2018考研数学一真题及解析
- 格式:docx
- 大小:609.89 KB
- 文档页数:13
2018考研数学一真题及答案一、选择题 1—8小题.每小题4分,共32分.1.若函数1cos 0(),0xx f x b x ⎧->⎪=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab = 【详解】0001112lim ()lim lim 2x x x xx f x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A ) 2.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )3.函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为(A )12 (B )6 (C )4 (D )2 【详解】22,,2f f fxy x z x y z∂∂∂===∂∂∂,所以函数在点(1,2,0)处的梯度为()4,1,0gradf =,所以22(,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,2)n =的方向导数为()014,1,0(1,2,2)23f gradf n n∂=⋅=⋅=∂应该选(D )4.甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,如图中,实线表示甲的速度曲线1()v v t =(单位:米/秒),虚线表示乙的速度曲线2()v v t =(单位:米/秒),三块阴影部分的面积分别为10,20,3,计时开始后乙追上甲的时刻为0t ,则( ) (A )010t = (B )01520t <<(C )025t = (D )025t >【详解】由定积分的物理意义:当曲线表示变速直线运动的速度函数时,21()()T T S t v t dt =⎰表示时刻[]12,T T 内所走的路程.本题中的阴影面积123,,S S S -分别表示在时间段[][][]0,10,10,25,25,30内甲、乙两人所走路程之差,显然应该在25t =时乙追上甲,应该选(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆 (C )2TE αα+不可逆 (D )2TE αα-不可逆 【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2T T T T E E E E αααααααα-+-+的特征值分别为0,1,1,1;2,1,1,,1;1,1,1,,1-;3,1,1,,1.显然只有T E αα-存在零特征值,所以不可逆,应该选(A ). 6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B 是两个随机事件,若0()1P A <<,0()1P B <<,则(/)(/)P A B P A B >的充分必要条件是(A )(/)(/)P B A P B A > (B )(/)(/)P B A P B A < (C )(/)(/)P B A P B A > (D )(/)(/)P B A P B A <【详解】由乘法公式:()()(/),()()((/)P AB P B P A B P AB P B P A B ==可得下面结论:()()()()(/)(/)()()()()1()()P AB P AB P A P AB P A B P A B P AB P A P B P B P B P B ->⇔>=⇔>- 类似,由()()(/),()()(/)P AB P A P B A P AB P A P B A ==可得()()()()(/)(/)()()()()1()()P AB P AB P B P AB P B A P B A P AB P A P B P A P A P A ->⇔>=⇔>- 所以可知选择(A ). 8.设12,,,(2)n X X X n ≥为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i Xμ=-∑服从2χ分布 (B )()212n X X -服从2χ分布 (C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.已知函数21()1f x x=+,则(3)(0)f = .解:由函数的马克劳林级数公式:()0(0)()!n nn f f x x n ∞==∑,知()(0)!n n f n a =,其中n a 为展开式中nx 的系数. 由于[]24221()1(1),1,11n n f x x x x x x==-+-+-+∈-+,所以(3)(0)0f =.10.微分方程230y y y '''++=的通解为 .【详解】这是一个二阶常系数线性齐次微分方程,特征方程2230r r ++=有一对共共轭的根1r =-,所以通解为12()x y e C C -=+ 11.若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则a = .【详解】设 2222(,),(,)11x ay P x y Q x y x y x y -==+-+-,显然 (,),(,)P x y Q x y 在区域内具有连续的偏导数,由于与路径无关,所以有1Q Pa x y∂∂≡⇒=-∂∂ 12.幂级数111(1)n n n nx ∞--=-∑在区间(1,1)-内的和函数为【详解】111121111(1)(1)()(1)1(1)n n n nn n n n n x nxx x x x ∞∞∞----===''⎛⎫⎛⎫'-=-=-== ⎪ ⎪++⎝⎭⎝⎭∑∑∑ 所以21(),(1,1)(1)s x x x =∈-+13.