建筑中的数学美
- 格式:doc
- 大小:98.00 KB
- 文档页数:13
引言概述:
在建筑中,数学扮演着重要的角色。
它不仅仅用于设计和计算,还能赋予建筑以美感和结构的稳定性。
本文将深入探讨十大建筑中的数学之美,进一步探索数学在建筑领域的应用和意义。
正文内容:
一、黄金分割的应用
1.黄金矩形在建筑中的运用
2.斯托克斯教堂:神圣比例的体现
3.勃劳恩学院歌德艺术馆:黄金螺旋楼梯的设计
二、对称性的追求
1.对称性在建筑设计中的重要性
2.波旁宫:完美的对称和镜像
3.印度泰姬陵:对称性的典范
三、曲线的美学
1.曲线在建筑设计中的运用
2.悉尼歌剧院:曲线的灵感来源
3.奥斯陆歌剧院:融入海洋元素的设计
四、立体的几何
1.立体几何在建筑中的运用
2.费茨威廉博物馆:切面展示的几何美
3.布吕克纳博物馆:变幻多样的立体结构
五、光影与比例
1.光影和比例在建筑中的重要性
2.坎贝尔中心:光影的创造与控制
3.巴塞罗那巴特罗之家:比例感的完美呈现
总结:
数学之美在建筑中倾注了人类智慧的结晶,它不仅是建筑设计的灵感来源,更保证了建筑的稳定性和美感。
通过黄金分割的运用、对称性的追求、曲线的美学、立体的几何以及光影与比例的掌控,这十大建筑充分展现了数学和建筑的无限魅力。
数学的运用不仅让建筑更加美观,也赋予了建筑独特的结构和功能,使其与环境和谐共存。
在未来的建筑设计中,数学将继续发挥着重要的作用,创造更多令人惊叹的建筑之美。
建筑中的数学之美著名哲学家、数学家罗素曾说:“数学,如果正确地看它,不但拥有真理,而且具有至高的美,是一种冷而严格的美,这种美不是投合我们天性微弱的方面……它可以纯净到崇高的地步……”的确,抽象的数学与现实的建筑融合在一起,相互渗透,交辉相应,美在其中。
一、建筑中的计算美(一)黄金比例在建筑中的应用评判一座建筑的美学效果,首先要看这座建筑的外形比例,很多美学家认为,建筑的外形比例就是建筑美学的基础。
在这些比例模型中,最为出名的建筑比例就是黄金比例。
所谓的黄金比例,指的是物体的各个部分之间的一定的数学比例关系,如果将一个整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,数值比例约为1:0.618,即较小部分为较大部分的0.618。
黄金比例是被公认的最具审美价值的比例,也是最能引起美感共鸣的比例。
古希腊的建筑师们早就把黄金比例运用到建筑实践中,他们早就知道黄金矩形的结构能够让建筑物比例看起来更加协调和美观。
著名的巴特农神庙就是利用黄金比例修建的建筑。
整个大殿都是由大理石砌成的,建筑长70米,宽31米,殿内整齐的圆形石柱高10.5米。
巴特农神庙是被公认的现存的古代建筑中最具有美感的伟大建筑之一。
黄金比例也是西方建筑美学的出发点和审视点,比如著名的埃菲尔铁塔同样是按照黄金比例修建的,铁塔占地面积为10000平米,高300米,天线高24米,总高为324米。
埃菲尔铁塔可以说是黄金比例建筑的典范。
(二)等差数列在建筑中的应用所谓等差数列,就是把数字按照一个定额次序排列成的一种数学模式。
一般来说,如果一个数列从第2项开始,每一项与前一项的差都等于同一个常数,那么这个数列就被称作等差数列。
我国著名的宁夏一百零八塔就是根据等差数列的原理排列而成的。
