大跨结构
- 格式:ppt
- 大小:51.87 MB
- 文档页数:95
大跨度建筑的结构设计大跨度建筑是指建筑物中跨度大于等于40米的建筑。
与传统建筑相比,大跨度建筑在空间布局和结构设计上都有较大的挑战。
本文探讨大跨度建筑的结构设计及其应用。
一、大跨度建筑的结构设计1.梁式结构梁式结构是大跨度建筑的常用结构类型之一,它利用梁的强度和刚度来支撑跨度较长的建筑。
在大跨度梁的设计中,需要考虑到梁的截面形状、材料、刚度、强度等因素。
例如,著名的伦敦眼观景轮采用了梁式结构,利用了高强度钢材料制成的滑轮和悬挂钢缆来支撑整个建筑。
这种梁式结构设计的优点是能够在不占用内部空间的情况下提供支撑力,从而实现大跨度建筑的空间设计。
2.网壳结构网壳结构是一种常用的大跨度建筑结构设计形式。
它由大量的杆和节点组成,呈现出类似于异形网格的形态,可抵御外部弯曲和剪切力。
例如,位于中国上海的东方明珠塔就是一种典型的网壳结构。
它由大量的三角形钢管起拱形成多穹顶状网架结构,利用了结构杆件三角形组合的适用性和钢管双向剪力优良的特性,为整个建筑提供了强大的支撑力和刚度。
同时,网壳结构还具有优美的空间美学效果,为城市天际线带来了新的视觉风格。
3.悬链结构悬链结构利用悬挂钢缆和大跨度建筑物体的自重,形成了一种类似于悬链的结构设计形式。
它的一大特点是结构杆件能够分担大量吊杆的拉力,从而达到支撑建筑物的目的。
例如,著名的法国埃菲尔铁塔就是一种典型的悬链结构。
它由大量的悬挂钢缆和大型铁框架组成,同时利用了钻孔和铆焊技术,既满足了结构的承载要求,又保留了珍贵历史建筑成果。
这种悬链结构不仅增强了建筑物的稳定性,而且还成为法国文化遗产的标志性代表。
二、大跨度建筑的应用大跨度建筑由于具有空间利用效率高、运行费用低、视觉效果好等优点,在如今的城市化建设中得到了广泛的应用。
以下是几个典型的大跨度建筑案例:1.北京国家大剧院北京国家大剧院采用了地下水泵吸引地下水上泵供水的自然冷却系统,设有近3000个座位。
其建筑外观类似于人类强壮且柔韧的结构,运用了大量的悬挂钢缆和网壳结构,同时建筑内部空间充分利用,成为北京城市文化建筑的瑰宝。
大跨度结构其结构体系有很多种,如网架结构、索结构、薄壳结构、充气结构、应力膜皮结构、混凝土拱形桁架等,常用于展览馆、体育馆、飞机机库等。
一.网架结构网架结构为大跨度结构最常见的结构形式,因其为空间结构,故一般称为空间网架。
其杆件多采用钢管或型钢,现场安装。
常见的为平面桁架、四角锥体和三角形锥体组成,其节点形式可分为焊接钢板节点和焊接空心球节点两种。
二.索结构索结构是将桥梁中的悬索“移植”到房屋建筑中,可以说是土木工程中结构形式互通互用的典型范例。
三.薄壳结构薄壳结构常用的形状为圆顶、筒壳、折板、双曲扁壳和双曲抛物面壳等。
圆形圆顶结构是轴对称结构,在轴对称荷载作用下,将只产生两种力:径向力和环向力。
径向力为沿经线方向的力,因其要平衡垂直向下荷载,所以必定为压力。
环向力为沿纬线方向的力。
圆形屋顶在垂直荷载作用下,上部的圆顶部分将受压收缩,其直径将变小,而下部近支承部分直径将增大,即上部将产生环向压力,而下部将产生环向拉力,中间将有一截面,为环向压力向环向拉力转变的交界线,该处的环向力为0,该截面称为“过渡缝”。
悉尼歌剧院格拉加尼亚修道院教堂上页下页四.混凝土拱形桁架混凝土拱形桁架在以前的工程中应用较多,但因其自重较大,施工复杂,现已很少采用。
目前最大跨度的拱形桁架为贝尔格莱德的机库,为预应力混凝土桁架结构,跨度为135.8m。
日本姬路市中心体育馆五.充气结构充气结构又称充气薄膜结构,是在玻璃丝增强塑料薄膜或尼龙布罩内部充气形成一定的形状,作为建筑空间的覆盖物。
对角跨长200m,由室内地面至顶高6.07m的东京穹顶,是不用柱子,只依靠室内外气压差来制成的膜屋盖结构,也是在日本最初用于多功能全天候的体育场,约30,000平方米超大椭圆形屋顶,采用悬索加强的充气膜结构。
其双向各配置14根共28根钢索,在其上张拉着涂有特富龙的玻璃纤维布。
请看充气膜的充气过程:六.应力膜皮结构应力膜皮结构一般是用钢质薄板做成很多块各种板片单元焊接而成的空间结构。
建筑结构大跨度结构大跨度结构是指横跨较长的距离,一般大于50米的建筑结构。
大跨度结构在现代建筑中得到了广泛应用,不仅可以提供更大的空间,还能够提高建筑的整体美观性、功能性和可持续性。
本文将介绍大跨度结构的定义、分类、应用以及在设计中的考虑因素等内容。
一、大跨度结构的定义大跨度结构是指横跨较长的距离的建筑结构。
它们通常用于一些需要较大空间的场所,如会展中心、机场终端楼、体育馆等。
大跨度结构的建造需要考虑跨度、荷载、材料和施工等因素。
跨度越大,结构的自重越大,所需的材料和施工难度也越大。
因此,在设计大跨度结构时需要进行充分的工程计算和结构分析,以确保结构的稳定性和安全性。
二、大跨度结构的分类根据结构的形式和功能,大跨度结构可以分为以下几种类型:1.單元系統結構:单元系统结构是一种由标准化部件组成的结构体系,其主要特点是模块化。
这种结构适用于大型工业厂房、仓库等场所。
常见的单元系统结构包括钢桁架结构和桁架梁结构。