设矩阵101112011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的分布函数4()0.5()0.52x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX = .【详解】随机变量X 的概率密度为4()()0.5()0.25()2x f x F x x ϕϕ-'==+,所以 4()()0.5()0.25()240.25()0.252(24)()22()2x E X xf x dx x x dx x dx x x dx t t dt t dt ϕϕϕϕϕ+∞+∞+∞-∞-∞-∞+∞+∞-∞-∞+∞-∞-==+-==⨯+==⎰⎰⎰⎰⎰⎰三、解答题15.(本题满分10分)设函数(,)f u v 具有二阶连续偏导数,(,cos )xy f e x =,求0|x dy dx=,202|x d y dx =.【详解】12(,cos )(,cos )(sin )x x x dy f e x e f e x x dx ''=+-,01|(1,1)x dyf dx='=; 2111122222122(,cos )((,cos )sin (,cos ))cos (,cos )sin (,cos )sin (,cos )x x x x x x x x x x d ye f e x e f e x e xf e x xf e x dx xe f e x xf e x ''''''=+--''''-+2011122|(1,1)(1,1)(1,1)x d yf f f dx=''''=+-.16.(本题满分10分) 求21limln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰17.(本题满分10分)已知函数()y x 是由方程333320x y x y +-+-=. 【详解】在方程两边同时对x 求导,得2233330x y y y ''+-+= (1)在(1)两边同时对x 求导,得2222()0x y y y y y '''''+++=也就是222(())1x y y y y'+''=-+令0y '=,得1x =±.当11x =时,11y =;当21x =-时,20y = 当11x =时,0y '=,10y ''=-<,函数()y y x =取极大值11y =; 当21x =-时,0y '=,10y ''=>函数()y y x =取极小值20y =. 18.(本题满分10分)设函数()f x 在区间[]0,1上具有二阶导数,且(1)0f >,0()lim 0x f x x-→<,证明: (1)方程()0f x =在区间()0,1至少存在一个实根;(2)方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.证明:(1)根据的局部保号性的结论,由条件0()lim 0x f x x-→<可知,存在01δ<<,及1(0,)x δ∈,使得1()0f x <,由于()f x 在[]1,1x 上连续,且1()(1)0f x f ⋅<,由零点定理,存在1(,1)(0,1)x ξ∈⊂,使得()0f ξ=,也就是方程()0f x =在区间()0,1至少存在一个实根;(2)由条件0()lim 0x f x x-→<可知(0)0f =,由(1)可知()0f ξ=,由洛尔定理,存在(0,)ηξ∈,使得()0f η'=;设()()()F x f x f x '=,由条件可知()F x 在区间[]0,1上可导,且(0)0,()0,()0F F F ξη===,分别在区间[][]0,,,ηηξ上对函数()F x 使用尔定理,则存在12(0,)(0,1),(,)(0,1),ξηξηξ∈⊂∈⊂使得1212,()()0F F ξξξξ''≠==,也就是方程2()()(())0f x f x f x '''+=在区间()0,1内至少存在两个不同实根.19.(本题满分10分)设薄片型S 是圆锥面z =被柱面22z x =所割下的有限部分,其上任一点的密度为μ=C .(1)求C 在xOy 布上的投影曲线的方程; (2)求S 的质量.M【详解】(1)交线C的方程为22z z x⎧=⎪⎨=⎪⎩z ,得到222x y x +=.所以C 在xOy 布上的投影曲线的方程为222.0x y xz ⎧+=⎨=⎩(2)利用第一类曲面积分,得222222(,,)1864SSx y xx y xM x y z dS μ+≤+≤=====⎰⎰⎰⎰⎰⎰⎰⎰20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥. 假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他.(1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=,利用12,,,n Z Z Z 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量122ni i Z nσ===∑.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >=时似然函数为221121()(,)ni i nnz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=2019考研数学一真题及答案一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k A.1. B.2. C.3.D.4.2.设函数⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是A..1∑∞=n n nu B.nn nu 1)1(1∑∞=-. C.∑∞=+⎪⎪⎭⎫ ⎝⎛-111n n n u u . D.()∑∞=+-1221n n n u u.4.