高二化学物质结构
- 格式:pdf
- 大小:1.47 MB
- 文档页数:8
全面剖析大π键【方法与规律】1、大π键的定义在多原子分子中,如有相互平行的p轨道,它们连贯地“肩并肩”地重叠在一起构成一个整体,p电子在多个原子间运动形成π型化学键,这种不局限在两个原子之间的π键称为离域π键或共轭大π键2、大π键的形成条件(1)所有参与形成离域π键的原子在同一平面上,因此中心原子采取sp2杂化或sp杂化(2)参与形成离域π键的原子都必须提供一个或两个相互平行的p轨道(3)形成离域π键的p轨道上的电子总数小于p轨道数的2倍3、大π键表示方法:nmπ,m为原子个数,n为共用电子个数,m≤2n如:43π指平行于p轨道的数目有3个(一般粒子有几个原子,就是几个p轨道),平行p轨道里的电子数为44、m和n的计算方法(1)ABn型的分子或离子【方法一】①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算a.分析出参与形成离域π键的每个原子形成几个σ键b.形成σ键后,若只有一个成单电子,则该电子参与形成大π键,若没有成单电子,则最多有一对孤对电子参与形成大π键物质分析方法大π键SO2S、O原子的电子式分别为:、,中心原子S采取sp2杂化,形成2个σ键,还有4个电子即2对孤对电子,S原子最多提供1对孤对电子形成大π键,O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,故n=2+2×1=4,因此SO2大π键为43π43πO3O原子的电子式分别为:,中心原子O采取sp2杂化,形成2个σ键,还有4个电子即2对孤对电子,中心O原子最多提供1对孤对电子形成大π键,配位O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,故n=2+2×1=4,因此O3大π键为43π43πNO2-N、O原子的电子式分别为:、,中心原子N采取sp2杂化,形成2个σ键,还有3个电子则有1个单电子,中心N原子最多提供1个单电子形成大π键,配位O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,由于带一个单位的负电荷,也要参与形成大π键,故n=1+1+2×1=4,因此NO2-大π键为43π43π规律①若微粒互为等电子体,则大π键是相同的;②若为离子,n的数值遵循“阴加阳减”CO2C、O原子的电子式分别为:、,中心原子C采取sp杂化,形成2个σ键,还有2个电子即1对孤对电子,中心C原子最多提供1对孤对电子形成大π键,O原子形成1个σ键后,还有5个电子,有1个单电子,则两个O原子的单电子参与形成大π键,由于带一个单位的负电荷,也要参与形成大π键,故n=2+2×1=4,因此CO2大π键为43π43π同理SCN—、NO2+、N3—互为等电子体,则大π键是相同的,大π键为43π物质分析方法大π键CO32—C、O原子的电子式分别为:、,中心原子C采取sp2杂化,形成3个σ键,还有1个单电子,中心C原子最多提供1个单电子形成大π键,O原子形成1个σ键后,还有5个电子,有1个单电子,则3个O原子的单电子参与形成大π键,由于带2个单位的负电荷,也要参与形成大π键,故n=1+2+3×1=6,因此CO32—大π键为64π64π同理NO3—、SO3互为等电子体,则大π键是相同的,大π键为64π【方法二】①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算(3个部位加起来的总和)a.中心原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数b.成键原子=成单电子数总和c.外界:阴阳离子,遵循“阴加阳减”物质分析方法大π键SO2①S的杂化:sp2②形成大π键的p轨道电子总数a.中心S原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=6-2×1-2=2b.成键原子=2×1=2c.外界:0n=2+2=4,因此SO2大π键为43π43πNO2+①N的杂化:sp②形成大π键的p轨道电子总数a.中心N原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=5-2×1-0=3b.成键原子=2×1=2c.外界:-1n=3+2-1=4,因此NO2+大π键为43π43πSO3①S的杂化:sp2②形成大π键的p轨道电子总数a.中心S原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=6-3×1-0=3b.成键原子=3×1=3c.外界:0n=3+3=6,因此SO3大π键为64π64πNO3—①N的杂化:sp2②形成大π键的p轨道电子总数a.中心N原子=中心原子价电子数-形成σ键所提供的电子总数-孤电子数=5-3×1-0=264πb .成键原子=3×1=3 c.