第六章 GPS基线解算
- 格式:ppt
- 大小:634.50 KB
- 文档页数:41
G P S基线向量解算及平差处理技巧-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN基线向量解算及平差软件特点与问题一、基本方法:1、基线清理数据量大的时候,基线解算比较耗时。
GPS观测接收机数量较多时,会因为自然同步产生许多长基线,即许多相距较远的点连接而成的基线。
这些长基线往往同步观测时间不长,属于不必要的基线,对于控制网质量也无多大益处,所以为了节省计算时间,应在基线解算前将其清理删除。
删除时可在图上选择,也可以在基线表中根据距离选择删除。
2、处理超限闭合环基线解算完成后,首先要检查环闭合差(同步或异步环),对于闭合差大的环,应该进行处理。
一般按相对精度≤1/20000估算,相对闭合差应小于50ppm。
所以大于50 ppm的环应进行处理。
闭合环超限处理是一项繁琐、耗时的工作,也是GPS控制网数据处理的主要内容,主要的技巧和方法可以归纳为:(1)、超限基线处理过程中一些基线要重新解算,解算后会影响到相关环闭合差,所以处理需要反复进行。
作为一般的原则,首先处理相对闭合差较大的环,然后处理环闭合差较小的环。
(2)、整理归纳超限闭合环,分析是否涉及到一条共同基线,例如几组超限闭合环(J012,J015,J016)、(J013,J015,J102)、…,(J012,J020,J015)就涉及到共同基线J012→J015,这条基线有问题的可能性就较大。
(3)、处理时首先分析可能有问题的基线是否必要,如果是连接两个不相邻的点,并且涉及到环甚多,则可以直接将其删除。
井研算例网形复杂回路众多,一般可直接删除不合格基线。
(4)、如果一个闭合差超限的环,相关基线均不能简单删除(删除后影响图形结构,减少了重要环路),应该改变基线解算参数,重新计算相关基线。
方法是在网图上选中重解基线,重新设置高度角,历元间隔、参考星等设置,点击“基线解算”→“解算选择基线”。
(5)、基线解算的精度指标rms和ratio是基线解算质量的参考指标,前者是中误差,后者是方差比(,rms越小,表明基线解算质量越高,ratio越大,表明整周未知数解算越可靠,所以重解基线,要关注这两项指标,但是这两项指标只作参考,最重要的指标还是闭合差。
城市GPS控制网施测质量控制措施探讨【摘要】本文作者在深入研究全球定位系统(GPS)静态定位原理的基础上,结合多年生产实践经验,就城市GPS控制网的布网原则、等级划分、作业方法及成果整理要求进行了探讨。
通过全面质量控制以确保城市GPS控制网测量成果符合现行测量规范的要求。
【关键词】GPS 基线向量约束平差全球定位系统(Global Positioning System,缩写GPS)是美国第二代卫星导航定位系统。
该系统以其全能性(陆地、海洋、航空和航天)、全球性、全天候、连续性和实时性的导航定位功能,已被广泛地应用于各种等级精度的城市控制测量中。
如何对城市GPS控制网施测进行有效的质量监控,将会直接影响到成果的测量精度。
为此,笔者结合多年的生产实践经验,就如何有效保证城市GPS控制网测量精度制定了一套质量控制措施,以供城市测量GPS用户参考。
一、技术标准※中华人民共和国国家标准《全球定位系统(GPS)测量规范》GB/T 18314-2001※中华人民共和国行业标准《全球定位系统城市测量技术规范》CJJ 73-97※中华人民共和国测绘行业标准《全球定位系统(GPS)测量型接收机检定规程》CH 8016-95※中华人民共和国测绘行业标准《测绘产品检查验收规定》CH 1002-95二、专业技术设计(一)等级划分根据《全球定位系统(GPS)测量规范》和《全球定位系统城市测量技术规程》中规定的城市各级GPS 控制网相邻点间平均距离,要求在城市GPS控制网布设时,其相邻点间平均距离应符合表1要求。