设函数2),(yxy x Q =,如果对上半平面(0>y )内的任意有向光滑封闭曲线C 都有⎰=+Cdy y x Q dx y x P 0),(),(,那么函数),(y x P 可取为A.32yx y -.B.321yx y -. C.y x 11-. D.yx 1-. 5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+.C.232221y y y --.D.232221y y y ---.6.如图所示,有3张平面两两相交,交线相互平行,它们的方程)3,2,1(321==++i d z a y a x a i i i i组成的线性方程组的系数矩阵和增广矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.).()()(B P A P B A P += B.).()()(B P A P AB P = C.).()(A B P B A P = D.).()(B A P AB P =8.设随机变量X 与Y 相互独立,且都服从正态分布),(2σμN ,则{}1<-Y X PA.与μ无关,而与2σ有关.B.与μ有关,而与2σ无关.C.与2,σμ都有关. D.与2,σμ都无关.二、填空题:9~14小题,每小题4分,共24分. 9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx ∂∂⋅+∂∂⋅11= . 10. 微分方程02'22=--y y y 满足条件1)0(=y 的特解=y .11. 幂级数nn n x n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S . 12. 设∑为曲面)0(44222≥=++z z y x 的上侧,则dxdy z x z⎰⎰--2244= .13. 设),,(321αααA =为3阶矩阵.若 21αα,线性无关,且2132ααα+-=,则线性方程组0=x A 的通解为 .14. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分方程2'2x e xy y -=+满足条件0)0(=y 的特解.(1)求)(x y ;(2)求曲线)(x y y =的凹凸区间及拐点.16.(本题满分10分)设b a ,为实数,函数222by ax z ++=在点(3,4)处的方向导数中,沿方向j i l 43--=的方向导数最大,最大值为10.(1)求b a ,;(2)求曲面222by ax z ++=(0≥z )的面积.17.求曲线)0(sin ≥=-x x e y x与x 轴之间图形的面积.18.设dx x x a n n ⎰-=121,n =(0,1,2…)(1)证明数列{}n a 单调减少,且221-+-=n n a n n a (n =2,3…) (2)求1lim-∞→n nn a a .19.设Ω是锥面())10()1(2222≤≤-=-+z z y x 与平面0=z 围成的锥体,求Ω的形心坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的一个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的一个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A 与⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012相似(1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独立?23.(本题满分11分) 设总体X 的概率密度为⎪⎩⎪⎨⎧<≥--=,0,2)(),(222μμσσA σx x u x e x f 其中μ是已知参数,0>σ是未知参数,A 是常数,n X …X X ,,21来自总体X 的简单随机样本.(1)求A ;(2)求2σ的最大似然估计量参考答案1.C2.B3.D4.D5.C6.A7.C8.A9.yx x y cos cos + 10.23-xe 11.x cos 12.332 13. ,T)1,2,1(-k k 为任意常数. 14.3215. 解:(1))()()(2222c x ec dx e ee x y x xdxx xdx+=+⎰⎰=---⎰,又0)0(=y ,故0=c ,因此.)(221x xe x y -=(2)22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(23---e,)3,3(23-e .16. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,又()()108622=+=b a z grad ,所以,.1-==b a(2)dxdy y z x z S y x ⎰⎰≤+∂∂+∂∂+=22222)()(1=dxdy y x y x ⎰⎰≤+-+-+22222)2()2(1 =dxdy y x y x ⎰⎰≤+++22222441 =ρρρθπd d ⎰⎰+202241=20232)41(1212ρπ+⋅=.313π 17.18.19.由对称性,2,0==y x ,⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--⎰⎰dz z dz z z20.(1)123=b c βααα++即11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 解得322a b c =⎧⎪=⎨⎪=-⎩.(2)()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的一个基.