2.点支撑结构:点支撑结构是一种通过柱子或支撑点将荷载传递到地面的结构。
它适用于要求大空间的建筑,如机场终端楼、体育场馆等。
点支撑结构常见的形式有网壳结构和空间桁架结构。
3.地铁结构:地铁结构主要用于地铁车站和地下通道等场所,其特点是地下结构、强度高和防水性能好。
地铁结构主要由混凝土和钢材构成,以提供足够的强度和稳定性。
4.悬索桥结构:悬索桥结构主要由悬索和桥塔组成,适用于跨越较长距离的桥梁。
悬索桥结构具有较好的承载能力和抗震能力,广泛用于桥梁工程中。
三、大跨度结构的应用大跨度结构在现代建筑中得到了广泛应用,主要体现在以下几个方面:1.会展中心:会展中心是大跨度结构的代表之一,其特点是空间大、无柱和灵活布局。
通过合理的结构设计和使用大跨度结构,可以提供更大的展示面积和灵活的空间分配。
2.机场终端楼:机场终端楼一般需要提供较大的空间,以应对大量旅客的需求。
大跨度结构可以提供无柱的空间,不仅能够提供较大的空间容量,还能使旅客获得更好的使用体验。
大跨度空间结构的主要形式及特点大跨度建筑通常是指跨度在30米以上的建筑,我国现行钢结构规范则规定跨度在60米以上结构为大跨度结构。
大跨度空间结构往往是衡量一个国家或地区建筑技术水平的重要标志。
其结构形式主要包括拱结构、刚架结构、桁架结构、网架结构、折板结构、网壳结构、悬索结构、膜结构、薄壳结构等空间结构及各类组合空间结构。
形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。
结构是房屋的骨架,是形成建筑内部空间和外部形式的物质基础,结构是在特定的材料和施工技术条件下运用力学原理创造出来的。
某种新的结构一丹产生并在工程实践中反复出现时,便会逐渐形成一种崭新的建筑形式。
上面所提到的空间结构也可以分成:一实体结构类——薄壳结构、折板结构;二网格结构——网架结构、网壳结构;三张力结构——悬架结构、薄膜结构;四其他新型大跨度空间结构——可展开折叠式结构、开合屋顶、张拉整体结构、张弦结构、整体张拉预应拱架结构。
下面我就各空间结构作分析。
1拱结构1.1定义与特点拱结构是一种主要承受轴向压力并由两端推力维持平衡的曲线或折线形构件。
拱结构由拱圈及其支座组成。
拱是古代大跨度建筑的主要结构形式。
由于拱呈曲面形状,在外力作用下,拱内的弯矩可以降低到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样的梁结构断面小,能承受较大空间。
但是拱结构在承受荷载后将产生横向推力,为了维持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
常见的方式是在拱的两侧作两道后墙来支承拱,墙厚随拱跨增大而加厚。
这样就会使建筑的平面空间组合受到约束。
1.2拱结构形式拱结构应用广泛,形式多种多样。
按建造的材料分类,有砖石砌体拱结构、钢筋混凝土拱结构、钢拱结构、胶合木拱结构等;按结构组成与支承方式分类,有无铰拱、两铰拱和三铰拱,无拉力杆拱和有拉杆拱;按拱轴的形式分类,常见的有半圆拱和抛物线拱;按拱身截面分类,有实腹式和格构式、等截面和变截面等。
大跨度空间结构是目前发展最快的结构类型。
大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。
而大跨度结构的表现形式是多种多样的。
大跨度空间结构;拱券结构及穹隆结构;椼架结构与网架结构;壳体结构;悬索结构;膜结构一、拱券结构及穹隆结构从迄今还保存着的古希腊宏大的露天剧场遗迹来看,人类大约在两千多年前,就有扩大室内空间的要求。
古代建筑室内空间的扩大是和拱结构的演变发展紧密联系着的,从建筑历史发展的观点来看,一切拱结构-包括各种形式的券、筒形拱、交叉拱、穹隆-的变化和发展,都可以说是人类为了谋求更大室内空间的产物。
券拱技术是罗马建筑最大的特色及成就,它对欧洲建筑做出了巨大的贡献,影响之大无与伦比。
罗马建筑典型的布局方法、空间组合、艺术形式和风格以及某些建筑的功能和规模等等都是同券拱结构有密切联系。
拱形结构在承受荷重后除产生重力外还要产生横向的推力,为保持稳定,这种结构必须要有坚实、宽厚的支座。
例如以筒形拱来形成空间,反映在平面上必须有两条互相平行的厚实的侧墙,拱的跨度越大,支承它的墙则越厚。
很明显,这必然会影响空间组合的灵活性。
为了克服这种局限,在长期的实践中人们又在单向筒形拱的基础上,创造出一种双向交叉的筒形拱。
而之后为了建筑的发展热门又创造出了穹隆结构穹隆结构也是一种古老的大跨度结构形式,早在公元前14世纪建造的阿托雷斯宝库所运用的就是一个直径为14.5米的叠涩穹隆。
到了罗马时代,半球形的穹隆结构已被广泛地运用于各种类型的建筑,其中最著名的要算潘泰翁神庙。
神殿的直径为43.3米,其上部覆盖的是一个由混凝土做成的穹隆结构。
在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集中,其灵活性就越大。
从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。