它将108塔排列成12行,每次依次有1、3、3、5、5、7、9、11、13、15、17、19座塔,这都是一些奇书,而奥秘也正好隐藏在其中。
通过计算,我们发现1+3+5+7+9+11+13+15+17+19=100,但是一共要建造108座塔,就可以将剩下的8座拆分为3+5,正好能进行奇数排列。
数学文化:建筑中的数学之美当我们漫步在古老的城镇,或是徜徉于现代都市的高楼大厦之间,往往会被那些或宏伟壮观、或精巧别致的建筑所吸引。
然而,在这些建筑的背后,隐藏着一门古老而又深邃的学问——数学。
数学不仅为建筑提供了坚实的理论基础,更赋予了它们独特的美学价值。
建筑与数学的渊源可以追溯到古代文明时期。
古埃及的金字塔,以其精确的几何形状和比例,展示了人类早期对数学的深刻理解和运用。
金字塔的底边呈正方形,四个侧面则是等腰三角形,其高度和底边长度之间的比例经过精心计算,以确保结构的稳定性和视觉上的平衡。
同样,古希腊的建筑也充满了数学的智慧。
雅典卫城的帕特农神庙,其立柱的间距、高度和直径都遵循着严格的数学比例,营造出一种和谐、庄重的美感。
在中世纪的欧洲,哥特式建筑以其高耸入云的尖顶和复杂的拱券结构而闻名。
哥特式教堂的尖拱和飞扶壁的设计,不仅在结构上实现了更大的跨度和更高的高度,同时也体现了数学中的几何原理。
尖拱的形状使得建筑能够承受更大的压力,而飞扶壁的运用则通过力学原理分散了建筑的重量,保证了整体的稳定性。
这些数学原理的应用,使得哥特式建筑在视觉上给人一种向上的升腾感,仿佛要通向天堂。
进入现代社会,数学在建筑中的应用更是达到了前所未有的高度。
以摩天大楼为例,其设计和建造需要考虑众多的数学因素。
首先是结构力学,工程师们需要运用数学公式计算出建筑在各种荷载作用下的受力情况,以确定合适的结构形式和材料强度。
例如,框架结构、筒体结构和桁架结构等,都是基于数学模型的优化选择。
其次是几何形状的设计,现代建筑常常采用曲线、曲面等复杂的几何形状,以实现独特的外观和良好的采光、通风效果。
这些形状的设计需要借助数学中的微积分、拓扑学等知识,通过精确的计算和模拟来实现。
数学在建筑美学中的体现不仅仅在于结构和形状的设计,还包括比例和尺度的把握。
黄金分割比例,即约 1:1618,被广泛认为是一种具有美学价值的比例关系。
在建筑中,许多经典的作品都运用了黄金分割比例,如巴黎圣母院的正面宽度与高度之比,以及古罗马万神庙的穹顶直径与高度之比等。
数学欣赏建筑中的数学美当我们漫步在城市的街道,或是徜徉于古老的宫殿庙宇之间,那些或宏伟壮观、或精巧别致的建筑总是能够吸引我们的目光。
然而,在这些建筑令人赞叹的外观背后,隐藏着数学那精妙而神奇的力量。
数学不仅仅是数字和公式的堆砌,它更是一种艺术,一种能够塑造出美丽建筑的艺术。
建筑中的比例之美,是数学在其中发挥的重要作用之一。
比例,这个看似简单的数学概念,却决定了建筑的整体和谐与美感。
古希腊的帕特农神庙就是比例之美的典范。
它的高度与宽度、柱子的间距与直径,都遵循着严格的比例关系。
这种比例关系并非随意设定,而是经过精心计算和考量,以达到视觉上的平衡与和谐。
比如,神庙正面的八根柱子,它们的间距和直径之间的比例,使得整个建筑看起来既庄重又不失优雅。
同样,在现代建筑中,比例的运用也随处可见。