()()12323=P αααααβ,,,,则()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,.21.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+⎧⎨-=-⎩,解得32x y =⎧⎨=-⎩(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭;2=1λ-,22=10α-⎛⎫ ⎪ ⎪ ⎪⎝⎭;3=2λ-,31=24α-⎛⎫⎪ ⎪ ⎪⎝⎭. 所以存在()1123=P ααα,,,使得111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦.B 的特征值与对应的特征向量分别为1=2λ,11=00ξ⎛⎫ ⎪ ⎪ ⎪⎝⎭;2=1λ-,21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭;3=2λ-,30=01ξ⎛⎫ ⎪ ⎪⎪⎝⎭.所以存在()2123=P ξξξ,,,使得122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦. 所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当0z ≤时,()zF z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0zzpez f z p e z -⎧<⎪=⎨->⎪⎩. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,又()()1,12D X E Y p ==-,从而当12p =时,(),0Cov X Z =,即,X Z 不相关.(III )由上知当12p ≠时,,X Z 相关,从而不独立;当12p =时,121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭而12112P X e -⎧⎫≤=-⎨⎬⎩⎭,121111112222222P Z P X P X e -⎛⎫⎧⎫⎧⎫⎧⎫≤=≤+≥-=-⎨⎬⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎩⎭⎝⎭,显然1111,2222P X Z P X P Z ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,即,X Z 不独立. 从而,X Z 不独立. 23. 解:(I )由()2221x Aedx μσμσ--+∞=⎰t =2012t e dt +∞-==⎰,从而A =(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i nL x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩其他,当,1,2,,i x i nμ≥=时,取对数得()22211ln ln ln 22nii n L n A x σμσ==---∑,求导并令其为零,可得()22241ln 1022ni i d L n x d μσσσ==-+-=∑,解得2σ的最大似然估计量为()211n i i x n μ=-∑.。
2018年全国硕士研究生入学统一考试数学(一)试卷及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x x x→→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx xx→→--==可导;(D)000122lim lim,x x x xx x→→→-==极限不存在,故选D。
(2)过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为()(A)01z x y z =+-=与(B)022z x y z =+-=与2(C)1x y x y z =+-=与(D)22x y x y z =+-=与2【答案】(B)【解析】()()221,0,0,0,1,0=0z z x y =+过的已知曲面的切平面只有两个,显然与曲面相切,排除C 、D22z x y =+曲面的法向量为(2x,2y,-1),111(1,1,1),,22x y z x y +-=-==对于A选项,的法向量为可得221.z x y x y z z A B =++-=代入和中不相等,排除,故选(3)()()23121!nn n n ∞=+-=+∑()(A)sin1cos1+(B)2sin1cos1+(C)2sin12cos1+(D)2sin13cos1+【答案】(B)【解析】00023212(1)(1)(1)(21)!(21)!(21)!nn nn n n n n n n n ∞∞∞===++-=-+-+++∑∑∑0012=(1)(1)cos 2sin1(2)!(21)!nn n n l n n ∞∞==-+-=++∑∑故选B.(4)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xx xxx e x N dx dx Meeπππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ--+>==⎰⎰(,K M N >>故应选C 。