同时,允许相邻点的最小距离可为平均距离的1/3~1/2,最大距离可为平均距离的2~3倍。
考虑到南方地区丘陵、山地地形复杂,因此,在南方地区布设C级GPS控制网时,其平均边长限制可根据实际情况适当放宽到20~25公里,同时规定边长超过25公里的同步环应增测一个时段,以确保GPS测量数据的质量。
城市各级GPS控制网平均边长表1(单位:km)(二)精度设计根据GPS控制网相邻点间基线长度精度计算公式:式中:σ为标准差,单位mm;d为相邻点间距离,单位mm。
第六章GPS 基线解算第1节GPS 基线解算的基本原理GPS 基线向量表示了各测站间的一种位置关系,即测站与测站间的坐标增量。
GPS 基线向量与常规测量中的基线是有区别的,常规测量中的基线只有长度属性,而GPS 基线向量则具有长度、水平方位和垂直方位等三项属性。
GPS 基线向量是GPS 同步观测的直接结果,也是进行GPS 网平差,获取最终点位的观测值。
一、观测值基线解算一般采用差分观测值,较为常用的差分观测值为双差观测值,即由两个测站的原始观测值分别在测站和卫星间求差后所得到的观测值。
双差观测值可以表示为下面的形式:n mff trop ion f f N dd dd dd v dd ,)()()()(⋅+++=+λρρρφ其中:为双差分算子(在测站i ,j 和卫星m ,n 间求差);(...)dd 为频率f 的双差载波相位观测值;)(f dd φ为频率f 的双差载波相位观测值的残差(改正数);f v 为观测历元t 时的站星距离;ρ为电离层延迟;ion ρ为对流层延迟;trop ρ为频率f 的载波相位的波长;f λ为整周未知数。
n m fN ,若在某一历元中,对k 颗卫星数进行了同步观测,则可以得到k -1个双差观测值;若在整个同步观测时段内同步观测卫星的总数为l 则整周未知数的数量为l -1。
在进行基线解算时,和一般并不作为未知参数,而是通过某些方法将它们消ion ρtrop ρ除1。
因此,基线解算时一般只有两类参数,一类是测站的坐标参数,数量为32;另1,3C X 1如用模型改正或双频改正。
2 在基线解算时将基线的一个端点的坐标作为已知值固定,解求另一个点。
固定的点称为起点,待求的点一类是整周未知数参数(m 为同步观测的卫星数),数量为。
1,1-m N X 1-m 二、基线解算(平差)基线解算的过程实际上主要是一个平差的过程,平差所采用的观测值主要是双差观测值。
在基线解算时,平差要分三个阶段进行,第一阶段进行初始平差,解算出整周未知数参数3的和基线向量的实数解(浮动解);在第二阶段,将整周未知数固定成整数;在第三阶段,将确定了的整周未知数作为已知值,仅将待定的测站坐标作为未知参数,再次进行平差解算,解求出基线向量的最终解-整数解(固定解)。
第六章 GPS 基线解算第1节 GPS 基线解算的基本原理一较为常用的差分观测值为双差观测值双差观测值可以表示为下面的形式(...)dd 为双差分算子j和卫星mf v 为频率f 的双差载波相位观测值的残差ion ρ为电离层延迟f λ为频率f 的载波相位的波长若在某一历元中则可以得到k -1个双差观测值在进行基线解算时而是通过某些方法将它们消除1»ùÏß½âËãʱһ°ãÖ»ÓÐÁ½Àà²ÎÊý数量为32m 为同步观测的卫星数数量为1−m 基线解算基线解算的过程实际上主要是一个平差的过程在基线解算时第一阶段进行初始平差浮动解在第二阶段在第三阶段仅将待定的测站坐标作为未知参数解求出基线向量的最终解-整数解2在基线解算时将基线的一个端点的坐标作为已知值固定固定的点称为起点3此时所解求出的整周未知数为实数1. 初始平差根据双差观测值的观测方程然后组成法方程后其结果为=N C X X X )))待定参数的协因数阵单位权中误差通过初始平差但由于观测值误差使得其结果为实数此时与实数的整周未知数参数对应的基线解被称作基线向量的实数解或浮动解必须准确地确定出整周未知数的整数值目前所采用的方法基本上是以下面将要介绍的搜索法为基础的1. 