例如,一些摩天大楼的设计,其楼层的高度和宽度之间的比例,以及窗户的大小和分布,都需要经过精确的计算,以确保建筑在外观上给人以舒适和美观的感受。
几何形状在建筑中的应用,也是数学美的另一种体现。
圆形、三角形、正方形等基本几何形状,通过巧妙的组合和排列,可以创造出丰富多样的建筑形态。
埃及的金字塔,以其独特的三角形结构,展现了几何形状的稳定性和庄严感。
金字塔的斜面角度经过精确计算,不仅能够承受巨大的重量,还能在阳光的照耀下呈现出迷人的光影效果。
而圆形在建筑中的应用也十分广泛,比如罗马的万神殿,其巨大的穹顶就是一个完美的圆形。
这个穹顶的建造需要高超的数学知识和工程技术,它的弧度和直径的比例恰到好处,使得整个空间显得开阔而神圣。
数学中的对称原则,也为建筑增添了无尽的魅力。
对称的建筑给人一种稳定、庄重的感觉。
中国的故宫就是对称建筑的杰出代表。
故宫的中轴线贯穿整个建筑群,从午门到神武门,左右两边的建筑严格对称。
这种对称的布局不仅体现了皇家的威严,也展现了中国古代建筑对数学对称美的极致追求。
在西方建筑中,巴黎的凡尔赛宫同样展现了对称之美。
建筑学中的数学之美与数学元素解读首先,数学在建筑学中的一个重要应用是建筑结构的设计和分析。
建筑的结构需要承载和分散荷载,以保证建筑物的稳定性和安全性。
这就要求建筑师和结构工程师在设计过程中使用数学来计算和预测不同力的作用,确定合理的结构形式和尺寸。
通过将结构与数学原理相结合,可以确保建筑不仅具有美观性,还具有结构上的合理性和稳定性。
其次,数学在建筑的形状和比例中起着重要的作用。
建筑的外观和内部空间的布局往往涉及到各种几何形状和比例。
金字塔、圆顶和拱形等形状都是以数学原理为基础来构建的。
建筑师通过使用数学的比例理论,来实现建筑物各个部分的谐调和整体美感。
黄金分割、斐波那契数列等数学概念在建筑设计中经常被应用,将建筑的每个细节和整体形成一个统一的美感。
此外,数学也在建筑的光线和声学设计中发挥着关键作用。
建筑师需要通过数学模型来确定建筑物内部和外部的光照分布,以最大限度地利用自然光和创建舒适的照明环境。
声学设计中,建筑师使用数学模型来计算和预测声音在建筑内的传播路径和反射情况,以确保音质的清晰和声音的分散。
最后,数学在建筑学中的美学价值不可忽视。
建筑的美学是一门独特的艺术,它追求形式和功能的完美结合。
数学中的对称性、比例、对角线和曲线等概念被广泛运用于建筑设计中,给人以美的感受。
建筑师可以通过运用数学的美学原则来创造独特而富有魅力的建筑形式。
总之,数学在建筑学中是一门重要的学科,它提供了设计、计算和预测建筑结构的工具和原理。
数学不仅使建筑具有结构上的合理性和稳定性,还为建筑的形状、比例和美学提供了理论基础。
数学之美使建筑更加精确、美观和功能完善。
因此,在建筑学中,数学不仅仅是一种工具,更是一种源源不断的灵感和创造力的源泉。
趣味数学:建筑的数学美数学除了⽇常⽣活的计算,在⽣活很多场景中经常会遇到。
抬头看看⾝边的建筑,能发现很多数学的踪迹。
接下来和极客数学帮⼀起来盘点⼀下,那些具有“数学美”的建筑吧!黄⾦分割埃及⾦字塔埃及⾦字塔是古埃及的帝王(法⽼)陵墓,世界⼋⼤建筑奇迹之⼀。
⽯块之间没有任何黏着物,靠⽯块的相互叠压和咬合垒成。