2018全国研究生入学考试考研数学一试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的.1. 下列函数不可导的是: A.x x y sin =B.x x y sin =C.xy cos =D.x y cos=2.过点(1,0,0)与(0,1,0)且与22y x z +=相切的平面方程为 A.10=-+=z y x z 与 B.2220=-+=z y x z 与 C.1=-+=z y x x y 与 D.222=-+=z y c x y 与 3.)!12(32)1(0n ++-∑∞=n n n=A.1cos 1sin +B.1cos 1sin 2+C.1cos 1sin +D.1cos 21sin 3+4.dx xx M ⎰-++=22221)1(ππ, dx e x N x ⎰+=22-1ππ, dx x K ⎰+=22-cos 1ππ)(,则M,N,K 的大小关系为:A.K N M >>B.N K M >>C.N M K >>D.K M N >>5. 下列矩阵中,与矩阵⎪⎪⎪⎭⎫ ⎝⎛100110011相似的为________.A.⎪⎪⎪⎭⎫ ⎝⎛1001101-11B.⎪⎪⎪⎭⎫⎝⎛-100110101C.⎪⎪⎪⎭⎫ ⎝⎛-100010111D.⎪⎪⎪⎭⎫ ⎝⎛-1000101016.设A,B 为n 阶矩阵,记)(r X 为矩阵X 的秩,)(Y X 表示分块矩阵,则A.)A ()AB A (r r =B.)A ()BA A (r r =C.)}B (),A ({max )B A (r r r =D.)B A (r )B A (r TT= 7.设随机变量X 的概率密度)(x f 满足6.0)(),1()1(2=-=+⎰dx x f x f x f ,则}0{p <x = 。
2018年硕士研究生入学考试数学一 试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 下列函数不可导的是:()()()()sin sin cos cosA y x xB y xC y xD y====(2)22过点(1,0,0)与(0,1,0)且与z=x 相切的平面方程为y + ()()()()0与10与222与x+y-z=1与222A zx y z B z x y z C y x D yx c y z =+-==+-===+-=(3)023(1)(2n 1)!nn n ∞=+-=+∑()()()()sin 1cos 12sin 1cos 1sin 1cos 13sin 12cos 1A B C D ++++(4)22222222(1x)1xN= K=(11xM dx dx x e ππππππ---++=++⎰⎰⎰),则M,N,K的大小关系为()()()()A M N K B M K N C K M N D NM K>>>>>>>>(5)下列矩阵中,与矩阵110011001⎛⎫⎪ ⎪⎪⎝⎭相似的为______. A.111011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ B.101011001-⎛⎫⎪ ⎪⎪⎝⎭ C.111010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ D.101010001-⎛⎫⎪ ⎪⎪⎝⎭(6).设A ,B 为n 阶矩阵,记()r X 为矩阵X 的秩,(X Y ) 表示分块矩阵,则A.()()r A AB r A =B.()()r A BA r A =C.()max{(),()}r A B r A r B =D.()()TT r A B r A B =(7)设()f x 为某分部的概率密度函数,(1)(1)f x f x +=-,20()d 0.6f x x =⎰,则{0}p X = .A. 0.2B. 0.3C. 0.4D. 0.6 (8)给定总体2(,)XN μσ,2σ已知,给定样本12,,,n X X X ,对总体均值μ进行检验,令0010:,:H H μμμμ=≠,则A . 若显著性水平0.05α=时拒绝0H ,则0.01α=时也拒绝0H . B. 若显著性水平0.05α=时接受0H ,则0.01α=时拒绝0H . C. 若显著性水平0.05α=时拒绝0H ,则0.01α=时接受0H . D. 若显著性水平0.05α=时接受0H ,则0.01α=时也接受0H .二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)1sin 01tan lim ,1tan kxx x e x →-⎛⎫= ⎪+⎝⎭则k =(10)()y f x =的图像过(0,0),且与x y a =相切与(1,2),求1'()xf x dx =⎰(11)(,,),(1,1,0)F x y z xy yz xzk rot F εη=-+=求(12)曲线S 由22210x y z x y z ++=++=与相交而成,求xydS =⎰ (13)二阶矩阵A 有两个不同特征值,12,αα是A 的线性无关的特征向量,21212()(),=A A αααα+=+则(14)A,B 独立,A,C 独立,11,()()(),()24BC P A P B P AC ABC P C φ≠===,则=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15).求不定积分2x e ⎰(16).一根绳长2m ,截成三段,分别折成圆、三角形、正方形,这三段分别为多长是所得的面积总和最小,并求该最小值。
2018年考研真题数学在2018年的考研真题数学部分中,涵盖了多个知识领域和题型,考察了考生的数学思维和解题能力。
本文将对2018年考研真题数学进行详细分析和解答,帮助考生更好地理解和应对这一部分的考试内容。
第一部分:选择题2018年考研数学选择题主要分为数学一和数学二两个版本。
数学一版本涵盖了线性代数、概率统计和高等数学等知识点,而数学二版本则重点考察了实分析、复分析和常微分方程等专业数学知识。
其中,数学一部分的选择题考察了对数学知识的掌握和运用能力。
以线性代数为例,考生需要熟悉矩阵的性质、行列式的计算和特征值特征向量等内容,并能够将其应用于实际问题的解答中。
在概率统计方面,考生需要掌握概率计算、参数估计和假设检验等基本方法,并能够运用这些方法解决实际问题。