外界:1n=2+3+1=6,因此NO3—大π键为64π【方法三】①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算a.先计算微粒的总价电子数(a)b.计算原子之间的σ键,一对σ键存在2个电子(b)c.中心原子的孤对电子数(c)d.外围原子的价层电子中的孤对电子数,如:O原子为2s、2p中各有1对,共4个电子(d)③n=a-b-c-d物质分析方法大π键SO2总价电子数a=6+6×2=18σ键电子数b=2×2=4中心原子的孤对电子数c=2外围原子的价层电子中的孤对电子数d=2×4=8n=a-b-c-d=18-4-2-8=4,因此SO2大π键为43π43πNO2+总价电子数a=5+6×2-1=16σ键电子数b=2×2=4中心原子的孤对电子数c=0外围原子的价层电子中的孤对电子数d=2×4=8n=a-b-c-d=16-4-0-8=4,因此NO2+大π键为43π43πSO3总价电子数a=6+6×3=24σ键电子数b=3×2=6中心原子的孤对电子数c=0外围原子的价层电子中的孤对电子数d=3×4=12n=a-b-c-d=24-6-0-12=6,因此SO2大π键为64π64πNO3—总价电子数a=5+6×3+1=24σ键电子数b=3×2=6中心原子的孤对电子数c=0外围原子的价层电子中的孤对电子数d=3×4=12n=a-b-c-d=24-6-0-12=6,因此NO3—大π键为64π64π(2)多个中心原子(AmBn)型的分子或离子——用方法一①m为原子个数:一般粒子有几个原子,就是几个p轨道,如:SO2有3个原子形成π键,则m=3②n值的计算a.分析出参与形成离域π键的每个原子形成几个σ键b.形成σ键后,若只有一个成单电子,则该电子参与形成大π键,若没有成单电子,则最多有一对孤对电子参与形成大π键物质分析方法大π键C原子的电子式为:,每个C原子采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,因此其大π键为66π66πC、N原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,N原子形成2个σ键,还有3个电子,有一个成单电子参与形成大π键,所以n=5×1+1=6,因此其大π键为66π66π物质分析方法大π键C、N原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,N原子形成3个σ键,还有1对孤对电子,这对孤对电子一定参与形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC、N原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,1号N原子形成3个σ键,还有1对孤对电子,这对孤对电子一定参与形成大π键,2号N原子形成2个σ键,还有3个电子,则有一个成单电子参与形成大π键,所以n=3×1+2+1=6,因此其大π键为65π65πC、O原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,O原子形成2个σ键,还有4个电子即2对孤对电子,O原子最多提供1对孤对电子形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC、S原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,S原子形成2个σ键,还有4个电子即2对孤对电子,S原子最多提供1对孤对电子形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC、Se原子的电子式为:、,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,Se原子形成2个σ键,还有4个电子即2对孤对电子,Se原子最多提供1对孤对电子形成大π键,所以n=4×1+2=6,因此其大π键为65π65πC原子的电子式为:,C原子都采取sp2杂化,形成3个σ键,每C原子有1个成单电子,该单电子参与形成大π键,所以n=4×1=4,因此其大π键为44π44π。
高二化学物质的结构与性质教学计划全文共5篇示例,供读者参考高二化学物质的结构与性质教学计划篇1一、指导思想坚持以提高教学工作质量为重点,切实加强教学研究和教改实验工作,进一步改进课堂教学方法,大力培养学生的学习能力、创新精神和综合素质。
二、基本情况1、学生情况分析本学期任教高一年级3、4两个班,共有学生人,班主任分别为李多宽和方跃老师。
这两个班的学生全部是学校录取进校的普高新生和部分职高生,基础差、底子薄,想让他们对化学有兴趣并学好化学,以及明年选择理科,任务相当艰巨。
因两个班为高一年级新生,教学中要特别注意在增进了解的基础上逐渐培养学生学习对化学的兴趣。
对教师的亲近,让他们亲其师,信其道。