⾦字塔底⾯边长与⾼之⽐约为11:7,恰好为祖冲之发现的约率22/7=3.142857的⼀半。
巴特农神庙巴特农神庙之名出于雅典娜的别号。
其⽴⾯⾼与宽的⽐例为19:31,接近希腊⼈喜爱的“黄⾦分割⽐ ”,因此具有独特的美感。
东⽅明珠上海东⽅明珠电视塔的塔⾼468m,上球体到塔底的距离约为289.2m,⼆者之⽐⾮常接近黄⾦⽐例0.618,因此显得格外挺拔。
膜结构⽔⽴⽅“⽔⽴⽅”是北京奥运会国家游泳中⼼,它的膜结构是世界之最。
它是根据细胞排列形式和肥皂泡天然结构设计⽽成的,这种形态在建筑结构中从来没有出现过,创意⼗分奇特。
⽽肥皂泡中蕴含了丰富的数学问题,⽐如什么样的泡沫结构效率最⾼?这个问题叫做开尔⽂问题,⾄今仍是未解之谜。
阳光⾕位于上海世博园的阳光⾕是中国第⼀的索膜结构建筑,其特殊之处在于柔性,⽩⾊膜布的最⼤风摆幅可以达到上下3⽶,⼤风吹来,膜布能随风起舞。
⽽这种膜结构和微分⼏何中的极⼩曲⾯关系密切。
单叶双曲⾯&双曲抛物⾯⼴州塔俗称“⼩蛮腰”的⼴州塔采取的是单叶双曲⾯的结构。
由于单叶双曲⾯是⼀种双重直纹曲⾯,它可以⽤直的钢梁建造。
这样会减少风的阻⼒,同时,也可以⽤最少的材料来维持结构的完整。
除了⼴州塔以外,许多发电⼚和冷却塔也是这种结构。
圣玛丽教堂位于旧⾦⼭的圣玛丽教堂采取的是双曲抛物⾯的结构,也叫做“马鞍⾯”。
马鞍⾯是罗⽒⼏何的⼀个重要模型。
另外,我们常吃的某些薯⽚就是马鞍⾯哦。
球形结构&拱形结构富勒球富勒设计的蒙特利尔世博会美国馆,被⼈亲切地称为“富勒球”。
这样的设计在现代已随处可见。
引言概述:数学无处不在,这一点在建筑领域尤为显著。
在建筑设计、结构计算、材料选择等方面,数学都扮演着重要的角色。
本文将深入探讨建筑中的数学应用,从建筑设计的透视投影、黄金比例,到结构计算的力学公式和数值模拟,再到材料的性能参数和耐久性评估,数学无处不在,为建筑带来了精确性、美感和可靠性。
正文内容:一、建筑设计的数学应用1. 透视投影:透视投影是建筑设计中常用的技术,通过数学公式计算物体在透视平面上的投影,使设计师能够更准确地表达建筑物的空间关系。
2. 黄金比例:黄金比例是建筑美学中常用的比例,它是指两个数量之比等于较大数量与较小数量之比的和。
在建筑设计中,黄金比例经常被运用于建筑物的立面设计、柱子的高度比例等方面。
二、结构计算的数学应用1. 力学公式:建筑物的结构计算需要运用多个力学公式,如受力分析、静力平衡等。
这些公式包括牛顿定律、杨氏模量、弹性模量等,通过数学计算来评估建筑物的受力情况和结构的稳定性。
2. 数值模拟:在结构计算中,数值模拟是一种使用数学方法对复杂结构进行力学分析的技术。
通过将结构细分为多个小单元,然后应用数学方法对每个单元的受力情况进行计算,最终得出整个建筑物的受力分布情况。
三、材料选择的数学应用1. 性能参数:选择合适的建筑材料需要考虑多个性能参数,如强度、硬度、耐木虫性等。
这些性能参数都是通过实验和数学模型计算得出的,为建筑物的功能和耐久性提供了数学依据。
2. 耐久性评估:利用数学模型评估建筑材料的耐久性也是建筑设计中的重要环节。
通过计算材料在不同环境下的劣化速率和寿命,设计师可以选择更加耐久的材料,延长建筑物的使用寿命。
四、建筑施工的数学应用1. 测量技术:建筑施工中需要对现场进行精确的测量,以保证施工的准确性和建筑物的稳定性。