对于数学二的选择题部分,考生需要具备扎实的数学基础和相关专业知识。
实分析方面,题目主要涵盖了实数的性质、极限、连续性和可测性等概念,考察了考生对这些基本概念的理解和运用。
复分析方面,则考察了复数函数的性质、解析函数的概念和留数定理等内容。
在常微分方程部分,考生需要熟悉常微分方程的基本知识和解法,并能够运用这些方法解决具体问题。
第二部分:填空题填空题是2018年考研数学部分的重点考察内容之一。
填空题考察了考生的运算能力和解题思路。
在填空题中,考生需要根据题目给出的信息进行推理和计算,并填写正确的答案。
填空题的题型多样,包括求导、积分、概率计算和矩阵运算等。
考生需要熟练掌握各种数学方法和技巧,并能够准确地应用到填空题的解答中。
同时,考生还需要注意题目中的关键信息和要求,避免出现计算错误或理解偏差。
第三部分:解答题解答题是考研数学部分的重点和难点。
在2018年的考研真题中,解答题主要考察了考生的数学思维和解题能力。
题目涵盖了线性代数、概率统计、实分析、复分析和常微分方程等多个领域的知识,考生需要综合运用各种数学方法和技巧解决复杂的问题。
解答题要求考生具备扎实的数学基础和相关专业知识,同时需要具备较强的思维逻辑能力和数学建模能力。
. .2018 年全国硕士研究生入学统一考试数学一考研真题与全面解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上 .1.下列函数中在x 0处不可导的是()(A)f ( x) x sin x (B)f (x) x sin x(C) f ( x) cos x (D) f (x) cos x2.过点(1,0,0) ,(0,1,0) ,且与曲面2 2z x y 相切的平面为()(A)z0与x y z 1 (B)z0与2x 2y z 2 (C)x y与x y z 1 (D)x y与2x 2y z 23.nn( 1)2n 3(2n 1)!()A sin1 cos1B 2sin1 cos1C 2sin1 2cos1D 2sin1 3cos14.设2(1 x)M dx221 x21 x, 2N dx, 2K (1 cosx)dx,则()xe2 2(A)M N K (B)M K N(C)K M N (D)K N M1 1 00 1 1 5. 下列矩阵中阵,与矩阵相似的是()0 0 1. .专业资料 . .. .1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 (A)(B)(C)(D)0 0 1 0 0 1 0 0 1 0 0 1 5.设A, B是n阶矩阵,记r(X ) 为矩阵X 的秩,( X ,Y)表示分块矩阵,则()(A)r ( A, AB) r (A) (B)r ( A, BA) r (A)T T(C)r ( A, B) max{ r ( A), r ( B)} (D)( , ) ( , )r A B r A B6.设随机变量X 的概率密度 f (x) 满足f (1 x) f (1 x) ,且20 f (x)dx 0.6则P{ X 0} ( )(A)0.2 (B)0.3 (C)0.4 (D)0.57.设总体 X 服从正态分布2N(, ) , X1, X2, ,X n 是来自总体X 的简单随机样本,据此样本检测,假设H0 : 0 ,H1 : 0 ,则()(A)如果在检验水平0.05下拒绝H,那么在检验水平0.01下必拒绝0 H ;(B)如果在检验水平0.05下拒绝H,那么在检验水平0.01下必接受0 H ;(C)如果在检验水平0.05下接受H,那么在检验水平0.01下必拒绝H0;(D)如果在检验水平0.05下接受H,那么在检验水平0.01下必接受H0。
2018年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)下列函数中,在0x =处不可导的是( )(A)()sin f x x x = (B) ()f x x =(C) ()cos f x x = (D) ()f x =(2)过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为( )(A)01z x y z =+-=与 (B) 022z x y z =+-=与2(C) 1x y x y z =+-=与 (D) 22x y x y z =+-=与2(3)()()023121!n n n n ∞=+-=+∑( )(A) sin1cos1+ (B) 2sin1cos1+(C) 2sin12cos1+ (D) 2sin13cos1+(4)设()(2222222211,,1,1x x x M dx N dx K dx x e ππππππ---++===+⎰⎰⎰则( )(A)M N K >> (B)M K N >>(C)K M N >> (D)K N M >>(5)下列矩阵中与矩阵110011001⎛⎫⎪⎪ ⎪⎝⎭相似的为( )(A) 111011001-⎛⎫⎪ ⎪ ⎪⎝⎭ (B) 101011001-⎛⎫⎪ ⎪ ⎪⎝⎭(C) 111010001-⎛⎫⎪ ⎪ ⎪⎝⎭ (D) 101010001-⎛⎫⎪ ⎪ ⎪⎝⎭(6)()(),A B n r X X X Y 设、为阶矩阵,记为矩阵的秩,表示分块矩阵,则( )(A) ()(),r A AB r A = (B) ()(),r A BA r A =()()(){}()T T(A) 0.2 (B)0.3 (C)0.4 (D)0.5(8)设总体()212,,,,,n X N X X X X μσ服从正态分布是来自总体的简单随机样本,据此样本检测:0010=H H μμμμ≠假设::,:,则( )(A) 00=0.05=0.01H H αα如果在检验水平下拒绝,那么在检验水平下必拒绝(B) 00=0.05=0.01H H αα如果在检验水平下拒绝,那么在检验水平必接受(C) 00=0.05=0.01H H αα如果在检验水平下接受,那么在检验水平下必拒绝(D) 00=0.05=0.01H H αα如果在检验水平下接受,那么在检验水平下必接受二、填空题:9~14小题,每小题4分,共24分。
