传送带模型题型分类表解
- 格式:docx
- 大小:41.93 KB
- 文档页数:1
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
一、水平传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景21.可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景31可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速1、如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以s m v /10=的速度向右匀速运动。
现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,取2/10s m g =。
(1)求旅行包经过多长时间到达传送带的右端。
(2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件?2、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.3、(讲逆时针)如图所示,倾角为37°、长为L=16m 的传送带,转动速度为s m v /10=,在传送带顶端A 处无初速地释放一个质量为kg m 5.0=的物体,已知物体与传送带间的动摩擦因数5.0=μ,取2/10s m g =。
传送带专题一.传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
二.传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
三.受力分析:传送带模型中要注意摩擦力的突变(发生在v 物与v 带相同的时刻),对于倾斜传送带模型要分析mgsin θ与f 的大小与方向。
突变有下面三种: 1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向; 四.运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出? 五.传送带问题中的功能分析1.功能关系:W F =△E K +△E P +Q 。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
难点疑点:传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
一、传送带问题中力与运动情况分析 (一).水平传送带问题的变化类型1.一无限长的粗糙传送带以8m/s 的速度顺时针转动,分别从左右两端以不同的初速度V 0释放一个小物块,求小物块最终的速度。
传送带类问题的专题一、传送带的分类1.按放置方向分水平、倾斜两种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
二、传送带模型的一般解法1.确定研究对象;2.受力分析和运动分析,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;若斜面与物体间的动摩擦因数μ与斜面倾角正切值θ的关系为:①μ>tanθ时,物体与传送带共速后,一起运动②μ<tanθ时,物体与传送带共速后,物体加速下滑,加速度在此时会发生突变3.分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
基础题型:注意:物体在水平传送带上的运动情况,是一直加速?还是先加速在匀速?如何判断?到b点后是加速还是匀速运动?若有加速度,是初速度为零的匀加速,还是初速度不为零的匀加速?1.如图所示的传送皮带,其水平部分a b=2m,bc=4m,bc与水平面的夹角α=37°,一小物体A与传送皮带的滑动摩擦系数μ=0.25,皮带沿图示方向运动,速率为2m/s。
若把物体A轻轻放到a点处,它将被皮带送到c点,且物体A一直没有脱离皮带。
求物体A从a点被传送到c点所用的时间。
注意:划痕是物体与传送带的相对位移,而不是物体的位移。
(不包括划痕有重叠的情况)2.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
3.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。
随后它们保持相对静止,行李随传送带一起前进。
设传送带匀速前进的速度为0.25m/s,把质量为5kg的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?综合题型:注意:传送带与物体的做功问题,就是它们之间的摩擦力做功问题。
高中物理传送带题型总结贴【例1】如图1所示,一水平传送装置由轮半径均为R的主动轮O1和从动轮O2及传送带等构成。
两轮轴心相距8.0m,轮与传送带不打滑。
现用此装置运送一袋面粉,已知这袋面粉与传送带之间的动摩擦因数为μ=0.4。
(g取10m/s2)求(1)当传送带以4.0m/s的速度匀速运动时,将这袋面粉由左端O2正上方的A点轻放在传送带上后(设面粉初速度近似为零),这袋面粉由A端运送到O1正上方的B端所用的时间为多少?(2)要想尽快将面粉由A端送到B端,主动轮O1的转速至少应为多大?【解析】设这袋面粉质量为m,其在与传送带产生相对滑动的过程中所受摩擦力f=μmg。
故其加速度为a==μg=4.0m/s2。
(1)若传送带的速度v带=4.0m/s,则这袋面粉加速运动的时间t1=v带/a=1.0s,在t1时间内的位移x1为x1=at12=2.0m。
其后以v=4.0m/s的速度做匀速运动,x2=l AB-x1=vt2,解得:t2=1.5s。
运动的总时间为:t=t1+t2=2.5s。
(2)要想时间最短,这袋面粉应一直向B端做加速运动,由lAB=at′2可得t′=2.0s。
面粉到达B端时的速度v′=at′=8.0m/s,即传送带运转的最小速度。