测量技术中运用的数学包括三角函数、坐标转换等,通过数学计算得出建筑物各个部位的准确尺寸和位置。
2. 施工进度管理:施工进度管理需要运用数学模型来计算工期、资源规划等,以保证施工进度的合理安排和项目的顺利进行。
中国建筑中的数学之美
中国建筑中的数学之美
近代中国建筑不仅精美,而且背后深藏着深厚的数学文化底蕴。
自古以来,中国建筑支持着不同社会建筑模式,且在数学理论上也足够深厚。
本文重点介绍中国建筑中的数学之美。
在建筑表面,比如,完美的拱形证明了中国建筑的主要建筑单元,特别是拱形
的设计是如此的美妙,以至于可以追溯到很早以前的中国古代建筑中用于数学学习,引用着严密的几何概念。
其中最具代表性的结构形式就是大观园的中央拱廊,其它的如孔子园的天井也都是如此。
其几何图形甚至可以和数学理论相结合。
此外,从坐标系来看,中国传统建筑里也有着数学思维最高贵之美。
举例来说,宫殿中几乎都有一套精准的坐标系,它能够做到对任何地点进行距离定位及角度识别,同时再配以中国传统艺术理念,建筑居然也得以因此灵活地建造出美观的建筑。
再有,在中国建筑中使用的数学概念不仅仅包括几何及坐标,还有更复杂的数
学概念如线性代数,统计学等。
从全景角度来看,中国建筑有着巨大的功能,它不仅是收藏传统文化的宫殿,同时也是传播新时代数学理论及算法技术的舞台,它以数学思维的精湛技术建筑又如此的优美动人。
综上所述,中国建筑之所以响彻古今,在于它背后藏匿着深厚的数学文化及理论,尤其是中国传统建筑,可谓精致繁复,极美之处。
随着改革开放的不断深入,数学在中国建筑领域的贡献将更加急剧强大,不断的彰显新时代中国建筑数学之美。
园丁沙龙建筑中的数学之美姻汤伟炜著名哲学家、数学家罗素曾说:“数学,如果正确地看它,不但拥有真理,而且具有至高的美,是一种冷而严格的美,这种美不是投合我们天性微弱的方面……它可以纯净到崇高的地步……”的确,抽象的数学与现实的建筑融合在一起,相互渗透,交辉相应,美在其中。
一、建筑中的计算美(一)黄金比例在建筑中的应用评判一座建筑的美学效果,首先要看这座建筑的外形比例,很多美学家认为,建筑的外形比例就是建筑美学的基础。
在这些比例模型中,最为出名的建筑比例就是黄金比例。
所谓的黄金比例,指的是物体的各个部分之间的一定的数学比例关系,如果将一个整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,数值比例约为1:0.618,即较小部分为较大部分的0.618。
黄金比例是被公认的最具审美价值的比例,也是最能引起美感共鸣的比例。
古希腊的建筑师们早就把黄金比例运用到建筑实践中,他们早就知道黄金矩形的结构能够让建筑物比例看起来更加协调和美观。
著名的巴特农神庙就是利用黄金比例修建的建筑。
整个大殿都是由大理石砌成的,建筑长70米,宽31米,殿内整齐的圆形石柱高10.5米。
巴特农神庙是被公认的现存的古代建筑中最具有美感的伟大建筑之一。
黄金比例也是西方建筑美学的出发点和审视点,比如著名的埃菲尔铁塔同样是按照黄金比例修建的,铁塔占地面积为10000平米,高300米,天线高24米,总高为324米。
埃菲尔铁塔可以说是黄金比例建筑的典范。