2、教学情况分析对于高一新班,科任教师的首要任务是要培养学生良好的学习习惯,并让他们明确知晓化学教师对他们的基本要求,知道他们可以做什么,不可以做什么。
如规定要课前预习,课后复习,特别是没有预习时是不允许进实验室进行学生实验的,没有理由是不能不交作业的,上课有问题只要举手示意就可以提问的等。
要求学生准备好听课笔记,最好准备一本相关教辅书籍等。
对化学特别有兴趣且学有余力的学生,将会利用周六对其培训。
本学期的主要教学任务是必修1内容,既有基本理论和基本概念的内容,也有元素和化合物等知识,教学中既要重视知识的把握,更应重视科学方法的培养,科学态度的形成。
三、本期教学目标1、思想教育目标面向全体学生,坚持全面发展,进一步提高学生的思想道德、文化科学、审美情趣;通过化学绪言中化学史及第一章化学新能源的学习,培养学生爱国主义精神与创新意识及辩证唯物主义观点;针对高一新生求知欲望强烈的特点,要逐步引导学生树立远大理想,立志为祖国化学化工事业的发展作出新贡献。
2、能力培养目标通过化学反应及其能量变化、物质的量等量论化学基本概念和基本理论的学习,培养学生良好辩证思维能力与逻辑推理能力;通过碱金属、卤素的学习,培养学生良好的观察能力、思维能力、分析问题与解决问题的能力以及基本化学实验技能。
高中化学物质结构讲解教案主题:物质结构目标:通过本节课的学习,学生能够掌握物质结构的概念,了解常见物质的结构类型,并能够进行简单的结构分析。
一、引入:(5分钟)讲师通过展示一些常见物质的结构模型或图片,引导学生思考物质是如何组成的,让其明白结构对物质性质的影响。
二、概念讲解:(15分钟)1.物质结构的概念:物质结构是指物质内部原子或分子的排列方式,决定了物质的性质。
常见的物质结构类型包括晶体结构、分子结构、离子结构等。
2.晶体结构:晶体是由原子或分子周期性排列而成的固体。
晶体结构可以分为简单晶体结构和复杂晶体结构,如面心立方结构、体心立方结构等。
3.分子结构:分子是由原子通过共价键连接而成的物质。
分子结构的示范以水分子为例进行讲解,让学生了解分子的构成和排列方式。
4.离子结构:离子是由带正电荷或负电荷的原子或分子组成的物质。
通过氯化钠晶体的结构示范让学生认识离子结构的特点。
三、案例分析:(15分钟)让学生观察一些实际物质的结构模型或图片,并根据所学知识进行结构分析,了解不同结构类型对物质性质的影响。
四、练习及讨论:(15分钟)1.让学生参与简单的结构分析练习,如识别晶体、分子和离子结构在实际物质中的应用。
2.组织学生分组讨论不同结构类型的物质在化学反应中的表现和性质,引导他们进行深入思考和讨论。
五、总结与拓展:(5分钟)通过总结本节课的知识点,强调物质结构对物质性质的重要性,激发学生对物质结构研究的兴趣。
鼓励学生主动拓展相关知识,加深对物质结构的理解。
六、作业布置:(5分钟)布置作业内容,如复习本节课所学知识点或找寻更多关于物质结构的资料,以便下节课进一步深入学习。
七、课堂反馈:(5分钟)收集学生对本节课的反馈意见和建议,及时调整教学方法和内容,为下次课的教学提供参考。
高二化学知识点无机化合物的结构与性质解析高二化学知识点—无机化合物的结构与性质解析无机化合物是由金属与非金属元素通过离子键、共价键或金属键结合而成的化合物。
它们的结构和性质对我们理解化学反应和化学原理具有重要意义。
本文将从无机化合物的结构和性质两个方面进行阐述。
一、无机化合物的结构无机化合物的结构可以分为离子化合物和共价化合物两种。
1. 离子化合物的结构离子化合物的结构是由正离子和负离子通过电静力相互作用而形成的。
正离子是由金属元素失去电子而产生的,负离子是由非金属元素获得电子而产生的。
它们在晶体中按照一定的比例排列,形成离子晶体的结构。
离子晶体的结构稳定,具有高熔点和良好的导电性。
例如,氯化钠(NaCl)是由钠离子和氯离子通过电静力相互作用而形成的。
2. 共价化合物的结构共价化合物的结构是由非金属元素之间通过共用电子而形成的。
共价键的形成使得原子之间形成稳定的共价分子。
共价分子的结构涉及原子间的共价键和非共价键,其中共价键是由电子对的共用而形成的。
共价化合物通常具有低熔点和较差的导电性。
例如,氨气(NH3)是由氮原子和氢原子通过共用电子对形成的。
二、无机化合物的性质无机化合物的性质多样,包括物理性质和化学性质。
1. 物理性质(1)熔点和沸点:无机化合物的熔点和沸点取决于其结构和间隔力。
通常,离子化合物的熔点和沸点较高,而共价化合物的熔点和沸点较低。
(2)溶解度:无机化合物的溶解度与其结构和极性有关。
极性化合物通常在极性溶剂中具有较高的溶解度,而非极性化合物则在非极性溶剂中更容易溶解。
2. 化学性质(1)酸碱性:无机化合物可以根据其在溶液中的行为分为酸、碱和中性物质。
酸性化合物可在水溶液中释放H+离子,碱性化合物可在水溶液中释放OH-离子。
(2)氧化还原性:无机化合物具有氧化和还原的性质。
氧化剂能使其他物质氧化,还原剂能使其他物质还原。
(3)稳定性:无机化合物的稳定性与其化学键类型和结构有关。
某些化合物在高温或强酸碱条件下会发生分解或变异反应。