2018考研数学一真题及解析一、选择题:1~8 小题,每小题4 分,共32 分.下列每题给出的四个选项中,只有一个是符合题目要求的,请将所选项前的字母填在答题纸...指定的位置上. (1) 下列函数中,在0x =处不可导的是( ) (A)()sin f x x x =(B)()f x x =(C)()cos f x x = (D)()f x =【答】选(D).【解】对于D:由定义得0112'(0)lim lim 2x x xf x +++→→-===-;112'(0)lim lim 2x x xf x ---→→-===,'(0)'(0)f f +-≠,所以不可导.(2) 过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为( )(A) 0z =与1x y z +-= (B) 0z =与22x y z +-=2(C) x y =与1x y z +-=(D) x y =与22x y z +-=2【答】应选(B).【解】法一:设平面与曲面的切点为000(,,)x y z ,则曲面在该点的法向量为00(2,2,1)n x y →=-,切平面方程为000002()2()()0x x x y y y z z -+---=切平面过点 (1,0,0),(0,1,0),故有000002(1)2(0)(0)0x x y y z -+---=,(1) 000002(0)2(1)(0)0x x y y z -+---=,(2) 又000(,,)x y z 是曲面上的点,故 22000z x y =+ ,(3)解方程 (1)(2)(3),可得切点坐标 (0,0,0)或(1,1,2).因此,切平面有两个0z =与222x y z +-=,故选(B).【解】法二:由于x y =不经过点(1,0,0) 和 (0,1,0),所以排除(C )(D )。
对于选项(A ),平面1x y z +-=的法向量为(1,1,1)-,曲面220x y z +-=的法向量为(2,2,1)x y -,如果所给平面是切平面,则切点坐标应为111(,,)222,而曲面在该点处的切平面为12x y z +-=,所以排除(A ).所以唯一正确的选项是(B).(3)()()023121!nn n n ∞=+-=+∑( )(A)sin1cos1+(B)2sin1cos1+ (C)2sin12cos1+(D)2sin13cos1+ 【答】应选(B). 【解】因为 2120(1)(1)sin ,cos ,(21)!(2)!nnn nn n x xx xn n ∞∞+==--==+∑∑而 00023212(1)(1)(1)(21)!(21)!(21)!nn n n n n n n n n n ∞∞∞===++-=-+-+++∑∑∑ 00(1)(1)cos12sin1(2)!(21)!2n nn n n n ∞∞==--=+=++∑∑,故选(B). (4) 设()22221d 1x M x x ππ-+=+⎰,221d x x N x e ππ-+=⎰,(221d K x ππ-=+⎰,则( ) (A)M N K >>(B)M K N >> (C)K M N >> (D)K N M >>【答】应选(C).【解】22222212d d 1x xM x x x πππππ--++===+⎰⎰; 112211221111d d d d x x x x x x x x N x x x x e e e e ππππ----++++==++⎰⎰⎰⎰, 2211111111121111d 0,d d d 1d 2x x x x xx x x x x x x e e e e π------+++<<=<=⎰⎰⎰⎰⎰,2221121d 1d ,1d 2x x x x N x M e πππππ-+<=∴<=⎰⎰⎰;22,K x K M N πππ-=>∴>>⎰.故选(C).(5) 下列矩阵中与矩阵110011001⎛⎫ ⎪⎪ ⎪⎝⎭相似的为( )(A) 111011001-⎛⎫⎪ ⎪ ⎪⎝⎭(B) 101011001-⎛⎫⎪ ⎪ ⎪⎝⎭(C) 111010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭(D) 101010001-⎛⎫ ⎪ ⎪⎪⎝⎭【答】选A.【解】~,~A B E A E B ∴--()()r E A r E B ∴-=-各选项中::()1;B r E B -=:()1;C r E B -=:()1D r E B -=选A.(6) 设A ,B 为n 阶矩阵,记()r X 为矩阵X 的秩, (,)X Y 表示分块矩阵,则( ) (A) ()(),r r =A AB A(B) ()(),r r =A BA A(C) ()()(){},max ,r r r =A B A B (D) ()()T T ,,r r =A B A B【答】应选(A).【解】设AB C =,则矩阵A 的列向量组可以表示C 的列向量组,所以()()→A AB A O ,即()()()r A AB r A O r A ==,故答案选A. (7) 设随机变量X 的概率密度()f x 满足()()11f x f x +=-,且()2d 0.6f x x =⎰,则{}0P X <=( )(A) 0.2 (B)0.3 (C)0.4 (D)0.5 【答案】A已知(1)(1)f x f x +=-可得()f x 图像关于1x =对称,2()d 0.6f x x =⎰从而(0)0.2P x ≤=(8) 设总体X 服从正态分布()2,N μσ.12,,,n X X X 是来自总体X 的简单随机样本,据此样本检验假设: 00:=H μμ,10:H μμ≠,则( )(A) 如果在检验水平=0.05α下拒绝0H ,那么在检验水平=0.01α下必拒绝0H(B) 如果在检验水平=0.05α下拒绝0H ,那么在检验水平=0.01α下必接受0H (C) 如果在检验水平=0.05α下接受0H ,那么在检验水平=0.01α下必拒绝0H(D) 如果在检验水平=0.05α下接受0H ,那么在检验水平=0.01α下必接受0H【答】应选(D)【解】正确解答该题,应深刻理解“检验水平”的含义。