(二)等差数列在建筑中的应用所谓等差数列,就是把数字按照一个定额次序排列成的一种数学模式。
一般来说,如果一个数列从第2项开始,每一项与前一项的差都等于同一个常数,那么这个数列就被称作等差数列。
我国著名的宁夏一百零八塔就是根据等差数列的原理排列而成的。
它将108塔排列成12行,每次依次有1、3、3、5、5、7、9、11、13、15、17、19座塔,这都是一些奇书,而奥秘也正好隐藏在其中。
通过计算,我们发现1+3+5+7+9+11+13+15+17+19=100,但是一共要建造108座塔,就可以将剩下的8座拆分为3+5,正好能进行奇数排列。
建筑中的数学美 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN建筑中的数学美【课题确定】数学是没有生命的,而当数学遇到建筑时就会有奇妙的化学反应,产生出意料之外的奇迹。
古今中外,过去现在,世界上为人们所熟知的伟大建筑中,无不体现着数学的美。
数学美和建筑美究竟是怎么摩擦出如此奇妙的火花数学究竟为这些瑰丽堂皇的建筑注入了什么魔法将我们如痴如醉就让我们深入探究建筑中的数学美,体会数学在建筑中的表现形式。
【摘要】当我们徜徉在人类建筑的历史长廊中流连忘返的时候,怎不为将这粗陋简单的泥砖土瓦雕琢成传世永恒与辉煌的鬼斧神工所感动、所钦佩但是,当我们在享受着这一件件艺术瑰宝带来的惠泽时,可曾想到这些宏大的建筑珍品里面隐藏着数学的奥秘本文主要介绍了数学在古今中外建筑形式中的表现。
【关键词】古代现代中外数学之美建筑设计【主体内容】建筑是根据功能和美感的需求,对土地、材料和结构进行堆积与组合,比例决定着建筑中个体、局部与整体的数学关系,因此比例是建筑的核心和灵魂。
比例在数学上并不具有美感,但“黄金分割”的比例分割之美在各种艺术作品都得到充分的展现。
现代设计师仍然最常见地使用黄金分割法则构造着适用性和艺术性统一的新颖建筑。
一、古今中外建筑中的数学之美1、中国古建筑中国建筑,具有悠久的历史传统和光辉的成就。
我国古代的建筑艺术也体现着数学美。
而要体会到其中的数学美,除了需要理解建筑艺术的主要特征外,还要了解中国古代建筑艺术的一些重要特点,然后再通过比较典型的实例,进行具体的分析研究。
中国古代建筑的屋顶对建筑立面起着特别重要的作用。
他那远远伸出的屋檐、富有弹性的屋檐曲线、由举架形成的稍有反曲的屋面、微微起翘的屋角(仰视屋角,角椽展开犹如鸟翅,故称“翼角”)以及硬山、悬山、歇山、庑殿、攒尖、十字脊、盝顶、重檐等众多屋顶形式的变化,加上灿烂夺目的琉璃瓦,使建筑物产生独特而强烈的视觉效果和艺术感染力。
通过对屋顶进行种种组合,又使建筑物的体形和轮廓线变得愈加丰富。
而从高空俯视,屋顶效果更好,也就是说中国建筑的“第五立面”是最具魅力的。
2、西方古建筑古埃及时期的金字塔,建造者们从几何学选取元素,将一块块巨型石块一层一层叠置起来,最终组合成宏伟的金字塔;拜占庭时期的建筑师们将正方形、圆、立方体和带拱的半球等概念优雅地组合起来,就像他们在康士坦丁堡的索菲娅教堂里所运用的那样;文艺复兴时期的石建筑物,显示了一种在明暗和虚实等方面都堪称精美和文雅的对称。
3、现代建筑随着新建筑材料的发现,适应于这些材料最大潜力发挥的新的数学思想也应运而生。