由v′=ωR=2πnR可得:n=?r/min。
【例2】如图2所示,质量为m的物体从离传送带高为H处沿光滑圆弧轨道下滑,水平滑上长为L的静止的传送带并落在水平地面的Q点,已知物体与传送带间的动摩擦因数为μ,则当传送带转动时,物体仍以上述方式滑下,将落在Q点的左边还是右边?【解析】物体从P点滑下,设水平滑上传送带时的速度为v0,则由机械能守恒mgH=mv02,可得。
当传送带静止时,分析物体在传送带上的受力知物体做匀减速运动,a=μmg/m=μg。
物体离开传送带时的速度为,随后做平抛运动而落在Q点。
当传送带逆时针方向转动时,分析物体在传送带上的受力情况与传送带静止时相同,因而物体离开传送带时的速度仍为,随后做平抛运动而仍落在Q点。
传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
传送带模型1.水平传送带:如下图,水平传送带以速度v 匀速顺时针转动,传送带长为L ,物块与传送带之间的动摩擦因素为μ,现把一质量为m 的小物块轻轻放在传送带上A 端,求解:①小物块从A 端滑动到B 端的时间:解析:对物块进展受力分析,可以得到物块收到传送带给的向右的摩擦力f = μ mg ;由摩擦力提供加速度f = μ mg = ma ;a = μ g ;所以物块将做匀加速直线运动:当小物块的速度与传送带速度一样时,有:2ax = v 2;得到x = v 2/2a ;假设x 大于等于L ;那么小物块将从A 端到B 端做匀加速直线运动,那么L = 1/2 at 2,从而求出从A 端到B 端的时间;假设x 小于L ;那么小物块将先从A 端做匀加速直线运动,再与传送带以一样速度匀速运动到B 端,那么v = at 1;L - x = vt 2;所以从A 端运动到B 端的时间为t = t 1+t 2.②小物块从A 端运动到B 端过程中,小物块与传送带的相对位移;相对位移只有在小物块做匀加速运动的时间段内有会,所以相对位移:Δ x = v t - 1/2 at 2 (t 为小物块做匀加速运动的时间).③小物块从A 端运动到B 端的过程中产生的热量:小物块从A 端运动到B 端的过程中产生的热量等于在这个过程中摩擦力所做的功:Q = W f = f Δ x .2.倾斜传送带:a .如下图,倾斜传送带以速度v 做顺时针匀速直线运动,传送带长L ,物块与传送带之间的滑动摩擦因素为μ,传送带与水平面的倾角为θ;先将一小物块轻放在A 端,求解:①小物块从A 端运动到B 的的时间:对小物块进展受力分析,受到一个重力、支持力和沿斜面向上的摩擦力,进展正交分解,有:沿斜面向下的重力的分力F 1 = mg sin θ,沿斜面向上的摩擦力f = μ mg cos θ;假设F 1 > f ,那么小物块将往下掉;不讨论;假设F 1 < f ,那么小物块将沿着斜面向上做匀加速直线运动:f - F 1 = ma ;当小物块的速度与传送带速度一样时,有:2ax = v 2;得到x = v 2/2a ;假设x 大于等于L ;那么小物块将从A 端到B 端做匀加速直线运动,那么L = 1/2 at 2,从而求出从A 端到B 端的时间;假设x 小于L ;那么小物块将先从A 端做匀加速直线运动,再与传送带以一样速度匀速运动到B 端,那么v = at 1;L - x = vt 2;所以从A 端运动到B 端的时间为t = t 1+t 2.②小物块从A 端运动到B 端过程中,小物块与传送带的相对位移;相对位移只有在小物块做匀加速运动的时间段内有会,所以相对位移:Δ x = v t - 1/2 at 2 (t 为小物块做匀加速运动的时间).③小物块从A 端运动到B 端的过程中产生的热量:小物块从A 端运动到B 端的过程中产生的热量等于在这个过程中摩擦力所做的功:Q = W f = f Δ x .Ab.如下图,倾斜传送带以速度v做顺时针匀速直线运动,传送带长L,物块与传送带之间的滑动摩擦因素为μ,传送带与水平面的倾角为θ;先将一小物块轻放在A端,求解:①小物块从A端运动到B的的时间:对小物块进展受力分析,受到一个重力、支持力和沿斜面向上的摩擦力,进展正交分解,有:沿斜面向下的重力的分力F1 = mg sin θ,沿斜面向上的摩擦力f = μ mg cos θ;假设F1 < f,那么小物块将往下掉;不讨论;假设F1 > f,那么小物块将沿着斜面向上做匀加速直线运动:F1 - f = ma ;因此物体将一直沿着斜面向下做匀加速直线运动,所以有:L = 1/2 at2;就可以求出从A端运动到B端的时间.c.如下图,倾斜传送带以速度v做逆时针匀速直线运动,传送带长L,物块与传送带之间的滑动摩擦因素为μ,传送带与水平面的倾角为θ;先将一小物块轻放在A端,求解:①小物块从A端运动到B的的时间:对小物块进展受力分析,受到一个重力、支持力和沿斜面向上的摩擦力,进展正交分解,有:沿斜面向下的重力的分力F1 = mg sin θ,沿斜面向下的摩擦力f = μ mg cos θ;假设F1< f,那么小物块将先以F1 + f = ma1的加速度a1做匀加速直线运动,那么当小物块速度等于传送带速度v 时,有v = at1,x = 1/2 at12;假设x < L,那么物体受到的摩擦力方向将变为沿斜面向上,由于F1 < f,因此物体将以速度v做匀速直线运动,L - x = vt2;所以物块从A端运动到B端的时间t = t1+ t2.假设x > L,那么小物块从A端运动到B端的时间为L = 1/2 a1t2.假设F1 > f,那么小物块将先以F1 + f = ma1的加速度a1做匀加速直线运动;那么小物块将先以F1 + f = ma1的加速度a1做匀加速直线运动,那么当小物块速度等于传送带速度v时,有v = at1,x = 1/2 at12;假设x < L,那么物体受到的摩擦力方向将变为沿斜面向上,由于F1 > f,因此物体将以F1 - f = ma2的速度a2继续做匀加速直线运动,有L - x = vt2 + 1/2 a2t22;所以物块从A端运动到B端的时间t = t1+ t2;假设x > L,那么小物块从A端运动到B端的时间为L = 1/2 a1t2.。