根据初始平差的结果N X )和NNX XD ))1ÒÔÓëËüÃÇÖÐÎó²îµÄÈô¸É±¶2为搜索半径2. 从上面所确定出的每一个整周未知数的备选整数值中一次选取一个并分别以它们作为已知值确定出相应的基线解[]iCiC X Xi Q Q ))=⋅ ∈♠⋅√∏∝⊗®⊄©〈≠≈∫≥∅≠⊂∂♦ ®[]iC i X X ))=i 0ˆσ不过当出现以下情况时而无法求出该基线向量的整数解其自由度为f 和f2可根据一定的置信水平来加以确定其中i 0ˆσ也被称为RMS3. 确定基线向量的固定解当确定了整周未知数的整数值后第2节 GPS 基线解算的分类一每两台接收机之间就可以形成基线向量其中最多可以选出相互独立的1−m 条同步观测基线只要保证所选的1−m 条独立基线不构成闭和环就可以了凡是构成了闭和环的同步基线是函数相关的但它们却是误差相关的所谓单基线解算对每条基线单独进行解算但由于其解算结果无法反映同步基线间的误差相关的特性一般只用在普通等级GPS 网的测设中多基线解1. 定义与单基线解算不同的是在基线解算时对所有同步观测的独立基线一并解算2. 特点多基线解由于在基线解算时顾及了同步观测基线间的误差相关特性在理论上是严密的质量控制指标及其应用1. 质量控制指标n 单位权方差因子0ˆσn 定义fPVV T =0ˆσ其中P 为观测值的权n 实质单位权方差因子又称为参考因子如果观测值的改正数大于某一个阈值时则需要将其删除就是所谓的数据删除率数据删除率越高n RATIOn 定义RATIO RMS RMS =次最小最小显然这一指标取决于多种因素测值的质量有关n RDOPn 定义所谓RDOP 值指的是在基线解算时待定参数的协因数阵的迹的平方根即观测条件当基线位置确定后而观测条件又是时间的函数实际上对与某条基线向量来讲n 实质RDOP 表明了GPS 卫星的状态对相对定位的影响它不受观测值质量好坏的影响Root Mean Square 即V 为观测值的残差n 为观测值的总数观测值质量越好反之则RMS 越大观测期间卫星分布图形依照数理统计的理论观测值误差落在1.96倍RMS 的范围内的概率是95%n 特点及作用由于同步观测基线间具有一定的内在联系如果同步环闭合差超限但反过来还不能说明组成同步环的所有基线在质量上均合格2所谓环的闭和差有以下几类∑∆=∆XX ε∑∆=∆ZZ ε∆∆∆++=Sz y x 1222)(εεεε∑S 为环长n 异步环闭合差n 定义不是完全由同步观测基线所组成的闭合环称为异步环n 特点及作用当异步环闭合差满足限差要求时当异步环闭合差不满足限差要求时要确定出哪些基线向量的质量不合格n 重复基线较差n 定义不同观测时段就是所谓重复基线就是重复基线较差应用RATIOËüÃÇÊýÖµµÄ¸ßµÍ²»Äܾø¶ÔµÄ˵Ã÷»ùÏßÖÊÁ¿µÄ¸ßµÍÔò˵Ã÷¹Û²âÖµÖÊÁ¿½Ï²î1Ôò˵Ã÷¹Û²âÌõ¼þ½Ï²î影响GPS 基线解算结果的几个因素影响基线解算结果的因素主要有以下几条会导致基线出现尺度和方向上的偏差导致这些卫星的整周未知数无法准确确定当卫星的观测时间太短时而对与基线解算来讲如果与其相关的整周未知数没有准确确定的话有个别时间段里周跳太多多路径效应比较严重周跳修复是否完全以及多路径效应是否严重等因素二有些是较容易判别的周跳太多对流层或电离层折射影响过大等如起点坐标不准确目前还没有较容易的方法来加生别在实际工作中以避免这种情况的发只要查看观测数据的记录文件中有与每个卫星的观测数据的数量就可以了这就更直观了示例可以从基线解算后所获得的观测值残差上来大部分的基线处理软件一般采用的双差观测值与此相关的所有双差观测值的残差都会出现显著的整数倍的n 多路径效应严重对流层或电离层折射影响的判别不过与整周跳变不同的是对流层或电离层折射影响过大时而只是出现非整数倍的增大但却又明显地大于正常观测值的残差可以在进行基线解算时较为准确的起点坐标可以通过进行较长时间的单点定位或通过与WGS-84坐标较准确的点联测得到所有基线起点的坐标均由一个点坐标衍生而来然后引入系统参数的方法加以解决则可以删除该卫星的观测数据这样可以保证基线解算结果的质量则可采用删除周跳严重的时间段的方法若只是个别卫星经常发生周跳来尝试改善基线解算结果的质量因此另外n 对流层或电离层折射影响过大的应对方法对于对流层或电离层折射影响过大的问题1. 