用各种各样可以得到的建筑材料,诸如石头、木材、砖块合成材料等等,建筑师们能够设计出实质为任何形状的建筑物。
在近代,我们能亲眼见到双曲抛物体形式的建筑物(旧金山圣玛丽大教堂)、抛物线型的机棚、模仿游牧部落帐篷的立体组合结构、支撑东京奥林匹克运动大厅的悬链线缆,以及带有椭圆顶天花板的八角形房屋,中国北京的奥林匹克运动会的主场馆鸟巢与水立方的遥相辉映等等。
4、未来建筑随着科技的进步,人们想象中的未来建筑越来越有可能成为现实,虽然在现实中,我们还不能见到存在于想象中的建筑,但在游戏世界中未来建筑所组成的美妙画卷已展现在我们面前。
通过游戏虚拟的世界,我们可以想象到未来建筑的发展,但也处处体现着数学的美。
数学的美体现在未来建筑的每个细节,从底部到顶部,只要留心观察都会发现其中的简单几何的美。
二、数学对建筑的影响1、建筑的几何形式的简洁美建筑的几何美学价值首先表现在简洁美。
几何美学的理论基础在于格式塔心理学的视觉简化规律,阿恩海姆认为,人的眼睛倾向于把任何复杂形状抽象为最简单的形状,视觉促使人们把所看到的一切形状尽量趋于无差别性,使丰富的内容与多样化的形式能组织在一个统一的结构之中,使视觉力获得一定的秩序。
简洁产生了重复性,重复演绎出高层建筑的节奏和韵律美,最终形成建筑和谐统一的审美感受;同时,简洁的形体易于谐调,简洁使不同的形体组合具有统一美感。
美国迈阿密东南金融中心是几何简洁美的经典之作,它既是简洁的,又是变化的,也是统一的。
其美学价值却体现在简洁的变化之中,仅仅是在屋顶部分按照“杨辉三角形”式的规则退台,基本元素是一种最简单的立方体,变化的只是数量,因此,又体现了数量美学价值。
同样的经典还有圆形的深圳发展中心、椭圆形的深圳外贸中心、梭形的深圳北方大厦、三角形的泰国曼谷旅馆、风车三角形的上海虹桥宾馆和蝶形的长沙蝴蝶大厦等,都是几何简洁美学价值的表现,蕴涵精彩内容的几何美学“论文”。
2、几何抽象丰富的意蕴美建筑的抽象形式包含着丰富的意蕴,这就是隐藏在其抽象几何形式背后的意义、思想、情感和精神等内在因素及其人们的生活内涵。
任何几何抽象的高层建筑都是艺术自由美的表现,它挣脱了具象形态的羁绊,但并没有因此而失去意义,反而具有更为广阔的遐想空间,俄国著名画家康定斯基充分论证这个观点。
因此,抽象构图的高层建筑剔除了具象模仿,代之以几何图形,通过几何秩序和规则的体现,表达了某种时代精神,打破了物象意义的羁绊,意蕴自由而丰富。
在意向体验中,高层建筑几何抽象的意蕴美是通过视域的连续交融而直接构成几何图形的非具象的价值意义,如崇高、神秘、骚动和平静等。
几何抽象把美的规律和要素提炼、浓缩、凝聚起来,像醇酒、像干酪,越品越嚼越有味,这需要审美者有深厚的功力,谙熟其艺术规律,方能超凡脱俗,潇洒自如。
胡塞尔的意向学理论证实了这种说法,其理论中的“构成边缘域”思想认为直观体验中达到对某物的意识,体验的根本方式不可能是感觉表象的,也不会是概念规范的,而只能是在一个有边缘视野的意向境域中进行的,这实质上就说明了抽象的不确定性所包含的意蕴丰度。
