2v增大为1v,仍旧是没有曲线,电流随栅电压的增大没有变化。
DMC-PID 汽温对象仿真控制系统说明:根据改进原有的汽温对象PID-PID串级控制系统,搭建预测PID控制系统,即DMC-PID 控制系统Simulink模型,仿真验证预测控制系统的控制效果。
Simulink仿真模型如下:仿真参数:选取变步长,ode45 算法,仿真时间为50步。
控制对象:300MW汽温对象导前区及惰性区,通过施加阶跃响应的形式,并附加一定的扰动信号。
运行结果:先将数据保存到工作空间通过workplace进行绘图编写程序如下save ScopeDataopen ScopeData;figureplot(ScopeData.time(1:506),ScopeData.signals.values(1:506,1),'r--','linewidth',2)hold onplot(ScopeData.time(1:506),ScopeData.signals.values(1:506,2),'b-','linewidth',2)grid onxlabel('time','Fontsize', 12)ylabel('阶跃响应','Fontsize', 12)title('DMC-PID 与PID-PID 仿真效果图','Fontsize', 12)legend('PID-PID','DMC-PID','Fontsize', 12)将其保存在DMC-PID fig.m文件中,并运行,结果如下:结果分析:根据仿真结果可知运用DMC-PID 控制效果要比PID-PID控制超调量小,系统更容易趋向于稳定。
直流和交流电源同时作用于二极管的Multisim仿真及分析
仿真前
仿真中
XSC1波形
XSC2波形
开关,电表分别指示出二极管直流工作的正向压降VD、正向电流ID和负载R1两端的直流电压VL,VD和ID之比VD/ID就是二极管在直流工作点的直流电阻RD。
关断开关,分别双击各电表的图标,在打开的对话框中,点击Mode栏的选项箭头,打开选项框并选定AC,然后单击“确定”按钮。
再打开开关,电表分别指示出加于二极管两端的交流电压vD、流过的交流电流iD和负载上的交流电压vL,vD和iD之比vD/iD就是二极管在该直流工作点的交流电阻rD。
因此,这个实验可帮助大家搞清这几个物理概念及它们的关系。