提高截止高度角但这种方法因为不一定受对流层或电离层的影响就大3. 如果观测值是双频观测值3. 基线精化处理的有力工具-残差图在基线解算时经常要判断影响基线解算结果质量的因素残差图对于完成这些工作非常有用0.000.100.10图9 残差图上图是一种常见双差分观测值残差图的形式纵轴表示观测值的残差SV12-SV15Õý³£µÄ²Ð²îͼһ°ãΪ²Ð²îÈÆ×ÅÁãÖáÉÏϰڶ¯下面三个图表明SV12号卫星的观测值中含有周跳周1图11 SV12含有周跳的残差图 0.100.10图12 SV12含有周跳的残差图下面三个残差图表明SV25在21~T T 时间段内受不名因素对流层折射影响严重1.000.001.00图13 SV25受不明因素影响的残差图 残差1.000.001.00图14 SV25受不明因素影响的残差图 0.100.000.10图15 SV25受不明因素影响的残差图 第5节GPS基线解算的过程每一个厂商所生产的接收机都会配备相应的数据处理软件但是它们在使用步骤上却是大体相同的1. 原始观测数据的读入在进行基线解算时一般说来而由第三方所开发的数据处理软件则不一定能对各接收机的原始观测数据进行处理首先需要进行格式转换最常用的格式是RINEX格式大部分的数据处理软件都能直接处理就需要对观测数据进行必要的检查测站名测站坐标对这些项目进行检查的目的3. 设定基线解算的控制参数基线解算的控制参数用以确定数据处理软件采用何种处理方法来进行基线解算通过控制参数的设定4. 基线解算基线解算的过程一般是自动进行的5. 基线质量的检验基线解算完毕后还必须对基线的质量进行检验如果不合格基线的质量检验需要通过RATIO RMSÒì²½»·±ÕºÍ²îºÍÖØ¸´»ùÏ߽ϲîÀ´½øÐÐ。
GPS 基线解算基本理论与质量控制引言近年来,随着全球导航卫星系统(global navigation satellite system ,简称GNSS )技术的发展,GPS 技术飞速发展,从米级的导航定位到厘米的工程测量应用,再到更高等级的全球地壳形变监测,GPS 定位技术精度越来越高;此外,GPS 作业全天候,无通视要求,施测便利,GPS 技术已逐渐替代传统测量方法。
利用GPS 静态观测数据,采用事后处理GPS 软件,获取精确的定位信息。
在获取高精度的测量数据的同时,人们对于GPS 事后处理软件中基线解算质量控制越来越关注。
本文主要从基线解算的基本原理出发,讨论了基线解算分类、质量控制等内容,并使用HGO 软件解算基线并平差实例来阐述获取高精度基线向量以及基线质量控制的过程。
1 基线解算的基本原理GPS 基线向量是利用由两台或两台以上GPS 接收机所采集的同步观测数据形成的差分观测值,通过参数估计的方法计算出得两两接收机间三维坐标差。
基线向量是既具有长度特性,又具有方向特性的矢量。
基线解算就是利用多个测站的GPS 同步观测数据,确定这些测站之间坐标差的过程。
平差时所采用的观测值主要是双差值。
基线解算分为三个步骤:第一,以双差值观测方程进行初始平差,解算出整周期未知参数和基线向量的实数解;第二,将整周期未知参数固定成整数;第三,将确定的整周期数作为已知数,仅将待定的测站坐标作为未知参数,再次进行平差,解算出基线向量的最终解——整数解(固定解)。