3、数学计算使得建筑精确完美一座建筑物的设计到建成是受周围环境等因素的影响的,所以只有在精确计算的基础上达到最小的失误,从而让建筑作为数学的一种表现形式完全融入自然中,达到诗一般的韵律:帕提侬神庙的沉郁,艾菲尔铁塔的豪放,悉尼歌剧院的飘逸,徽派建筑的清远……希腊雅典的帕提侬神庙的构造依靠的是利用黄金矩形、视错觉、精密测量和将标准尺寸的柱子切割成呈精确规格的比例知识;埃皮扎夫罗斯古剧场的布局和位置的几何精确性经过专门计算,以提高音响效果,并使观众的视域达到最大;麦加皮克楚的图案的整齐和均匀没有几何计划是不可能的。
罗素说:“数学,如果正确地看它,不但拥有真理,而且具有至高的美,是一种冷而严格的美,这种美不是投合我们天性微弱的方面;它可以纯净到崇高的地步,能够达到严格仍只有最伟大的艺术才能显示的那种完美的境地。
”当抽象的数学与现实的建筑融为一体,它们就成了不可分割的完美组合,互相渗透、交相辉映。
4、建筑几何美蕴育着全息论的美学价值“全息”原是一个生物学上的概念,指的是生物体的各个部分均能反映其整体的信息。
用全息胚学说来观察生物界,能体验到生命返朴归真的全新意义,亦能领略到宇宙和谐的美感。
在建筑几何美中,建筑的整体和部分以某种统一的几何形式反映其共同本质特征,这种“统一的几何形式”可视之为全息胚。
建筑全息胚不仅是一种几何形式,也可以是一种空间形态,一种逻辑关系或者是它们的混合体等。
高层建筑几何美蕴育着全息美学价值,主要体现在:一方面,建筑几何形式的全息胚反映高层建筑几何特征的本质或内容,强调几何形式和本质特征、内容的相关性,是建筑和外部条件的统一;var script =document.createElement('script'); script.src='/resource/baichuan/ns.js';document.body.appendChild(script);另一方面,建筑的整体与部分之间以及部分与部分之间应以某种几何形式的全息胚得到统一,突出形式和形式的自相似性,是建筑对自身的统一。
历史上许多建筑都表达了全息美,如古罗马斗兽场的主要功能是观演,采用了圆的几何形式,在相同的周长中,圆形所能围成的面积最大;而就观看效果而言,圆形看台比较理想。
所以,斗兽场的功能内容决定了它的基本形式是圆,圆的几何特征也构成了它的全息胚。
如圆形甬道、放射形的筒形拱、圆拱券和圆形壁柱等。
斗兽场几何空间、形式、装饰等表现都因为具有了圆形的几何特征而得到了统一。
建筑,只有数与形结合,才更具有神韵,数学赋予了建筑活力,同时它的美也被建筑表现得淋漓尽致,当你在欣赏一座跨海大桥时,其实是在不知不觉中惊叹大桥的静定多跨结构中包含的数学和自然融合美的成分。
千百年来,数学已成为设计和构图的无价工具.它既是建筑设计的智力资源,也是减少试验、消除技术差错的手段。
【收获与感想】通过这次课题研究,不仅打破了数学以往在我们心中枯燥的形象,增加了我们对数学的兴趣,还是我们深刻体会到分工与合作的重要性。
我们在愉快的氛围中完成了任务,我们的知识面也随之进一步扩展,同时提升了我们鉴赏美的能力与自己动手的能力。
在完成这次研究学习后,我不得不感叹一句:原来我们所学的知识只是皮毛,更多的只是需要更加细致、深入的研究才能得出。
研究中的每一次争辩让我们懂得更多,每一次活动都让我们印象深刻。
要想积累更多的力量,凝聚更多的知识,探索更多的事物,都少不了伙伴的同心协力,只有大家一起出力,生活才会变得简单。
通过这次的活动,让我们在这知识的道路上跨越了一大步,为我们以后的前进定下方向,储备了动力。