统计量__~(0,1)X N μ-,在检验水平0.05α=0.025u <,解得 接受域的区间为____0.0250.025(,X u X u σσ-+;在检验水平0.01α=下接受域的区间为____0.0050.005(,X u X u σσ-+。
由于0.0250.005u u <,0.01α=下接受域的区间包含了0.05α=下接受域的区间,故选(D). 二、填空题:9~14小题,每小题4分,共24分. 请将答案写在答题纸...指定位置上. (9) 若1sin 01tan lim ,1tan kxx x e x →-⎛⎫=⎪+⎝⎭则k =__________.【答】应填2-. 【解】因为00011tan 12tan 122lim-1lim lim sin 1tan sin 1tan 1tan x x x x x x kx x kx x kx x k →→→---⎛⎫===- ⎪+++⎝⎭,故12sin 01tan lim 1tan kxkx x ee x -→-⎛⎫== ⎪+⎝⎭,即2k =-.(10) 设函数()f x 具有2阶连续导数,若曲线()y f x =过点()0,0且与曲线2xy =在点()1,2处相切,则()10d xf x x ''=⎰__________.【答】应填2(ln 21)-. 【解】1(1)(2)2ln 2xx f =''==.()1d xf x x ''⎰1d ()x f x '=⎰1100()()d xf x f x x ''=-⎰(1)(1)(0)f f f '=-+2ln 222(ln 21)=-=-.(11) 设(,,)F x y z xy yz zx =-+i j k ,则()1,1,0=rot F . 【答】(1,0,1)-【解】 (,,)ij k rotF x y z y i z j x k x yzxy yz zx→→→→→→∂∂∂==--∂∂∂-故 (1,1,0)(1,0,1)rotF =-。
(12) 设L 为球面2221x y z ++=与平面0x y z ++=的交线,则d Lxy s =⎰.【答】应填3π-【解】先求交线L :2221x y z x y z ++=++=⎧⎨⎩,由于曲面方程与平面方程中的,,x y z 满足轮换对称性,因此在曲线L 上,,x y z 具有轮换对称性。
又知2222()2()0x y z x y z xy yz zx ++=+++++=⇒12xy yz zx ++=-由轮换对称性可得 :111()23663LLLxyds xy yz zx ds ds ππ=++=-=-=-⎰⎰⎰.(13) 设2阶矩阵A 有两个不同特征值, 12,αα是A 的线性无关的特征向量,且满足21212()+=+A αααα,则||=A _ _____.【答】应填1-【解】设12,αα对应的特征值分别是12,λλ,则222221212112212()A A A ααααλαλααα+=+=+=+,221122(1)(1)0λαλα⇒-+-=,由于12,αα线性无关,故 22121,1λλ==,从而A 的两个不同的特征值为1,1-,于是111A =-⨯=-.(14) 设随机事件A 与B 相互独立,A 与C 相互独立,=BC ∅,若()()12P A P B ==,()14P AC AB C ==,则()P C = . 【答】应填14.【解】{()}()()()()()()P AC AB C P ABC AC P AC AB C P ABC P AB P C P ABC ==+-()()()()1()()()()()()()4P ABC P AC P A P C P A P B P C P ABC P A P B P C +===+-+1()112()1144()22P C P C P C ⇒=⇒=⨯+.三、解答题:(15~23小题,共94 分.)(15) (本题满分10分)求不定积分2x e x⎰.【解】2212x xe =⎰⎰221122xx x e e =⋅⎰221124x x e =⋅21124x x x e =⋅211arctan(1)24x x e d e =⋅-⎰ 322112arctan (1)243x x e e C ⎛=⋅-++ ⎝ 32211arctan (1)26x x e e C =⋅-. (16) (本题满分10分)将长为2m 的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值. 【解】设2x y z ++=2212,,24x x r x r S r ππππ====2224,,416y y a y a S a ====3133,,sin 32333z z z b z b S π====令222(,,,)(2)41636x y L xy z x y z λλπ=+++++- 022016020Lx x L y y L z L x y z λπλλλ∂⎧=+=⎪∂⎪∂⎪=+=⎪∂⎪⎨∂⎪==⎪∂⎪∂⎪=++-=⎪∂⎩,即428,,xx y y z xz πλπλπ⎧⎧=-=⎪⎪⎪=-⎨⎨⎪⎪==-⎩⎪⎩则4(12x π+=,故x y z ππππ⎧⎪⎪=⎪⎪⎪⎪=⎨⎪⎪⎪⎪=⎪⎪⎩那么此时的(,,,)x y z λ就是使S 最小的点S 最小值为22241636x y S π=+=+(17) (本题满分10分)设∑是曲面x =,计算曲面积分()33=d d 2d d d d I x y z y z x z x y ∑+++⎰⎰.【解】将空间曲面化成标准形以便确定积分曲面的形状。