双差观测值可以用以下公式表示:dd (f ϕ)+f v = dd (ρ)+dd (ion ρ)+ dd (trop ρ)+nm ff N ,⨯λ式中:dd (* *)为双差分因子(在i ,j 测站和卫星m,n 间求差); dd (f ϕ)为频率为f 的载波相位观测值的双差值,f v 为该双差观测值得改正数;ρ为历元t 时刻的伪距,ion ρ为电离层延迟,trop ρ为对流层延迟;f λ为频率为f 的载波相位波长;2 基线解算分类目前,基线解算可以模式可以分为单基线解模式、多基线解(时段)模式和整体解(战役)模式三钟。
GPS的基线解算及已知点兼容性检验张永军 王泽民 徐绍铨 鄢子平(武汉测绘科技大学地学测量工程学院)1 引言全球定位系统(简称GPS)是美国国防部为满足军事部门对海上、陆地和空中设施进行高精度导航和定位要求而建立的,它具有全球性、全天候、连续的精密三维导航与定位能力。
经过全世界科技工作者、仪器生产厂商的共同努力,GPS定位技术日趋成熟,而且具有自动化程度高、观测速度快、定位精度高、不受通视条件限制、抗干扰能力强等特点,从而广泛应用于测绘领域的各个部门。
而这些优点的充分发挥,GPS定位精度潜力的进一步挖掘,与作业者的正确操作及数据处理经验密切相关,例如采集外业数据时仪器的正确操作,基线解算的策略及质量控制,平差阶段多个已知点之间进行兼容性检验等。
本文结合我国南方某机场控制网的施测及数据处理过程,对GPS基线解算及网平差中的已知点兼容性检验问题进行探讨。
该网按C级精度要求,采用T rimble4000SSI双频接收机施测,测区共有8个点,共布设了8个同步环,其中GZ01为国家一等点,GZ02及GZ03为城市二等点,它们都有实测的水准数据及1954年北京坐标系坐标,中央子午线为东经113°。
基线解算采用随机的“GPSurvey Ver2.2”软件,平差则采用武汉测绘科技大学研制的“POW-ERADJ Ver3.00”软件。
2 基线解算过程及策略(1) 基线解算的一般过程GPS技术在测量中均采用相对定位技术,即确定点与点间的相对位置关系。
这种相对关系可以用某一坐标系下的三维直角坐标差( X ij, Y ij, Z ij)表示,也可以用大地坐标差( B ij, L ij, H ij)等表示。
这种点间的相对位置量称为基线向量。
基线处理的一般过程为: 读取数据。
数据可从GPS接收机读取,也可从计算机或其他存储设备读取。
观测值的预处理。
包括组成差分观测值、剔除不合格数据和周跳的探测及修复。
组成误差方程、法方程并求解未知参数。
1、原始观测数据的读入
在进行基线解算时,首先需要读取原始的GPS观测值数据。
一般说来,各接收机厂商随接收机一起提供的数据处理软件都可以直接处理从接收机中传输出来的GPS原始观测值数据,而由第三方所开发的数据处理软件则不一定能对各接收机的原始观测数据进行处理,要处理这些数据,首先需要进行格式转换。
目前,最常用的格式是RINEX格式,对于按此种格式存储的数据,大部分的数据处理软件都能直接处理。
2、外业输入数据的检查与修改
在读入了GPS观测值数据后,就需要对观测数据进行必要的检查,检查的项目包括:测站名、点号、测站坐标、天线高等。
对这些项目进行检查的目的,是为了避免外业操作时的误操作。
3、设定基线解算的控制参数
基线解算的控制参数用以确定数据处理软件采用何种处理方法来进行基线解算,设定基线解算的控制参数是基线解算时的一个非常重要的环节,通过控制参数的设定,可以实现基线的精化处理。
4、基线解算
基线解算的过程一般是自动进行的,无需过多的人工干预。
5、基线质量的检验
基线解算完毕后,基线结果并不能马上用于后续的处理,还必须对基线的质量进行检验,只有质量合格的基线才能用于后续的处
理,如果不合格,则需要对基线进行重新解算或重新测量。
基线的质量检验需要通过 RATIO、RDOP、RMS、同步环闭和差、异步环闭和差和重复基线较差来进行。
6、结束。